Analysis of Variables That Influence the Walkability of School Environments Based on the Delphi Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Delphi Method Application
2.2. Preliminary Phase
2.3. Selection of Experts
2.4. Exploratory Step
- The first version was reviewed in a face-to-face meeting by the coordination group, made up of 5 expert researchers in education and physical activity belonging to the Universities of Extremadura and Salamanca. Corrections and adjustments were conducted based on the qualitative criteria that obtained the greatest consensus.
- The list was sent to the group of experts via email through a process that ensured the anonymity of the experts, and we collected prior acceptance for the participation in the study (Table 4). The experts developed the necessary contributions through a pre-established format that assessed their relevance–adequacy, relevance–importance, and wording–clarity in each item, using a Likert scale from 1 to 5 (1 being the assigned score for the lowest possible value “Not adequate”, 2 for the “Low adequate” value, 3 for the “Adequate” value, 4 for the “Quite adequate” value, and 5 being the assigned value for the highest possible score) which refers to validity. In addition, an open-ended question was asked to collect the qualitative assessments of each expert about every item raised or the introduction of any new item. The maximum period to respond was 10 days.
3. Results
3.1. First Round
- It asks only about the context of the educational center and should be expanded to a larger space since not all schoolchildren live near the school.
- The last section, instead of architecture, should be titled: “urban morphology and public facilities”.
- It gives too much importance to road safety and road traffic.
- It focuses only on the school environment, and that environment may have good walkability conditions, but the movement of students will not only take place in that environment.
- The size of the environment should be specified: entrance street to the educational center, neighborhood, a radius of one kilometer, etc.
- Include any variable about slopes.
- Reduce the number of items.
3.2. Second Round
3.3. Final Round
- Establish a Likert scale of five responses with 1, strongly disagreeing; 2, somewhat disagreeing; 3, neutral; 4, somewhat agreeing; and 5, totally agreeing.
- Eliminate the question format of the items and formulate them in the form of an affirmation to make them more consistent with Likert-type responses.
- Make references to the time in some items (entrance and exit times to the educational center).
- Change the name of the architecture factor to urban planning.
- Write some items in the affirmative and clarify at the end of the questionnaire that their results should be rotated before performing statistical analysis to facilitate the understanding of the questionnaire.
- Add clarification of the items that must be rotated to obtain the final score (1.10, 3.4, 3.6, 3.9, 6.1, 6.6)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinu, M.; Pagliai, G.; Macchi, C.; Sofi, F. Active Commuting and Multiple Health Outcomes: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Henriques-Neto, D.; Peralta, M.; Garradas, S.; Pelegrini, A.; Pinto, A.A.; Sánchez-Miguel, P.A.; Marques, A. Active Commuting and Physical Fitness: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Gallego, J.A.; Pérez-Pintor, J.M. Movilidad Urbana Sostenible en Ciudades Medias. El Caso del Campus de Cáceres. Rev. Estud. Andal. 2019, 37, 125–140. [Google Scholar] [CrossRef]
- McDonald, N.C. Active Transportation to School. Trends Among U.S. Schoolchildren, 1969–2001. Am. J. Prev. Med. 2007, 32, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Chillón, P.; Martínez-Gómez, D.; Ortega, F.B.; Pérez-López, I.J.; Díaz, L.E.; Veses, A.M.; Veiga, O.L.; Marcos, A.; Delgado-Fernández, M. Six-year trend in active commuting to school in Spanish adolescents: The AVENA and AFINOS studies. Int. J. Behav. Med. 2013, 20, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ariza, A.; de la Torre-Cruz, M.J.; Redecillas-Peiró, M.T.; Martínez-López, E.J. Influencia del desplazamiento activo sobre la felicidad, el bienestar, la angustia psicológica y la imagen corporal en adolescentes. Gac. Sanit. 2015, 29, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hermosa, A.; Álvarez-Bueno, C.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Redondo-Tébar, A.; Sánchez-López, M. Active commuting to and from school, cognitive performance, and academic achievement in children and adolescents: A systematic review and meta-analysis of observational studies. Int. J. Environ. Res. Public Health 2019, 16, 1839. [Google Scholar] [CrossRef] [Green Version]
