A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to?
Abstract
:1. Introduction
2. Polychlorinated Biphenyls (PCBs)
3. Why Concern about PCBs
4. Occurrence of PCBs in the Air
4.1. Outdoor Environments
4.1.1. E-Waste Recycling Areas
4.1.2. Industrial Areas
4.1.3. Urban vs. Rural Area
4.2. Indoor Environments
4.2.1. Building Design
4.2.2. Dust Ingestion
5. Health Impact
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA. Polychlorinated Biphenyls (PCBs). Available online: https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs (accessed on 18 October 2021).
- UNEP. PCB a Forgotten Legacy? Available online: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/persistent-organic-pollutants/pcb-forgotten-legacy (accessed on 18 October 2021).
- Stockholm Convention. PCB Overview. Available online: http://chm.pops.int/Implementation/IndustrialPOPs/PCB/Overview/tabid/273/Default.aspx (accessed on 18 October 2021).
- Yu, H.; Liu, Y.; Shu, X.; Ma, L.; Pan, Y. Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China. Chemosphere 2020, 243, 125392. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wu, J.; Luo, X.; Zhang, X.; Giesy, J.P.; Mai, B. Spatial distribution and hazard of halogenated flame retardants and polychlorinated biphenyls to common kingfisher (Alcedo atthis) from a region of South China affected by electronic waste recycling. Environ. Int. 2019, 130, 104952. [Google Scholar] [CrossRef] [PubMed]
- Harmouche-Karaki, M.; Mahfouz, Y.; Salameh, P.; Matta, J.; Helou, K.; Narbonne, J.F. Patterns of PCBs and OCPs exposure in a sample of Lebanese adults: The role of diet and physical activity. Environ. Res. 2019, 179 Pt B, 108789. [Google Scholar] [CrossRef]
- Ravenscroft, J.; Schell, L.M. Patterns of PCB exposure among Akwesasne adolescents: The role of dietary and inhalation pathways. Environ. Int. 2018, 121 Pt 1, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Rusin, M.; Dziubanek, G.; Marchwinska-Wyrwal, E.; Cwielag-Drabek, M.; Razzaghi, M.; Piekut, A. PCDDs, PCDFs and PCBs in locally produced foods as health risk factors in Silesia Province, Poland. Ecotoxicol. Environ. Saf. 2019, 172, 128–135. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Polychlorinated Biphenyls (PCBs); ATSDR: Atlanta, GA, USA, 2014. [Google Scholar]
- ATSDR. Polychlorinated Biphenyls (PCBs) Toxicity; ATSDR: Atlanta, GA, USA, 2014. [Google Scholar]
- UNEP. Toward Elimination of PCB. Available online: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/persistent-organic-pollutants/toward-elimination-pcb? (accessed on 18 October 2021).
- Saktrakulkla, P.; Lan, T.; Hua, J.; Marek, R.F.; Thorne, P.S.; Hornbuckle, K.C. Polychlorinated Biphenyls in Food. Environ. Sci. Technol. 2020, 54, 11443–11452. [Google Scholar] [CrossRef] [PubMed]
- Norstrom, K.; Czub, G.; McLachlan, M.S.; Hu, D.; Thorne, P.S.; Hornbuckle, K.C. External exposure and bioaccumulation of PCBs in humans living in a contaminated urban environment. Environ. Int. 2010, 36, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egsmose, E.L.; Bräuner, E.V.; Frederiksen, M.; Mørck, T.A.; Siersma, V.D.; Hansen, P.W.; Nielsen, F.; Grandjean, P.; Knudsen, L.E. Associations between plasma concentrations of PCB 28 and possible indoor exposure sources in Danish school children and mothers. Environ. Int. 2016, 87, 13–19. [Google Scholar] [CrossRef]
- Meyer, H.W.; Frederiksen, M.; Goen, T.; Ebbehoj, N.E.; Gunnarsen, L.; Brauer, C.; Kolarik, B.; Muller, J.; Jacobsen, P. Plasma polychlorinated biphenyls in residents of 91 PCB-contaminated and 108 non-contaminated dwellings-an exposure study. Int. J. Hyg. Environ. Health 2013, 216, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Esser, A.; Ziegler, P.; Kaifie, A.; Kraus, T.; Schettgen, T. Estimating plasma half-lives of dioxin like and non-dioxin like polychlorinated biphenyls after occupational exposure in the German HELPcB cohort. Int. J. Hyg. Environ. Health 2021, 232, 113667. [Google Scholar] [CrossRef] [PubMed]
- Aminov, Z.; Haase, R.; Rej, R.; Schymura, M.J.; Santiago-Rivera, A.; Morse, G.; DeCaprio, A.; Carpenter, D.O. Diabetes Prevalence in Relation to Serum Concentrations of Polychlorinated Biphenyl (PCB) Congener Groups and Three Chlorinated Pesticides in a Native American Population. Environ. Health Perspect. 2016, 124, 1376–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerro, C.C.; Jones, R.R.; Langseth, H.; Grimsrud, T.K.; Engel, L.S.; Sjodin, A.; Choo-Wosoba, H.; Albert, P.; Ward, M.H. A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus Serum Bank cohort. Environ. Res. 2018, 165, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Schettgen, T.; Alt, A.; Preim, D.; Keller, D.; Kraus, T. Biological monitoring of indoor-exposure to dioxin-like and non-dioxin-like polychlorinated biphenyls (PCB) in a public building. Toxicol. Lett. 2012, 213, 116–121. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Y.; Wang, G.; Zhu, G.; Zhou, X.; Gong, H.; Sun, J.; Wang, L.; Jinsong, L. Evaluation of atmospheric sources of PCDD/Fs, PCBs and PBDEs around an MSWI plant using active and passive air samplers. Chemosphere 2021, 274, 129685. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yuan, Y.; Yin, H.; Guo, Z.; Wei, X.; Qi, X.; Liu, H.; Dang, Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. Sci. Total Environ. 2021, 805, 150270. [Google Scholar] [CrossRef]
- Barbas, B.; de la Torre, A.; Sanz, P.; Navarro, I.; Artinano, B.; Martinez, M.A. Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air. Sci. Total Environ. 2018, 624, 170–179. [Google Scholar] [CrossRef]
- ATDSR. What Standards and Regulations Exist for PCB Exposure? Available online: https://www.atsdr.cdc.gov/csem/polychlorinated-biphenyls/standards.html (accessed on 25 August 2022).
