What Drives the Influence of Health Science Communication Accounts on TikTok? A Fuzzy-Set Qualitative Comparative Analysis
Abstract
:1. Introduction
2. Literature Review and Theoretical Framework
2.1. Antecedents of Social Media Account Influence
2.2. Sociotechnical Systems Theory
3. Research Methods
3.1. Sample
3.2. Fuzzy-Set QCA Procedures, Methods, and Data Preparation
3.3. Measures and Calibrations for Set Membership
3.3.1. Outcome Variable and Calibration
3.3.2. Conditional Variables and Calibrations
4. Results
4.1. Necessary Conditions Analysis
4.2. Sufficiency Analysis of Account Influence
4.2.1. Configurations for Strong Account Influence
4.2.2. Configurations for Absence of Strong Account Influence
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loss, J.; Von Uslar, C. How German health insurance providers use social online networks to promote healthy lifestyles: A content analysis of Facebook® accounts. BMC Med. Inform. Decis. Mak. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Massey, P.M.; Kearney, M.D.; Hauer, M.K.; Selvan, P.; Koku, E.; Leader, A.E. Dimensions of misinformation about the HPV vaccine on instagram: Content and network analysis of social media characteristics. J. Med. Internet Res. 2020, 22, e21451. [Google Scholar] [CrossRef] [PubMed]
- Health Newspaper. Health science video insight report released. Available online: https://weibo.com/ttarticle/p/show?id=2309404449072663625987&comment=1 (accessed on 13 December 2019).
- CNNIC. The 48th Statistical Report on the Development of Internet in China. Available online: http://www.cnnic.net.cn/n4/2022/0401/c88-1132.html (accessed on 15 September 2021).
- iiMedia. Research Report on the competition of China micro-vedio head market from 2020 to 2021. Available online: https://report.iimedia.cn/repo13-0/39293 (accessed on 26 January 2021).
- 199IT. TikTok hits 3 billion total downloads worldwide. Available online: http://www.199it.com/archives/1291715.html (accessed on 6 August 2021).
- SCICAT. How many TikTok users were there in 2021. Available online: http://www.scicat.cn/aa/20211113/887183.html (accessed on 13 November 2021).
- Li, Y.; Guan, M.; Hammond, P.; Berrey, L.E. Communicating COVID-19 information on TikTok: A content analysis of TikTok videos from official accounts featured in the COVID-19 information hub. Health Educ. Res. 2021, 36, 261–271. [Google Scholar] [CrossRef]
- Ostrovsky, A.M.; Chen, J.R. TikTok and its role in COVID-19 information propagation. J. Adolesc. Health. 2020, 67, 730. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, X.; Zhang, W.; Chen, J.; Evans, R. How health communication via tik tok makes a difference: A content analysis of tik tok accounts run by chinese provincial health committees. Int. J. Environ. Res. Public Health. 2020, 17, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, X. How has the nationwide public health emergency of the COVID-19 pandemic affected older Chinese adults’ health literacy, health behaviors and practices, and social connectedness? Qualitative evidence from urban China. Front. Public Health. 2022, 9, 774675. [Google Scholar] [CrossRef]
- Zhang, W.; Mei, J.; Song, W.; Evans, R.; Xiang, Y. Why do citizens engage with the TikTok accounts of public hospitals in China? SAGE Open 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Song, S.; Zhao, Y.C.; Yao, X.; Ba, Z.; Zhu, Q. Short video apps as a health information source: An investigation of affordances, user experience and users’ intention to continue the use of TikTok. Internet Res. 2021, 31, 2120–2142. [Google Scholar] [CrossRef]
- Basch, C.H.; Fera, J.; Pierce, I.; Basch, C.E. Promoting mask use on TikTok: Descriptive, cross-sectional study. JMIR Public Health Surveill. 2021, 7, e26392. [Google Scholar] [CrossRef] [PubMed]
- CPC. CPCCC’s proposals for the formulation of the 14th Five-Year Plan (2021–2025) for National Economic and Social Development and the Long-Range Objectives Through the Year 2035. Available online: http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm (accessed on 3 November 2020).