- Allison, K.R.; Dwyer, J.J.M.; Makin, S. Perceived barriers to physical activity among high school students. Prev. Med. 1999, 28, 608–615. [Google Scholar] [CrossRef]
- Molina-García, J.; Queralt, A.; Estevan, I.; Álvarez, O.; Castillo, I. Barreras percibidas en el desplazamiento activo al centro educativo: Fiabilidad y validez de una escala. Gac. Sanit. 2016, 30, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.S.; Vasques, D.G.; De Oliveira Martins, C.; Williams, L.A.; Lopes, A.S. Active commuting: Prevalence, barriers, and Associated variables. J. Phys. Act. Health 2011, 8, 750–757. [Google Scholar] [CrossRef]
- Molina-García, J.; Queralt, A. Neighborhood built environment and socioeconomic status in relation to active commuting to school in children. J. Phys. Act. Health 2017, 14, 761–765. [Google Scholar] [CrossRef]
- Forman, H.; Kerr, J.; Norman, G.J.; Saelens, B.E.; Durant, N.H.; Harris, S.K.; Sallis, J.F. Reliability and validity of destination-specific barriers to walking and cycling for youth. Prev. Med. 2008, 46, 311–316. [Google Scholar] [CrossRef]
- Cerro, D.; Vaquero, M.; Prieto, J.; Sánchez-Miguel, P.A.; Tapia, M.A. ¿Por qué los jóvenes cacereños no son más activos en su desplazamiento al centro educativo? Estudio piloto sobre barreras para el desplazamiento activo. Cuad. Investig. Juv. 2020, 8, 22–35. [Google Scholar]
- Zaragoza, J.; Corral, A.; Ikeda, E.; García-Bengoechea, E.; Aibar, A. Assessment of psychological, social cognitive and perceived environmental influences on children’s active transport to school. J. Transp. Health 2020, 16, 100839. [Google Scholar] [CrossRef]
- Aranda-Balboa, M.J.; Huertas-Delgado, F.J.; Herrador-Colmenero, M.; Cardon, G.; Chillón, P. Parental barriers to active transport to school: A systematic review. Int. J. Public Health 2020, 65, 87–98. [Google Scholar] [CrossRef]
- Huertas-Delgado, F.J.; Molina-García, J.; Van Dyck, D.; Chillon, P. A questionnaire to assess parental perception of barriers towards active commuting to school (PABACS): Reliability and validity. J. Transp. Health 2019, 12, 97–104. [Google Scholar] [CrossRef]
- Leslie, E.; Saelens, B.; Frank, L.; Owen, N.; Bauman, A.; Coffee, N.; Hugo, G. Residents’ perceptions of walkability attributes in objectively different neighbourhoods: A pilot study. Health Place 2005, 11, 227–236. [Google Scholar] [CrossRef]
- Moayedi, F.; Zakaria, R.; Bigah, Y.; Mustafar, M.; Puan, O.C.; Zin, I.S.; Klufallah, M.M.A. Conceptualising the indicators of walkability for sustainable transportation. J. Teknol. Sci. Eng. 2013, 65, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, L.; Mccrorie, P.; Nicholls, N.; Olsen, J.R. Active commute to school: Does distance from school or walkability of the home neighbourhood matter? A national cross-sectional study of children aged 10–11 years, Scotland, UK. BMJ Open 2019, 9, e033628. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Koo, B.; Suh, S.; Suh, W. Integration of BIM and GIS for formal representation of walkability for safe routes to school programs. KSCE J. Civ. Eng. 2016, 20, 1669–1675. [Google Scholar] [CrossRef]
- Moran, M.R.; Eizenberg, E.; Plaut, P. Getting to know a place: Built environment walkability and children’s spatial representation of their home-school (h-s) route. Int. J. Environ. Res. Public Health 2017, 14f, 607. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.M.; Miller, R.; Dillon, L. School Siting and Walkability: Experience and Policy Implications in California. Calif. J. Polit. Policy 2017, 9, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, K.; Abdur-Rouf, K. Development, validation, and application of School Audit Tool (SAT): An effective instrument for assessing traffic safety and operation around schools. Sustainability 2019, 11, 6438. [Google Scholar] [CrossRef] [Green Version]
- Corres, D.; Gonzalez, A. Niñas y Niños Seguros a la Escuela Mediante el Empoderamiento Ciudadano Para la Transformación de Entornos Escolares. 2018. Available online: http://caminitodelaescuela.org/docs/Recetario de Participacion C iudadana niños y niñas seguros a la escuela mediante el empoderamiento ciudadano.pdf (accessed on 1 September 2021).