- Cui, S.; Fu, Q.; Li, Y.F.; Li, T.X.; Liu, D.; Dong, W.C.; Wanga, M.; Li, L.Y. Spatial–temporal variations, possible sources and soil–air exchange of polychlorinated biphenyls in urban environments in China. RSC Adv. 2017, 7, 14797–14804. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.H.; Wu, S.C.; Deng, W.J.; Yu, X.Z.; Luo, Q.; Leung, A.O.W.; Wong, C.S.C.; Luksemburg, W.J.; Wong, A.S. Export of toxic chemicals—A review of the case of uncontrolled electronic-waste recycling. Environ. Pollut. 2007, 149, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ma, S.; Li, G.; Yu, Y.; An, T. Comparing pollution patterns and human exposure to atmospheric PBDEs and PCBs emitted from different e-waste dismantling processes. J. Hazard. Mater. 2019, 369, 142–149. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, C.; Wang, S.; Cheng, Z.; Li, J.; Zhang, G. The Abandoned E-Waste Recycling Site Continued to Act As a Significant Source of Polychlorinated Biphenyls: An in Situ Assessment Using Fugacity Samplers. Environ. Sci. Technol. 2016, 50, 8623–8630. [Google Scholar] [CrossRef]
- Chen, S.-J.; Tian, M.; Zheng, J.; Zhu, Z.-C.; Luo, Y.; Luo, X.-J.; Mai, B.-X. Elevated Levels of Polychlorinated Biphenyls in Plants, Air, and Soils at an E-Waste Site in Southern China and Enantioselective Biotransformation of Chiral PCBs in Plants. Environ. Sci. Technol. 2014, 48, 3847–3855. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.-J.; Jia, H.; Ding, Y.; Li, W.-L.; Li, Y.-F. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China. J. Mater. Cycles Waste Manag. 2018, 20, 80–90. [Google Scholar] [CrossRef]
- Chakraborty, P.; Selvaraj, S.; Nakamura, M.; Prithiviraj, B.; Cincinelli, A.; Bang, J.J. PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment. Sci. Total Environ. 2018, 621, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Lou, X.; Ding, G.; Shen, H.; Wu, L.; Chen, Z.; Han, J.; Han, G.; Wang, X. Association of PCB, PBDE and PCDD/F body burdens with hormone levels for children in an e-waste dismantling area of Zhejiang Province, China. Sci. Total Environ. 2014, 499, 55–61. [Google Scholar] [CrossRef]
- Kaifie, A.; Schettgen, T.; Bertram, J.; Lohndorf, K.; Waldschmidt, S.; Felten, M.K.; Kraus, T.; Fobil, J.N.; Kupper, T. Informal e-waste recycling and plasma levels of non-dioxin-like polychlorinated biphenyls (NDL-PCBs)—A cross-sectional study at Agbogbloshie, Ghana. Sci. Total Environ. 2020, 723, 138073. [Google Scholar] [CrossRef]
- Ma, S.; Ren, G.; Zeng, X.; Yu, Z.; Sheng, G.; Fu, J. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China. Environ. Geochem. Health 2018, 40, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Xu, X.; Eskenazi, B.; Asante, K.A.; Chen, A.; Fobil, J.; Bergman, A.; Brennan, L.; Sly, P.D.; Nnorom, I.C.; et al. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. Environ. Int. 2020, 139, 105731. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Rovira, J.; Nadal, M.; Schuhmacher, M. High cancer risks by exposure to PCDD/Fs in the neighborhood of an Integrated Waste Management Facility. Sci. Total Environ. 2017, 607–608, 63–68. [Google Scholar] [CrossRef]
- Wang, H.; Hao, R.; Nie, L.; Zhang, X.; Zhang, Y. Pollution characteristics and risk assessment of air multi-pollutants from typical e-waste dismantling activities. Environ. Pollut. 2022, 294, 118630. [Google Scholar] [CrossRef]
- Dumanoglu, Y.; Gaga, E.O.; Gungormus, E.; Sofuoglu, S.C.; Odabasi, M. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Sci. Total Environ. 2017, 580, 920–935. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Han, X.; Wang, T.; Yang, R.; Wang, P.; Xiao, K.; Li, W.; Lu, H.; Fu, J.; et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017: Concentrations, temporal trends and potential sources. Environ. Pollut. 2019, 249, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zheng, M.; Liu, W.; Nie, Z.; Li, C.; Liu, G.; Xiao, K. Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in the environment surrounding secondary copper and aluminum metallurgical facilities in China. Environ. Pollut. 2014, 193, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, J.; Li, M.; Qi, M.; Wang, R.; Hu, J.; Jin, J. Particle size distributions and health risks of polychlorinated dibenzo-p-dioxin/furans, polychlorinated biphenyls, and polychlorinated naphthalenes in atmospheric particles around two secondary copper smelters in Shandong Province, China. Chemosphere 2021, 269, 128742. [Google Scholar] [CrossRef] [PubMed]
