Improvement of Ultrasound Image Quality Using Non-Local Means Noise-Reduction Approach for Precise Quality Control and Accurate Diagnosis of Thyroid Nodules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Standards
2.2. Ultrasound Imaging System and Phantom
2.3. NLM Noise-Reduction Algorithm Modeling
2.4. Quantitative Evaluation of Image Quality
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.J.; Park, C.K.; Kim, K.G. Gain determination of feedback force for an ultrasound scanning robot using genetic algorithm. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Zayadeen, A.R.; Abu-Yousef, M.; Berbaum, K. Retrospective Evaluation of Ultrasound Features of Thyroid Nodules to Assess Malignancy Risk: A Step Toward TIRADS. AJR 2016, 207, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Lee, J.M.; Joo, I.; Lee, D.H.; Yoon, J.H.; Kang, H.J.; Ahn, S.J. Reproducibility of ultrasound attenuation imaging for the noninvasive evaluation of hepatic steatosis. Ultrasonography 2020, 39, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.J.; Lim, C.M.; Jeong, D.; Jeon, H.R.; Cho, K.J.; Kim, S.Y. Efficacy of intraoperative wireless ultrasonography for uterine incision among patients with adherence findings in placenta previa. J. Obstet. Gynaecol. Res. 2020, 46, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.J.; Na, D.G.; Kim, S.J.; Kim, D.S. Role of core needle biopsy as a first-line diagnostic tool for thyroid nodules: A retrospective cohort study. Ultrasonography 2018, 37, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.H.; Park, N. Two Years of Experience with Health Insurance Coverage of Upper Abdominal Ultrasound in South Korea. Clin. Ultrasound 2020, 5, 59–64. [Google Scholar] [CrossRef]
- Mahale, J.R.; Prabhu, S.D.; Nachiappan, M.; Fernandes, M.; Ullal, S. Clinical relevance of reporting fatty liver on ultrasound in asymptomatic patients during routine health checkups. J. Int. Med. Res. 2018, 46, 4447–4454. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, J.I.; Park, M.Y.; Yeo, D.M.; Byun, J.Y.; Jung, S.E.; Rha, S.E.; Oh, S.N.; Lee, Y.J. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom. Ultrasonography 2014, 33, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Health Insurance Review & Assessment Service. Preparation of Ultrasound Adequacy Evaluation Plan; Health Insurance Review & Assessment Service: Wonju, Korea, 2018. [Google Scholar]
- Kang, S.H.; Kim, M.; Lee, Y. The study on reduction for near field clutter (NFC) artifact based on wavelet thresholding method in ultrasound image using Field II program. Optik 2018, 162, 220–227. [Google Scholar] [CrossRef]
- Kim, S.H.; Seo, K.; Kang, S.H.; Kim, J.H.; Choi, W.H.; Lee, Y. Feasibility Study of Improved Patch Group Prior Based Denoising (PGPD) Technique with Medical Ultrasound Imaging System. J. Magn. 2017, 22, 55–59. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005. [Google Scholar] [CrossRef]
- Coupé, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ding, M.; Zhang, X.; Wu, J. PCANet based nonlocal means method for speckle noise removal in ultrasound images. PLoS ONE 2018, 13, e0205390. [Google Scholar] [CrossRef] [PubMed]
- Pramulen, A.S.; Yuniarno, E.M.; Nugroho, J.; Sunarya, I.M.G.; Purnama, I.K.E. Carotid artery segmentation on ultrasound image using deep learning based on non-local means-based speckle filtering. In Proceedings of the 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 17–18 November 2020. [Google Scholar] [CrossRef]
- Grazhdani, H.; David, E.; Spagnolo, O.V.; Buemi, F.; Perri, A.; Orsogna, N.; Gigli, S.; Chimenz, R. Quality assurance of ultrasound systems: Current status and review of literature. J. Ultrasound 2018, 21, 173–182. [Google Scholar] [CrossRef]