- Lee, S.; Lee, C.; Nam, J.W.; Abbey-Lambertz, M.; Mendoza, J.A. School walkability index: Application of environmental audit tool and GIS. J. Transp. Health 2020, 18, 100880. [Google Scholar] [CrossRef] [PubMed]
- Linstone, H.A.; Turoff, M. The Delphi Method; Addison-Wesley: Reading, MA, USA, 1976. [Google Scholar] [CrossRef]
- López-Gómez, E. El método delphi en la investigación actual en educación: Una revisión teórica y metodológica. Educ. XX1 Rev. Fac. Educ. 2018, 21, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, B. Predicting the future: Have you considered using the Delphi methodology? J. Ext. 1997, 36, 5. [Google Scholar]
- Jittrapirom, P.; Marchau, V.; van der Heijden, R.; Meurs, H. Future implementation of mobility as a service (MaaS): Results of an international Delphi study. Travel Behav. Soc. 2018, 21, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, G.; Amarawickrama, S.; Rathnayake, R.; Randeniya, T.; Rathnasiri, S. A Model for Assessing the Level of Walkability in Urban Neighborhoods in Sri Lanka. Int. J. Built Environ. Sustain. 2015, 2, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.K.; Abdelmonem, M.G.; Selim, G. Understanding walkability in the Libyan urban space: Policies, perceptions and smart design for sustainable Tripoli. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2016, 10, 1602–1610. [Google Scholar]
- Mandic, S.; Jackson, A.; Lieswyn, J.; Mindell, J.S.; García Bengoechea, E.; Spence, J.C.; Coppell, K.; Wade-Brown, C.; Wooliscroft, B.; Hinckson, E. Development of key policy recommendations for active transport in New Zealand: A multi-sector and multidisciplinary endeavour. J. Transp. Health 2020, 18, 100859. [Google Scholar] [CrossRef]
- Estévez, M.D.L.B.; Gallastegui, J.J.A. El método Delphi. Su implementación en una estrategia didáctica para la enseñanza de las demostraciones geométricas. Rev. Iberoam. Educ. 2005, 36, 1–10. [Google Scholar] [CrossRef]
- Romero, R.; Cabero, J.; Llorente, M.C.; Vázquez-Martínez, A.I. El método Delphi y la formación del profesorado en TIC. In Global; Universidad de Sevilla: Seville, Spain, 2012; pp. 81–93. [Google Scholar]
- Almenara, J.C.; Osuna, J.B. La utilización del juicio de experto para la evaluaciÓn de tic: El coeficiente de competencia experta. Bordón Rev. Pedagog. 2013, 65, 25–38. [Google Scholar] [CrossRef]
- Cortés, M.; Iglesias, M. Generalidades Sobre la Metodología de la Investigación, unacar ed.; Universidad Autónoma del Carmen: Ciudad del Carmen, Mexico, 2005. [Google Scholar]
- Andrés-García, I.; Muñoz-Moreno, M.F.; Ruíz-López Del Prado, G.; Gil-Sáez, B.; Andrés-Puertas, M.; Almaraz-Gómez, A. Validación de un cuestionario sobre actitudes y práctica de actividad física y otros hábitos saludables mediante el método Delphi. Rev. Esp. Salud Publica 2019, 93, e201909081. [Google Scholar]
- Castillo Viera, E.; Abad Robles, M.T.; Giménez Fuentes-Guerra, F.J.; Robles Rodríguez, J. Diseño de un cuestionario sobre hábitos de actividad física y estilo de vida a partir del método Delphy. Rev. Cienc. Deport. 2012, 8, 51–66. [Google Scholar]