- Hombrecher, K.; Quass, U.; Leisner, J.; Wichert, M. Significant release of unintentionally produced non-Aroclor polychlorinated biphenyl (PCB) congeners PCB 47, PCB 51 and PCB 68 from a silicone rubber production site in North Rhine-Westphalia, Germany. Chemosphere 2021, 285, 131449. [Google Scholar] [CrossRef]
- Cetin, B.; Yurdakul, S.; Keles, M.; Celik, I.; Ozturk, F.; Dogan, C. Atmospheric concentrations, distributions and air-soil exchange tendencies of PAHs and PCBs in a heavily industrialized area in Kocaeli, Turkey. Chemosphere 2017, 183, 69–79. [Google Scholar] [CrossRef]
- Eckhardt, S.; Breivik, K.; Mano, S.; Stohl, A. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions. Atmos. Chem. Phys. 2007, 7, 4527–4536. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Albanese, S.; Lima, A.; Hope, D.; Pond, P.; Fortelli, A.; Romano, N.; Cerino, P.; Pizzolante, A.; De Vivo, B. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environ. Int. 2019, 124, 89–97. [Google Scholar] [CrossRef]
- Ampleman, M.D.; Martinez, A.; DeWall, J.; Rawn, D.F.; Hornbuckle, K.C.; Thorne, P.S. Inhalation and dietary exposure to PCBs in urban and rural cohorts via congener-specific measurements. Environ. Sci. Technol. 2015, 49, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Pozo, K.; Harner, T.; Rudolph, A.; Oyola, G.; Estellano, V.H.; Ahumada-Rudolph, R.; Garrido, M.; Pozo, K.; Mabilia, R.; Focardi, S. Survey of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of rural, urban and industrial areas of Concepción, Chile, using passive air samplers. Atmos. Pollut. Res. 2012, 3, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Birgül, A.; Kurt-Karakus, P.B.; Alegria, H.; Gungormus, E.; Celik, H.; Cicek, T.; Güven, E.C. Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment. Chemosphere 2017, 168, 1345–1355. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Q.; Li, Y.; Matsiko, J.; Zhang, Y.; Jiang, G. Airborne persistent toxic substances (PTSs) in China: Occurrence and its implication associated with air pollution. Environ. Sci. Process Impacts 2017, 19, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Marek, R.F.; Thorne, P.S.; Herkert, N.J.; Awad, A.M.; Hornbuckle, K.C. Airborne PCBs and OH-PCBs Inside and Outside Urban and Rural U.S. Schools. Environ. Sci. Technol. 2017, 51, 7853–7860. [Google Scholar] [CrossRef]
- Wang, X.; Ren, J.; Gong, P.; Wang, C.; Xue, Y.; Yao, T.; Lohmann, R. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: A 5-year air monitoring study. Atmos. Chem. Phys. 2016, 16, 6901–6911. [Google Scholar] [CrossRef] [Green Version]
- Miglioranza, K.S.B.; Ondarza, P.M.; Costa, P.G.; de Azevedo, A.; Gonzalez, M.; Shimabukuro, V.M.; Grondona, S.I.; Mitton, F.M.; Barra, R.O.; Wania, F.; et al. Spatial and temporal distribution of Persistent Organic Pollutants and current use pesticides in the atmosphere of Argentinean Patagonia. Chemosphere 2021, 266, 129015. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, P.W.; Isaksson, E.; Hermanson, M.H. ‘New’ unintentionally produced PCBs in the Arctic. Emerg. Contam. 2019, 5, 9–14. [Google Scholar] [CrossRef]
- Mila, A.; Cao, R.; Geng, N.; Zhu, X.; Chen, J. Characteristics of PAHs, PCDD/Fs, PCBs and PCNs in atmospheric fine particulate matter in Dalian, China. Chemosphere 2022, 288, 132488. [Google Scholar] [CrossRef]