- Thackeray, R.; Neiger, B.L.; Smith, A.K.; Van Wagenen, S.B. Adoption and use of social media among public health departments. BMC Public Health. 2012, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.; Massagli, M. Social uses of personal health information within PatientsLikeMe, an online patient community: What can happen when patients have access to one another’s data. J. Med. Internet Res. 2008, 10, e15. [Google Scholar] [CrossRef] [PubMed]
- Thackeray, R.; Hunter, M. Empowering youth: Use of technology in advocacy to affect social change. J. Comput.-Mediat. Commun. 2010, 15, 575–591. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, M.; Wang, Y. Why do audiences choose to keep watching on live video streaming platforms? an explanation of dual identification framework. Comput. Hum. Behav. 2017, 75, 594–606. [Google Scholar] [CrossRef]
- Daft, R.L.; Lengel, R.H.; Trevino, L.K. Message equivocality, media selection, and manager performance: Implications for information systems. MIS Q. 1987, 11, 355–366. [Google Scholar] [CrossRef]
- Chen, J.V.; Yen, D.C.; Kuo, W.-R.; Capistrano, E.P.S. The antecedents of purchase and re-purchase intentions of online auction consumers. Comput. Hum. Behav. 2016, 54, 186–196. [Google Scholar] [CrossRef]
- Robert, L.; Dennis, A.R. Paradox of richness: A cognitive model of media choice. IEEE Trans. Prof. Commun. 2005, 48, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.; Zeng, D. Dissecting emotion and user influence in social media communities: An interaction modeling approach. Inf. Manage. 2020, 57, 103108. [Google Scholar] [CrossRef]
- Li, W.; Ye, Z.; Xin, M.; Jin, Q. Social recommendation based on trust and influence in SNS environments. Multimed. Tools Appl. 2015, 76, 11585–11602. [Google Scholar] [CrossRef]
- Yu, D.; Chen, N.; Ran, X. Computational modeling of Weibo user influence based on information interactive network. Online Inf. Rev. 2016, 40, 867–881. [Google Scholar] [CrossRef]
- Moe, H.; Larsson, A.O. Untangling a complex media system: A comparative study of Twitter-linking practices during three Scandinavian election campaigns. Info. Commun. Soc. 2013, 16, 775–794. [Google Scholar] [CrossRef]
- Nip, J.Y.M.; Fu, K. Networked framing between source posts and their reposts: An analysis of public opinion on China’s microblogs. Info. Commun. Soc. 2015, 19, 1127–1149. [Google Scholar] [CrossRef]
- Oliveira, G.H.M.; Welch, E.W. Social media use in local government: Linkage of technology, task, and organizational context. Gov. Inf. Q. 2013, 30, 397–405. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, T.; Chen, S.; Zhang, C. Integrating ego, homophily, and structural factors to measure user influence in online community. IEEE Trans. Prof. Commun. 2017, 60, 292–305. [Google Scholar] [CrossRef]
- Chai, S.; Kim, M. A socio-technical approach to knowledge contribution behavior: An empirical investigation of social networking sites users. Int. J. Inf. Manage. 2012, 32, 118–126. [Google Scholar] [CrossRef]
- Cao, D.; Meadows, M.; Wong, D.; Xia, S. Understanding consumers’ social media engagement behaviour: An examination of the moderation effect of social media context. J. Bus. Res. 2021, 122, 835–846. [Google Scholar] [CrossRef]
- Chung, J.E. A smoking cessation campaign on Twitter: Understanding the use of twitter and identifying major players in a health campaign. J. Health Commun. 2016, 21, 517–526. [Google Scholar] [CrossRef]
- Wang, R.; Kim, J.; Xiao, A.; Jung, Y.J. Networked narratives on humans of New York: A content analysis of social media engagement on Facebook. Comput. Hum. Behav. 2017, 66, 149–153. [Google Scholar] [CrossRef]