- Lima-Serrano, M.; Lima-Rodríguez, J.S.; Sáez-Bueno, Á.; Correspondencia, M.; Lima, S. Diseño y validación de dos escalas para medir la actitud hacia la alimentación y la actividad física durante la adolescencia. Rev. Española Salud Pública 2012, 86, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Blasco, J.; López, A.; Mengual, S. Validación mediante el método Delphi de un cuestionario para conocer las experiencias e interés hacia las actividades acuáticas con especial atención al Winsurf. Ágora Para Educ. Física Deport. 2010, 12, 7–94. [Google Scholar]
- Betancurth, D.P.; Vélez, C.; Jurado, L. Validación de contenido y adaptación del cuestionario Fantastico por técnica Delphi TT—Validation and adaptation of the Fantastico questionnaire by Delphi technique. Rev. Salud Uninorte 2015, 31, 214–227. [Google Scholar] [CrossRef]
Study | State | Measure Method | Limitations (Weak Points) |
---|---|---|---|
Macdonald et al. (2019) [19] | Scotland | Walkability score = (2 × intersetions z-scores) + (Housing density z-scores) | Does not consider outcomes such safety, conservation, and other elements (road signs, pedestrian walkways, etc.). |
Kim et al. (2016) [20] | United States | Walkability Audit. | Requires several computer applications in addition to interviews with participants. |
Moran et al. (2017) [21] | Israel | Walkability index.Include outcomes such as residential density, intersection density, and commercial surface density. | Does not explore aspects specific to educational centers or the state of the infrastructure. Requires the use of geographic information systems. |
Vincent et al. (2017) [22] | United States | School walkability scale. Number of intersections/square miles. | Based on numeric data only. Does not consider outcomes such safety, traffic, speed, etc. |
Shaaban and Abdur-Rouf (2019) [23] | Qatar | School Audit Tool. Evaluates school environment, road network, parking areas, and active commuting. | The data collection can be made somewhat lengthy by using in each item a description for each value. |
Corres and Gonzalez (2018) [24] | Mexico | Audit school walkability. Five dimensions (crosses, velocity, sidewalks, traffic, and safety). | Does not use a rigorous method to design the instrument.In Mexican Spanish language. |
Lee et al. (2020) [25] | United States | GIS-based school walkability index. | Requires the use of geographic information systems. |
Expert | Degree | Position | Years of Experience | Walkability | Active Commuting | Assessment | ||||
---|---|---|---|---|---|---|---|---|---|---|
Kc | Ka | K | Kc | Ka | K | |||||
1 | Doctor | University teacher | 20 | 0.80 | 0.85 | 0.80 | 0.80 | 0.85 | 0.80 | Very high |
2 | Doctor | University teacher | 12 | 0.80 | 0.77 | 0.80 | 0.90 | 1.00 | 0.90 | Very high |
3 | Doctor | Consultant and teacher | 34 | 0.90 | 0.98 | 0.90 | 0.70 | 0.96 | 0.80 | Very high |
4 | Doctor | University teacher | 11 | 0.70 | 0.87 | 0.80 | 0.80 | 0.97 | 0.90 | Very high |
5 | Doctor | Urban architect | 20 | 0.90 | 0.98 | 0.90 | 0.50 | 0.63 | 0.60 | High |
6 | Master’s degree | Project coordinator | 5 | 0.50 | 0.76 | 0.60 | 0.70 | 0.88 | 0.80 | High |
7 | Master’s degree | Primary teacher | 15 | 0.90 | 0.96 | 0.90 | 0.90 | 0.96 | 0.90 | Very high |