- Mi, H.-H.; Wu, Z.-S.; Lin, L.-F.; Lai, Y.-C.; Lee, Y.-Y.; Wang, L.-C.; Chang-Chien, G.-P. Atmospheric Dry Deposition of Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans (PCDD/Fs) and Polychlorinated Biphenyls (PCBs) in Southern Taiwan. Aerosol Air Qual. Res. 2012, 12, 1016–1029. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Niu, L.; Zou, D.; Zhu, S.; Liu, W. Congener-specific composition of polychlorinated biphenyls (PCBs) in soil-air partitioning and the associated health risks. Sci. Total Environ. 2019, 684, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Coscolla, C.; Hernandez, C.S.; Pardo, O.; Yusa, V. Dioxins and dioxin-like PCBs in the ambient air of the Valencian Region (Spain): Levels, human exposure, and risk assessment. Chemosphere 2021, 267, 128902. [Google Scholar] [CrossRef]
- Kurt-Karakusa, P.B.; Ugranli-Cicek, T.; Sofuoglu, S.C.; Celik, H.; Gungormus, E.; Gedik, K.; Sofuoglu, A.; Okten, H.E.; Birgul, A.; Alegria, H.; et al. The first countrywide monitoring of selected POPs: Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and selected organochlorine pesticides (OCPs) in the atmosphere of Turkey. Atmos. Environ. 2018, 177, 154–165. [Google Scholar] [CrossRef]
- Cetin, B.; Yurdakul, S.; Gungormus, E.; Ozturk, F.; Sofuoglu, S.C. Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci. Total Environ. 2018, 633, 30–41. [Google Scholar] [CrossRef]
- Fang, M.; Choi, S.-D.; Baek, S.-Y.; Jin, G.; Chang, Y.-S. Deposition of polychlorinated biphenyls and polybrominated diphenyl ethers in the vicinity of a steel manufacturing plant. Atmos. Environ. 2012, 49, 206–211. [Google Scholar] [CrossRef]
- Aydin, Y.M.; Kara, M.; Dumanoglu, Y.; Odabasi, M.; Elbir, T. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in ambient air of an industrial region in Turkey. Atmos. Environ. 2014, 97, 271–285. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, W.; Wang, N.; Li, C.; Luo, P.; Hashmi, M.Z.; Wang, W.; Su, X.; Chen, C.; et al. Health risk assessment of migrant workers’ exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights. Environ. Int. 2016, 87, 33–41. [Google Scholar] [CrossRef]
- Chakraborty, P.; Prithiviraj, B.; Selvaraj, S.; Kumar, B. Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment. Sci. Total Environ. 2016, 573, 1413–1421. [Google Scholar] [CrossRef]
- Sari, M.F.; Esen, F.; Del Aguila, D.A.C.; Karakus, P.B.K. Passive sampler derived polychlorinated biphenyls (PCBs) in indoor and outdoor air in Bursa, Turkey: Levels and an assessment of human exposure via inhalation. Atmos. Pollut. Res. 2020, 11, 71–80. [Google Scholar] [CrossRef]
- Audy, O.; Melymuk, L.; Venier, M.; Vojta, S.; Becanova, J.; Romanak, K.; Vykoukalova, M.; Prokes, R.; Kukucka, P.; Diamond, M.L.; et al. PCBs and organochlorine pesticides in indoor environments—A comparison of indoor contamination in Canada and Czech Republic. Chemosphere 2018, 206, 622–631. [Google Scholar] [CrossRef]
- Langeland, M.; Jensen, M.K. Kortlægning Af Pcb I Materialer Og Indelu: Fase 2 Rapport; Miljøstyrelsen: Odense, Denmark, 2013. [Google Scholar]
- US EPA. PCBs in Building Materials—Questions & Answers; US EPA: Washington, DC, USA, 2015. [Google Scholar]
- Herrick, R.F.; McClean, M.D.; Meeker, J.D.; Baxter, L.K.; Weymouth, G.A. An unrecognized source of PCB contamination in schools and other buildings. Environ. Health Perspect 2004, 112, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- Hellman, S.; Cajal, P.; Martinez, P.; Kuusisto, S.; Tuhkanen, T. PCB-contamination in a school building indoors. WIT Trans. Ecol. Environ. 2010, 129, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.V.; Gunnarsen, L.; Knudsen, L.E.; Frederiksen, M. PCB in air, dust and surface wipes in 73 Danish homes. Int. J. Hyg. Environ. Health 2020, 229, 113429. [Google Scholar] [CrossRef]