- Mrazek-Pugh, B.; Blumenfeld, Y.J.; Lee, H.C.; Chueh, J. Obstetric Ultrasound Quality Improvement Initiative—Utilization of a Quality Assurance Process and Standardized Checklists. Am. J. Perinatol. 2015, 32, 599–604. [Google Scholar]
- Burckhardt, C.B. Speckle in Ultrasound B-Mode Scans. IEEE Trans. Sonics Ultrason. 1978, SU-25, 1–6. [Google Scholar] [CrossRef]
- Gungor, M.A.; Karagoz, I. The Effects of the Median Filter with Different Window Sizes for Ultrasound Image. In Proceedings of the 2nd IEEE International Conference on Computer and Communications, Chengdu, China, 14–17 October 2016; pp. 549–552. [Google Scholar]
- Ryu, K.R.; Jung, E.S. Edge Preserving Speckle Reduction of Ultrasound Image with Morphological Adaptive Median Filtering. Int. J. KIMICS 2009, 7, 535–538. [Google Scholar]
- Gupta, M.; Taneja, H.; Chand, L. Performance Enhancement and Analysis of Filters in Ultrasound Image Denoising. Procedia Comput. Sci. 2018, 132, 643–652. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Zuo, W.; Feng, X. Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Processing 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Soundararaja, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Processing Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Peter, D.J.; Govindan, V.K.; Mathew, A.T. Nonlocal-Means Image Denoising Technique Using Robust M-Estimator. J. Comput. Sci. Technol. 2010, 25, 623–631. [Google Scholar] [CrossRef]
- Ha, E.J.; Na, D.G.; Baek, J.H. Korean Thyroid Imaging Reporting and Data System: Current Status, Challenges, and Future Perspectives. Korean J. Radiol. 2021, 22, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Hafiane, A.; Vieyres, P.; Delbos, A. Deep Learning with Spatiotemporal Consistency for Nerve Segmentation in Ultrasound Images. arXiv 2017, arXiv:1706.05870. [Google Scholar] [CrossRef]
- Wang, Z. Deep Learning in Medical Ultrasound Image Segmentation: A Review. arXiv 2021, arXiv:2002.07703. [Google Scholar] [CrossRef]
- Kazeminia, S.; Baur, C.; Kuijper, A.; van Ginneken, B.; Navab, N.; Albarqouni, S.; Mukhopadhyay, A. GANs for Medical Image Analysis. arXiv 2019, arXiv:1809.06222. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Chon, N.; Jeong, H.-W.; Lee, Y. Improvement of Ultrasound Image Quality Using Non-Local Means Noise-Reduction Approach for Precise Quality Control and Accurate Diagnosis of Thyroid Nodules. Int. J. Environ. Res. Public Health 2022, 19, 13743. https://doi.org/10.3390/ijerph192113743
Kim K, Chon N, Jeong H-W, Lee Y. Improvement of Ultrasound Image Quality Using Non-Local Means Noise-Reduction Approach for Precise Quality Control and Accurate Diagnosis of Thyroid Nodules. International Journal of Environmental Research and Public Health. 2022; 19(21):13743. https://doi.org/10.3390/ijerph192113743
Chicago/Turabian StyleKim, Kyuseok, Nuri Chon, Hyun-Woo Jeong, and Youngjin Lee. 2022. "Improvement of Ultrasound Image Quality Using Non-Local Means Noise-Reduction Approach for Precise Quality Control and Accurate Diagnosis of Thyroid Nodules" International Journal of Environmental Research and Public Health 19, no. 21: 13743. https://doi.org/10.3390/ijerph192113743
APA StyleKim, K., Chon, N., Jeong, H.-W., & Lee, Y. (2022). Improvement of Ultrasound Image Quality Using Non-Local Means Noise-Reduction Approach for Precise Quality Control and Accurate Diagnosis of Thyroid Nodules. International Journal of Environmental Research and Public Health, 19(21), 13743. https://doi.org/10.3390/ijerph192113743