8 | Degree | Secondary teacher | 35 | 0.90 | 0.74 | 0.80 | 1.00 | 0.84 | 0.90 | Very high |
9 | Master’s degree | University teacher | 20 | 0.90 | 0.97 | 0.90 | 0.90 | 0.99 | 0.90 | Very high |
10 | Doctor | Research fellow | 5 | 0.80 | 0.89 | 0.80 | 0.80 | 0.89 | 0.80 | Very high |
11 | Doctor | Investigator | 2 | 0.70 | 0.65 | 0.70 | 0.70 | 0.78 | 0.70 | Medium |
12 | Master’s degree | University and primary teacher | 17 | 0.70 | 0.63 | 0.70 | 0.90 | 0.94 | 0.90 | High |
13 | Doctorate | University teacher | 20 | 0.90 | 0.63 | 0.80 | 0.90 | 0.64 | 0.80 | Very high |
14 | Doctorate | University teacher | 2 | 0.70 | 0.75 | 0.70 | 0.80 | 0.88 | 0.80 | High |
15 | Doctorate | University teacher | 30 | 1.00 | 0.96 | 0.90 | 0.80 | 0.96 | 0.90 | High |
16 | Master’s degree | Urban architect | 11 | 0.90 | 0.77 | 0.80 | 0.90 | 0.75 | 0.80 | High |
17 | Doctorate | Teacher training cycles | 21 | 0.70 | 0.54 | 0.60 | 0.70 | 0.56 | 0.60 | Medium |
18 | Master’s degree | Investigator | 2 | 0.70 | 0.65 | 0.70 | 0.80 | 0.78 | 0.80 | High |
19 | Doctorate | University teacher | 14 | 0.70 | 0.79 | 0.70 | 0.80 | 0.78 | 0.80 | High |
20 | Doctorate | University teacher | 6 | 0.80 | 0.89 | 0.80 | 0.90 | 1.00 | 0.90 | Very high |
Argumentation Sources | High | Medium | Low |
---|---|---|---|
Theoretical analyses developed by you | 0.30 | 0.20 | 0.10 |
Experience gained | 0.50 | 0.40 | 0.20 |
Studies by national authors you know | 0.05 | 0.04 | 0.03 |
Studies by foreign authors you know | 0.05 | 0.04 | 0.03 |
Own knowledge about the state of the matter | 0.05 | 0.04 | 0.03 |
Your intuition | 0.05 | 0.04 | 0.03 |
Validation Variable List, First Round |
---|
N° Questions/items: 64 |
Categories or blocks to evaluate Traffic and security (14 items) Signaling (10 items) Sidewalk (11 items) Transportation (6 items) Activity (11 items) Architecture (12 items) |
Item evaluation Items were assessed using a 5-point Likert scale with three questions: (1) relevance–adequacy, (2) relevance–importance, and (3) writing–clarity. To be included in the variable list, the criterion adopted to validate the items was that they should be met by the expert evaluations regarding relevance–adequacy and relevance–importance: (1) present a mean greater than 3.75 and a standard deviation less than or equal to 1.5; and (2) present ratings of 4 or 5 in at least 80% of the answers. In each item, an additional box is offered for observations by the experts. |
Questionnaire evaluation The clarity of the approach, the number of items, the adequacy of the recipients, and the previous instructions to complete the questionnaire were analyzed. A 4-point Likert scale was used: Bad (M), Regular (R), Good (G), and Excellent (E). An additional box was offered for the proposal of modifications by the experts. |
Factor | N° of Initial Items | Relevance–Adequacy | Relevance–Importance | Writing–Clarity | N° of Accepted Items | N° of Accepted Items with Revisions | N° of Reformulated Items | N° of Deleted Items | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | % 4–5 | M | SD | % 4–5 | M | SD | % 4–5 | ||||||