- Kolarik, B.; Frederiksen, M.; Meyer, H.W.; Ebbehoj, N.E.; Gunnarsen, L.B. Investigation of the importance of tertiary contamination, temperature and human behaviour on PCB concentrations in indoor air. Indoor Built Environ. 2014, 25, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, T.P.; Brown, F.R.; Metayer, C.; Park, J.S.; Does, M.; Dhaliwal, J.; Petreas, M.X.; Buffler, P.A.; Rappaport, S.M. Polychlorinated biphenyls in residential dust: Sources of variability. Environ. Sci. Technol. 2014, 48, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.V.; Frederiksen, M. Sorption of PCB from air to settled house dust in a contaminated indoor environment. Chemosphere 2021, 266, 129139. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Z.; Krebs, K.A.; Greenwell, D.J.; Roache, N.F.; Stinson, R.A.; Nardin, J.A.; Pope, R.H. Laboratory study of PCB transport from primary sources to settled dust. Chemosphere 2016, 149, 62–69. [Google Scholar] [CrossRef]
- Frederiksen, M.; Andersen, H.V.; Haug, L.S.; Thomsen, C.; Broadwell, S.L.; Egsmose, E.L.; Kolarik, B.; Gunnarsen, L.; Knudsen, L.E. PCB in serum and hand wipes from exposed residents living in contaminated high-rise apartment buildings and a reference group. Int. J. Hyg. Environ. Health 2020, 224, 113430. [Google Scholar] [CrossRef]
- Kraft, M.; Rauchfuss, K.; Fromme, H.; Grun, L.; Sievering, S.; Kollner, B.; Chovolou, Y. Inhalation Exposure to PCB from Contaminated Indoor Air—How Much Is Absorbed into the Blood? Pollutants 2021, 1, 181–193. [Google Scholar] [CrossRef]
- Kang, Y.; Yin, Y.; Man, Y.; Li, L.; Zhang, Q.; Zeng, L.; Luo, J.; Wong, M.H. Bioaccessibility of polychlorinated biphenyls in workplace dust and its implication for risk assessment. Chemosphere 2013, 93, 924–930. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Eyengho, S.B.; Egobueze, F.E.; Odali, E.W.; Tesi, G.O.; Nwajei, G.E.; Martincigh, B.S. Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust from electronic repair workshops in southern Nigeria: Implications for onsite human exposure. Sci. Total Environ. 2019, 671, 914–927. [Google Scholar] [CrossRef]
- Abafe, O.A.; Martincigh, B.S. An assessment of polybrominated diphenyl ethers and polychlorinated biphenyls in the indoor dust of e-waste recycling facilities in South Africa: Implications for occupational exposure. Environ. Sci. Pollut. Res. 2015, 22, 14078–14086. [Google Scholar] [CrossRef]
- Moreau-Guigon, E.; Alliot, F.; Gasperi, J.; Blanchard, M.; Teil, M.J.; Mandin, C.; Chevreuil, M. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air. Atmos. Environ. 2016, 147, 423–433. [Google Scholar] [CrossRef]
- Anh, H.Q.; Watanabe, I.; Minh, T.B.; Tue, N.M.; Tuyen, L.H.; Viet, P.H.; Takahashi, S. Polychlorinated biphenyls in settled dusts from an end-of-life vehicle processing area and normal house dusts in northern Vietnam: Occurrence, potential sources, and risk assessment. Sci. Total Environ. 2020, 728, 138823. [Google Scholar] [CrossRef]
- Chandra Yadav, I.; Devi, N.L.; Li, J.; Zhang, G. Polychlorinated biphenyls and organochlorines pesticides in indoor dust: An exploration of sources and health exposure risk in a rural area (Kopawa) of Nepal. Ecotoxicol. Environ. Saf. 2020, 195, 110376. [Google Scholar] [CrossRef] [PubMed]
- Melymuk, L.; Bohlin-Nizzetto, P.; Kukucka, P.; Vojta, S.; Kalina, J.; Cupr, P.; Klanova, J. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ. Pollut. 2016, 218, 392–401. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, A.; Sanz, P.; Navarro, I.; Martinez, M.d.L.A. Investigating the presence of emerging and legacy POPs in European domestic air. Sci. Total Environ. 2020, 746, 141348. [Google Scholar] [CrossRef]
- Frederiksen, M.; Meyer, H.W.; Ebbehoj, N.E.; Gunnarsen, L. Polychlorinated biphenyls (PCBs) in indoor air originating from sealants in contaminated and uncontaminated apartments within the same housing estate. Chemosphere 2012, 89, 473–479. [Google Scholar] [CrossRef]
- Besis, A.; Botsaropoulou, E.; Balla, D.; Voutsa, D.; Samara, C. Toxic organic pollutants in Greek house dust: Implications for human exposure and health risk. Chemosphere 2021, 284, 131318. [Google Scholar] [CrossRef]