- Chen, Q.; Min, C.; Zhang, W.; Wang, G.; Ma, X.; Evans, R. Unpacking the black box: How to promote citizen engagement through government social media during the COVID-19 crisis. Comput. Hum. Behav. 2020, 110, 106380. [Google Scholar] [CrossRef]
- Trist, E.L.; Bamforth, K.W. Some social and psychological consequences of the longwall method of coal-getting. Hum. Relat. 1951, 4, 3–38. [Google Scholar] [CrossRef]
- Beath, C.; Berente, N.; Gallivan, M.; Lyytinen, K. Expanding the frontiers of information systems research: Introduction to the special issue. J. Assoc. Inf. Syst. 2013, 14, i–xvi. [Google Scholar] [CrossRef]
- Cherns, A. The principles of sociotechnical design. Hum. Relat. 1976, 29, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Bostrom, R.P.; Heinen, J.S. MIS problems and failures: A socio-technical perspective, part ii: The application of socio-technical theory. MIS Q. 1977, 1, 11–28. [Google Scholar] [CrossRef]
- Cherns, A. Principles of sociotechnical design revisited. Hum. Relat. 1987, 40, 153–161. [Google Scholar] [CrossRef]
- Clegg, C.W. Sociotechnical principles for system design. Appl. Ergon. 2000, 31, 463–477. [Google Scholar] [CrossRef]
- Tapia, A.; Maitland, C. Wireless devices for humanitarian data collection. Info. Commun. Soc. 2009, 12, 584–604. [Google Scholar] [CrossRef]
- Sarker, S.; Chatterjee, S.; Xiao, X.; Elbanna, A. The Sociotechnical Axis of Cohesion for the IS Discipline: Its Historical Legacy and its Continued Relevance. MIS Q. 2019, 43, 695–719. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Lu, Y.; Wang, B.; Zhao, L. How attachment influences users’ willingness to donate to content creators in social media: A socio-technical systems perspective. Inf. Manage. 2017, 54, 837–850. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA; London, UK, 2008. [Google Scholar]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, P.C.; Crilly, D.; Aguilera, R. Embracing causal complexity: The emergence of a neo-configurational perspective. J. Manag. 2016, 43, 255–282. [Google Scholar] [CrossRef] [Green Version]
- Douglas, E.J.; Shepherd, D.A.; Prentice, C. Using fuzzy-set qualitative comparative analysis for a finer-grained understanding of entrepreneurship. J. Bus. Ventur. 2020, 35, 105970. [Google Scholar] [CrossRef]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manage. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Meijerink, J.; Bondarouk, T. Uncovering configurations of HRM service provider intellectual capital and worker human capital for creating high HRM service value using fsQCA. J. Bus. Res. 2018, 82, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Biocca, F. Telepresence via television: Two dimensions of telepresence may have different connections to memory and persuasion. J. Comput.-Mediat. Commun. 1997, 3, JCMC325. [Google Scholar] [CrossRef]
- Nah, F.F.H.; Eschenbrenner, B.; DeWester, D. Enhancing brand equity through flow and telepresence: A comparison of 2D and 3D virtual worlds. MIS Q. 2011, 35, 731–747. [Google Scholar] [CrossRef]
- Steuer, J. Defining virtual reality: Dimensions determining telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Fiore, A.M.; Kim, J.; Lee, H.-H. Effect of image interactivity technology on consumer responses toward the online retailer. J. Interact. Mark. 2005, 19, 38–53. [Google Scholar] [CrossRef]