Traffic and safety | 14 | 4.72 | 0.97 | 80.48 | 4.12 | 1.03 | 80.48 | 4.02 | 1.05 | 66.65 | 2.00 | 7.00 | 1.00 | 4.00 |
Signaling | 10 | 4.67 | 0.92 | 83.99 | 4.18 | 1.04 | 77.99 | 4.07 | 1.03 | 69.17 | 2.00 | 3.00 | 3.00 | 2.00 |
Sidewalk | 11 | 4.41 | 0.93 | 85.46 | 4.39 | 0.98 | 84.05 | 3.99 | 1.11 | 66.92 | 3.00 | 7.00 | 0.00 | 1.00 |
Transport | 6 | 4.48 | 0.99 | 87.77 | 4.45 | 1.07 | 85.61 | 4.52 | 0.81 | 85.88 | 5.00 | 0.00 | 0.00 | 1.00 |
Activity | 11 | 4.31 | 0.82 | 83.12 | 4.23 | 0.85 | 80.60 | 4.35 | 0.95 | 78.66 | 4.00 | 2.00 | 2.00 | 3.00 |
Architecture | 12 | 4.27 | 0.75 | 79.43 | 4.17 | 0.80 | 75.54 | 4.22 | 0.96 | 75.34 | 7.00 | 2.00 | 1.00 | 2.00 |
Factor | N° of Initials Items | Relevance–Adequacy | Relevance–Importance | Writing–Clarity | N° of Accepted Items | N° of Accepted Items with Revisions | N° Of Reformulated Items | N° of Delated Items | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | % 4–5 | M | SD | % 4–5 | M | SD | % 4–5 | ||||||
Traffic and safety | 10 | 4.72 | 0.49 | 98.99 | 4.69 | 0.49 | 95.65 | 4.45 | 0.88 | 87.17 | 7.00 | 3.00 | 0.00 | 0.00 |
Signaling | 8 | 4.79 | 0.46 | 96.21 | 4.79 | 0.41 | 96.21 | 4.71 | 0.54 | 93.56 | 7.00 | 1.00 | 0.00 | 0.00 |
Sidewalk | 11 | 4.72 | 0.52 | 94.95 | 4.74 | 0.51 | 94.95 | 4.54 | 0.78 | 88.89 | 8.00 | 3.00 | 0.00 | 0.00 |
Transport | 5 | 4.76 | 0.44 | 99.78 | 4.78 | 0.43 | 99.78 | 4.89 | 0.29 | 99.78 | 5.00 | 0.00 | 0.00 | 0.00 |
Activity | 6 | 4.72 | 0.51 | 96.47 | 4.72 | 0.50 | 94.47 | 4.78 | 0.50 | 96.47 | 5.00 | 0.00 | 0.00 | 1.00 |
Architecture | 9 | 4.77 | 0.46 | 99.76 | 4.75 | 0.50 | 97.40 | 4.87 | 0.33 | 100.00 | 8.00 | 0.00 | 1.00 | 0.00 |
Traffic and safety | 2 | 4.45 | 0.96 | 89.40 | 4.45 | 0.96 | 83.30 | 4.50 | 0.85 | 89.40 | 1.00 | 0.00 | 0.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerro-Herrero, D.; Prieto-Prieto, J.; Vaquero-Solis, M.; Tapia-Serrano, M.Á.; Sánchez-Miguel, P.A. Analysis of Variables That Influence the Walkability of School Environments Based on the Delphi Method. Int. J. Environ. Res. Public Health 2022, 19, 14201. https://doi.org/10.3390/ijerph192114201
Cerro-Herrero D, Prieto-Prieto J, Vaquero-Solis M, Tapia-Serrano MÁ, Sánchez-Miguel PA. Analysis of Variables That Influence the Walkability of School Environments Based on the Delphi Method. International Journal of Environmental Research and Public Health. 2022; 19(21):14201. https://doi.org/10.3390/ijerph192114201
Chicago/Turabian StyleCerro-Herrero, David, Josué Prieto-Prieto, Mikel Vaquero-Solis, Miguel Ángel Tapia-Serrano, and Pedro Antonio Sánchez-Miguel. 2022. "Analysis of Variables That Influence the Walkability of School Environments Based on the Delphi Method" International Journal of Environmental Research and Public Health 19, no. 21: 14201. https://doi.org/10.3390/ijerph192114201
APA StyleCerro-Herrero, D., Prieto-Prieto, J., Vaquero-Solis, M., Tapia-Serrano, M. Á., & Sánchez-Miguel, P. A. (2022). Analysis of Variables That Influence the Walkability of School Environments Based on the Delphi Method. International Journal of Environmental Research and Public Health, 19(21), 14201. https://doi.org/10.3390/ijerph192114201