- Aslam, I.; Baqar, M.; Qadir, A.; Mumtaz, M.; Li, J.; Zhang, G. Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. Indoor Air 2021, 31, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Tue, N.M.; Takahashi, S.; Suzuki, G.; Isobe, T.; Viet, P.H.; Kobara, Y.; Seike, N.; Zhang, G.; Sudaryanto, A.; Tanabe, S. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites. Environ. Int. 2013, 51, 160–167. [Google Scholar] [CrossRef]
- MacIntosh, D.L.; Minegishi, T.; Fragala, M.A.; Allen, J.G.; Coghlan, K.M.; Stewart, J.H.; McCarthy, J.F. Mitigation of building-related polychlorinated biphenyls in indoor air of a school. Environ. Health 2012, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Harrad, S.; Goosey, E.; Desborough, J.; Abdallah, M.A.-E.; Roosens, L.; Covaci, A. Dust from U.K. Primary School Classrooms and Daycare Centers: The Significance of Dust As a Pathway of Exposure of Young U.K. Children to Brominated Flame Retardants and Polychlorinated Biphenyls. Environ. Sci. Technol. 2010, 44, 4198–4202. [Google Scholar] [CrossRef]
- Bannavti, M.K.; Jahnke, J.C.; Marek, R.F.; Just, C.L.; Hornbuckle, K.C. Room-to-Room Variability of Airborne Polychlorinated Biphenyls in Schools and the Application of Air Sampling for Targeted Source Evaluation. Environ. Sci. Technol. 2021, 55, 9460–9468. [Google Scholar] [CrossRef] [PubMed]
- Knobeloch, L.; Turyk, M.; Imm, P.; Anderson, H. Polychlorinated biphenyls in vacuum dust and blood of residents in 20 Wisconsin households. Chemosphere 2012, 86, 735–740. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.J.; Zheng, J.S.; Cheung, K.C.; Wong, M.H. Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility. Sci. Total Environ. 2013, 463–464, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Colt, J.S.; Metayer, C.; Gunier, R.B.; Lubin, J.; Crouse, V.; Nishioka, M.G.; Reynolds, P.; Buffler, P.A. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ. Health Perspect 2009, 117, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, M.F.; Oulhote, Y.; Sagiv, S.K.; Saint-Amour, D.; Weuve, J. Polychlorinated biphenyl exposures and cognition in older U.S. adults: NHANES (1999-2002). Environ. Health Perspect 2014, 122, 73–78. [Google Scholar] [CrossRef] [Green Version]
- IARC. Iarc Monographs on The Evaluation of Carcinogenic Risks to Humans: Polychlorinated Biphenyls and Polybrominated Biphenyls; IARC, Ed.; International Agency for Research on Cancer: Lyon, France, 2015; Volume 107. [Google Scholar]
- Cheng, Z.; Zhang, X.; Bassig, B.; Hauser, R.; Holford, T.R.; Zheng, E.; Shi, D.; Zhu, Y.; Schwartz, S.M.; Chen, C.; et al. Serum polychlorinated biphenyl (PCB) levels and risk of testicular germ cell tumors: A population-based case-control study in Connecticut and Massachusetts. Environ. Pollut. 2021, 273, 116458. [Google Scholar] [CrossRef]
- Lim, J.E.; Nam, C.; Yang, J.; Rha, K.H.; Lim, K.M.; Jee, S.H. Serum persistent organic pollutants (POPs) and prostate cancer risk: A case-cohort study. Int. J. Hyg. Environ. Health 2017, 220, 849–856. [Google Scholar] [CrossRef]
- Parada, H., Jr.; Sun, X.; Tse, C.K.; Engel, L.S.; Hoh, E.; Olshan, A.F.; Troester, M.A. Plasma levels of polychlorinated biphenyls (PCBs) and breast cancer mortality: The Carolina Breast Cancer Study. Int. J. Hyg. Environ. Health 2020, 227, 113522. [Google Scholar] [CrossRef]
- Koual, M.; Cano-Sancho, G.; Bats, A.S.; Tomkiewicz, C.; Kaddouch-Amar, Y.; Douay-Hauser, N.; Ngo, C.; Bonsang, H.; Delomenie, M.; Lecuru, F.; et al. Associations between persistent organic pollutants and risk of breast cancer metastasis. Environ. Int. 2019, 132, 105028. [Google Scholar] [CrossRef]
- Obaid, M.F.; Ruiz, P. Polychlorinated biphenyls: New evidence from the last decade. Toxicol. Ind. Health 2016, 32, 1825–1847. [Google Scholar] [CrossRef]
- Park, E.Y.; Kim, J.; Park, E.; Oh, J.K.; Kim, B.; Lim, M.K. Serum concentrations of persistent organic pollutants and colorectal cancer risk: A case-cohort study within Korean National Cancer Center Community (KNCCC) cohort. Chemosphere 2021, 271, 129596. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cancers. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 9 September 2022).