- Crilly, D.; Zollo, M.; Hansen, M.T. Faking it or muddling through? understanding decoupling in response to stakeholder pressures. Acad. Manage. J. 2012, 55, 1429–1448. [Google Scholar] [CrossRef]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Peng, W.; Li, T.; Sun, T.; Li, Q.; Xu, J. Social network user influence sense-making and dynamics prediction. Expert Syst. Appl. 2014, 41, 5115–5124. [Google Scholar] [CrossRef]
- Rezaie, B.; Zahedi, M.; Mashayekhi, H. Measuring time-sensitive user influence in Twitter. Knowl. Inf. Syst. 2020, 62, 3481–3508. [Google Scholar] [CrossRef]
Medical Departments (Number of Doctors) | Cities (Number of Doctors) | Age (Frequency) |
---|---|---|
Gynecology and Obstetrics (12) | Beijing (44) | 60–65 (24) |
Traditional Chinese Medicine (10) | Shanghai (5) | 66–70 (8) |
Andrology and Urology (6) | Zhengzhou (4) | 71–75 (13) |
Oncology (6) | Guangzhou (3) | 76–80 (8) |
Internal Medicine (4) | Changsha (2) | 81–85 (6) |
Pediatrics (4) | Wuhan (2) | 86–90 (3) |
Nephrology (4) | Nanjing (1) | 91–95 (1) |
Endocrinology (2) | Jinan (1) | |
Cardiovascular (2) | Xi’an (1) | |
Health Care (2) | ||
Orthopedics and Sports Medicine (2) | ||
Other (Ophthalmology/Dermatology/Breast Surgery/Otorhinolaryngologic/etc.) (9) |
Variable | Thresholds | ||
---|---|---|---|
Full Non-Membership | Cross-Over Point | Full Membership | |
OR | 0 | – | 1 |
PA | 0 | – | 1 |
CI | 0 | – | 1 |
TP | 0 | 0.499 | 1 |
VC | 0 | – | 1 |
Account influence | 860.5 | 940 | 1013 |
Set of Conditions | Strong Account Influence | ~Strong Account Influence | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
OR | 0.216 | 0.451 | 0.260 | 0.549 |
~OR | 0.784 | 0.513 | 0.740 | 0.487 |
PA | 0.837 | 0.505 | 0.814 | 0.495 |
~PA | 0.163 | 0.465 | 0.186 | 0.535 |
CI | 0.881 | 0.532 | 0.771 | 0.468 |
~CI | 0.119 | 0.341 | 0.229 | 0.659 |
TP | 0.527 | 0.518 | 0.582 | 0.575 |
~TP | 0.567 | 0.574 | 0.512 | 0.521 |
VC | 0.575 | 0.623 | 0.346 | 0.377 |
~VC | 0.425 | 0.392 | 0.654 | 0.608 |
Causal Condition | SAI | Absence of SAI | |||
---|---|---|---|---|---|
S1 | S2 | NS1 | NS2 | NS3 | |
Social System | |||||
OR | ● | ● | ⊗ | ||
PA | 🞄 | 🞄 | ⊗ | 🞄 | 🞄 |
CI | ⊗ | 🞄 | ⊗ | ||
Technical System | |||||
TP | ⊗ | ⊗ | ⊗ | ⊗ | ● |
VC | ● | ● | ⊗ | ⊗ | ● |
Consistency | 0.9467 | 1 | 0.9960 | 1 | 0.91 |
Raw coverage | 0.0453 | 0.0638 | 0.0789 | 0.0476 | 0.0288 |
Unique coverage | 0.0293 | 0.0478 | 0.0789 | 0.0476 | 0.0288 |
Overall solution consistency | 0.9734 | 0.9800 | |||
Overall solution coverage | 0.0931 | 0.1552 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Yang, T.; Deng, W.; Liu, X.; Deng, J. What Drives the Influence of Health Science Communication Accounts on TikTok? A Fuzzy-Set Qualitative Comparative Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13815. https://doi.org/10.3390/ijerph192113815
Liu R, Yang T, Deng W, Liu X, Deng J. What Drives the Influence of Health Science Communication Accounts on TikTok? A Fuzzy-Set Qualitative Comparative Analysis. International Journal of Environmental Research and Public Health. 2022; 19(21):13815. https://doi.org/10.3390/ijerph192113815
Chicago/Turabian StyleLiu, Ran, Tianan Yang, Wenhao Deng, Xiaoyan Liu, and Jianwei Deng. 2022. "What Drives the Influence of Health Science Communication Accounts on TikTok? A Fuzzy-Set Qualitative Comparative Analysis" International Journal of Environmental Research and Public Health 19, no. 21: 13815. https://doi.org/10.3390/ijerph192113815
APA StyleLiu, R., Yang, T., Deng, W., Liu, X., & Deng, J. (2022). What Drives the Influence of Health Science Communication Accounts on TikTok? A Fuzzy-Set Qualitative Comparative Analysis. International Journal of Environmental Research and Public Health, 19(21), 13815. https://doi.org/10.3390/ijerph192113815