- Arrebola, J.P.; Fernandez, M.F.; Martin-Olmedo, P.; Molina-Molina, J.M.; Sanchez-Perez, M.J.; Sanchez-Cantalejo, E.; Molina-Portillo, E.; Exposito, J.; Bonde, J.P.; Olea, N. Adipose tissue concentrations of persistent organic pollutants and total cancer risk in an adult cohort from Southern Spain: Preliminary data from year 9 of the follow-up. Sci. Total Environ. 2014, 500–501, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Charles, D.; Berg, V.; Nost, T.H.; Bergdahl, I.A.; Huber, S.; Ayotte, P.; Wilsgaard, T.; Averina, M.; Sandanger, T.; Rylander, C. Longitudinal changes in concentrations of persistent organic pollutants (1986-2016) and their associations with type 2 diabetes mellitus. Environ. Res. 2021, 204, 112129. [Google Scholar] [CrossRef]
- Kim, Y.A.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Persistent Organic Pollutant-Mediated Insulin Resistance. Int. J. Environ. Res. Public Health 2019, 16, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, E.H.; Reggabi, M. Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in Algeria: A case-control study. Chemosphere 2021, 264, 128596. [Google Scholar] [CrossRef] [PubMed]
- Aminov, Z.; Carpenter, D.O. Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community. Environ. Pollut. 2020, 260, 114004. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Park, S.H.; Hong, Y.S.; Ha, E.H.; Park, H. The Effect of Exposure to Persistent Organic Pollutants on Metabolic Health among KOREAN Children during a 1-Year Follow-Up. Int. J. Environ. Res. Public Health 2016, 13, 270. [Google Scholar] [CrossRef] [Green Version]
- Pruvost-Couvreur, M.; Bechaux, C.; Riviere, G.; Le Bizec, B. Impact of sociodemographic profile, generation and bioaccumulation on lifetime dietary and internal exposures to PCBs. Sci. Total Environ. 2021, 800, 149511. [Google Scholar] [CrossRef]
- Baba, T.; Ito, S.; Yuasa, M.; Yoshioka, E.; Miyashita, C.; Araki, A.; Sasaki, S.; Kobayashi, S.; Kajiwara, J.; Hori, T.; et al. Association of prenatal exposure to PCDD/Fs and PCBs with maternal and infant thyroid hormones: The Hokkaido Study on Environment and Children’s Health. Sci. Total Environ. 2018, 615, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Hisada, A.; Shimodaira, K.; Okai, T.; Watanabe, K.; Takemori, H.; Takasuga, T.; Koyama, M.; Watanabe, N.; Suzuki, E.; Shirakawa, M.; et al. Associations between levels of hydroxylated PCBs and PCBs in serum of pregnant women and blood thyroid hormone levels and body size of neonates. Int. J. Hyg. Environ. Health 2014, 217, 546–553. [Google Scholar] [CrossRef]
- Boutot, M.E.; Whitcomb, B.W.; Abdelouahab, N.; Baccarelli, A.A.; Boivin, A.; Caku, A.; Gillet, V.; Martinez, G.; Pasquier, J.C.; Zhu, J.; et al. In Utero Exposure to Persistent Organic Pollutants and Childhood Lipid Levels. Metabolites 2021, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Matovu, H.; Li, Z.M.; Henkelmann, B.; Bernhoft, S.; De Angelis, M.; Schramm, K.W.; Sillanpaa, M.; Kato, C.D.; Ssebugere, P. Multiple persistent organic pollutants in mothers’ breastmilk: Implications for infant dietary exposure and maternal thyroid hormone homeostasis in Uganda, East Africa. Sci. Total Environ. 2021, 770, 145262. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, M.; Mari, M.; Nadal, M.; Domingo, J.L. Concentrations of dioxins and furans in breast milk of women living near a hazardous waste incinerator in Catalonia, Spain. Environ. Int. 2019, 125, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yin, S.; Wang, H.; Zhang, J.; Liu, Y.; Aamir, M.; Liu, W. Polychlorinated biphenyls (PCBs) in the colostrum samples from the Yangtze River Region: Exposure profile and risk assessment. Environ. Pollut. 2021, 285, 117253. [Google Scholar] [CrossRef] [PubMed]
Setting | Location | Sample/Sampling Area | Concentration | Dominant Congeners | Reference |
---|---|---|---|---|---|
Ambient Air | Patagonia, Argentina | Ambient air at 11 sites | Σ38PCBs: 25 pg/m3 | PCB-18, 31, 28, 95, 99, 149, 118, and 138 | [51] |
Arctic Ocean | Snow surface | ΣPCB flux: 14.4 pg/cm2 per year | PCB-5, 11, and 52 | [52] | |
Fildes Peninsula, West Antarctica | Air samples | Σ19PCBs: 1.5–29.7 pg/m3 | PCB-11 | [38] | |
Dalian, China | Fine particulate matter | PCBs in PM2.5: 0.04–0.65 pg/m3 | PCB-105, 138, 118, 101, 153 and 183 | [53] | |
Tainan, Taiwan | Ambient air at 1 industrial, 2 urban, and 1 rural area | Average dry deposition flux of total PCBs: 0.540–1.94 pg WHO-TEQ/m2 per day | - | [54] | |
Hangzhou and Yangtze River Delta, China | Agricultural area (A.A.) and eco-industrial park (EIP) | Σ29 PCBs: |
| [55] | |
| |||||
Valencia Region, Spain | Ambient air at 7 monitoring stations |
| - | [56] | |
Urban Areas | Madrid, Spain | 68 ambient air samples | Total PCBs: 437 pg/m3 | PCB-28, 52, 101, 138, 153, and 180 | [22] |
Turkey | 32 urban and rural sites | Annual average Σ43PCBs: 108 ±132 pg/m3. |
| [57] | |
| |||||
Naples, Italy | Atmospheric bulk deposition | Deposition flux of Σ18PCBs: 0.075–1.22 ng/m2/day | PCB-28, 138, 153 and 180 | [44] | |
Industrial Areas | Kocaeli, Turkey | Ambient air at 23 sites | Σ41PCB: 4152 ± 6072 pg/m3 | PCB-18, 28, 31 and 33 | [42] |
Eastern China | Ambient air around municipal solid waste incinerator | Σ18PCBs: 81 ± 46 pg/m3 (summer); 70 ± 13 pg m3 (winter) | PCB-28, 52, 101, and 138 | [20] | |
North Rhine-Westphalia, Germany | Ambient air at silicone rubber production site | Σ6PCB: 300–1500 pg/m3 | PCB 47, 51 and 68 | [41] | |
Dilovasi region, Turkey | Ambient air at 23 industrial sites | Σ41PCB: 4152 ± 6072 pg/m3 | PCB-28, 18, 31, and 33 | [58] | |
Pohang, South Korea | Bulk deposition at steel manufacturing plant | Σ12PCB deposition fluxes: 1.3–4.7 ng/m2/day | PCB- 77, 118, and 105 | [59] | |
Aliaga region, Turkey | Ambient air at 40 industrial sites | Σ35PCB: 349–94,363 pg/m3 | PCB-18, 28, 31, 33, 52, and 49 | [60] | |
E-waste Recycling Sites | Taizhou, China | 17 ambient air samples | Σ57PCB: 37.75–65.83 ng/m3 | - | [61] |
Chennai, India | Ambient air | 3.6–53 ng/g | tetra (4-CB), penta (5-CB) and hexa (6-CB) homologs | [62] | |
China | Ambient air | 7825–76,330 pg/m3 | - | [28] |
Settings | Location | Sample/Sampling Area | Concentration | Dominant Congeners | Reference |
---|---|---|---|---|---|
Workplace | Hong Kong, China | Air-conditioner filter dust | Σ37PCBs: 46.8–249 ng/g | PCB-77, 194, and 199 | [76] |
Abraka and Warri, Nigeria | Indoor dust at electronic repair workshop | Σ28 PCB: 96.6–3949 ng/g | Hexa-PCB | [77] | |
Durban, South Africa | Dust | Σ3PCBs: 235 ng/g | - | [78] | |
North-Rhine Westphalia, Germany | Air | Σ28PCB: 92–2797 ng/m3 | PCB-28, 52 and 101 | [75] | |
France | Air | Σ19PCB: 1.75 ± 1.82 ng/m3 | - | [79] | |
Resident | Vietnam | Settled dust | Σ209 PCB: 11–1900 ng/g | - | [80] |
Canada | Air | Σ7PCB: 455 pg/m3 | - | [64] | |
Czech Republic | Air and dust | Σ7PCB: 467 pg/m3 (air); 75.1 ng/g (dust) | - | [64] | |
Kopawa, Nepal | Dust | Ʃ30PCBs: 9.64–16.5 ng/g | Tetra-PCBs followed by penta, hexa, and hepta-CBs | [81] | |
Brno, Czech Republic | Air | Σ7PCB: 89 pg/m3 (summer); 61 pg/m3 (winter) | Tri-tetra, and hepta-hexa PCBs | [82] | |
Belgium, Italy, Spain, and Portugal | Air | Σ7PCBs: 306 pg/m3 | PCB-28, 52 and 101 | [83] | |
Farum, Denmark | Air | Ʃ24PCBs: 168–3843 ng m3 | PCB-28 and 52 | [84] | |
Bursa, Turkey | Air | Σ40PCBs | Penta-, tetra- and tri-CBs | [63] | |
| |||||
Brondby Strand Parkerne, Denmark | Air, vacuum cleaner dust, and surface wipes | Σ15PCB: 2330 ng/m3 (air); 12.000 ng/g (dust); 529 ng/wipe (surface wipes) | Tri- and Tetra PCBs | [69] | |
Thessaloniki, Greece | Dust | Σ15PCBs: 3.04–9.68 ng/g | PCB-52, 28 + 31 and 101 | [85] | |
Lahore, Pakistan | Dust | ∑35 PCB: 0.27–152.9 ng/g | Tri- and Tetra PCBs | [86] | |
Hai Phong city and Hung Yen province, Vietnam | Air and Dust | PCBs level in dust: 3.6–320 ng/g PCBs level in air: 1000–1800 pg/m3 | In dust: penta- and hexaCBs In air: triCBs | [87] | |
School | United States | Air | 100–276 ng/m3 | - | [88] |
United States | Air | 0.5–194 ng/m3 | [49] | ||
West Midlands, U.K. | Dust | Σ8PCBs: 1.2–560 ng/g | [89] | ||
Indiana and Iowa, United States | 0.5–194 ng/m3 | - | [49] | ||
Iowa, United States | Air | 1.54–35.75 ng/m3 | - | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, N.; Ismail, Z.; Selamat, M.I.; Sheikh Abdul Kadir, S.H.; Shibraumalisi, N.A. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? Int. J. Environ. Res. Public Health 2022, 19, 13923. https://doi.org/10.3390/ijerph192113923
Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? International Journal of Environmental Research and Public Health. 2022; 19(21):13923. https://doi.org/10.3390/ijerph192113923
Chicago/Turabian StyleOthman, Naffisah, Zaliha Ismail, Mohamad Ikhsan Selamat, Siti Hamimah Sheikh Abdul Kadir, and Nur Amirah Shibraumalisi. 2022. "A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to?" International Journal of Environmental Research and Public Health 19, no. 21: 13923. https://doi.org/10.3390/ijerph192113923
APA StyleOthman, N., Ismail, Z., Selamat, M. I., Sheikh Abdul Kadir, S. H., & Shibraumalisi, N. A. (2022). A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? International Journal of Environmental Research and Public Health, 19(21), 13923. https://doi.org/10.3390/ijerph192113923