Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.1.1. Ari (13°46′59.6″ N 100°32′25.8″ E)
2.1.2. Din Daeng (13°45′45.2″ N 100°33′01.1″ E)
2.1.3. Bangna (13°39′58.8″ N 100°36′20.7″ E)
2.2. Chemical Analysis
2.3. Estimation of Primary Organic Carbon and Secondary Organic Carbon
2.4. Principal Component Analysis (PCA)
2.5. Health Risk Assessment of Heavy Metals
2.5.1. Estimating Exposure Concentrations
2.5.2. Non-Carcinogenic Risk Assessment
2.5.3. Carcinogenic Risk Assessment
2.6. Meteorological Parameters
3. Results and Discussion
3.1. Mass Concentration and Composition of PM2.5 and PM10
3.1.1. PM2.5 and PM10 Concentration
3.1.2. Carbonaceous Species
3.1.3. Chemical Species
3.2. Health Risk Assessment
3.3. Source Apportionment Using Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, R.M.; Bousiotis, D.; Mohorjy, A.; Alkhalaf, A.; Shamy, M.; Alghamdi, M.; Khoder, M.; Costa, M. Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Sci. Total Environ. 2017, 590, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.C.; Boland, S.; Baeza-Squiban, A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J. Human health risks in megacities due to air pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Ma, Y.; Weber, R.J.; Lee, Y.N.; Orsini, D.A.; Maxwell-Meier, K.; Thornton, D.C.; Bandy, A.R.; Clarke, A.D.; Blake, D.R.; Sachse, G.W.; et al. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the transport and chemical evolution over the Pacific (TRACE-P) experiment. J. Geophys. Res. 2003, 108, 8816. [Google Scholar] [CrossRef] [Green Version]
- Terzi, E.; Argyropoulos, G.; Bougatioti, A.; Mihalopoulos, N.; Nikolaou, K.; Samara, C. Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 2010, 44, 2231–2239. [Google Scholar] [CrossRef]
- Viana, M.; Maenhaut, W.; Chi, X.; Querol, X.; Alastuey, A. Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. Atmos. Environ. 2007, 41, 315–326. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Huang, X.H.H.; Zhang, T.; Zhang, Q.; Feng, Y.; Yuan, Z.; Wu, D.; Lau, A.K.H.; Yu, J.Z. Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China. Atmos. Environ. 2015, 118, 164–175. [Google Scholar] [CrossRef]
- Yang, F.; Huang, L.; Sharma, S.; Brook, J.R.; Zhang, W.; Li, S.M.; Tan, J. Two-year observations of fine carbonaceous particles in variable sampling intervals. Atmos. Environ. 2011, 45, 2418–2426. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Kuo, S.C. PM2.5 Aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmos. Environ. 2005, 39, 4827–4839. [Google Scholar] [CrossRef]
- Greene, N.A.; Morris, V.R. Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int. J. Environ. Res. Public Health 2006, 3, 86–97. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Xu, H.M.; Xu, Q.; Chen, B.H.; Kan, H.D. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.K.; Hieu, N.T. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual. Res. 2011, 11, 679–688. [Google Scholar]
- Feng, B.; Li, L.; Xu, H.; Wang, T.; Wu, R.; Chen, J.; Zhang, Y.; Liu, S.; Ho, S.S.H.; Cao, J.; et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 2019, 77, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles, a comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Chen, R.J.; Chen, B.H.; Kan, H.D. A health-based economic assessment of particulate air pollution in 113 Chinese cities. Chin. J. Environ. Sci. 2010, 30, 410–415. [Google Scholar]
- Hou, Q.; An, X.Q.; Wang, Z.F.; Wang, Y.; Sun, Z.B. Assessment on health economic costs of particulate air pollution in Lanzhou during 2002–2009. Chin. J. Environ. Sci. 2011, 31, 1398–1402. [Google Scholar]
- Ahmad, M.; Yu, Q.; Chen, J.; Cheng, S.; Qin, W.; Zhang, Y. Chemical characteristics, oxidative potential, and sources of PM2.5 in wintertime in Lahore and Peshawar, Pakistan. J. Environ. Sci. 2021, 102, 148–158. [Google Scholar] [CrossRef]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J.T. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Hopke, P.K. Recent developments in receptor modeling. J. Chemother. 2003, 17, 255–265. [Google Scholar] [CrossRef]
- U.S. EPA. Risk assessment guidance for superfund (RAGS). In Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Li, Y.; Zhang, Z.; Liu, H.; Zhou, H.; Fan, Z.; Lin, M.; Wu, D.; Xia, B. Characteristics, sources, and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environ. Geochem. Health 2016, 38, 353–362. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dust from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 456, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.Z.; Wang, Y.; Xue, Z.G.; Cheng, K.; Qu, Y.P.; Chai, F.H.; Hao, J.M. Trend and characteristics of atmospheric emissions of Hg, As and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 2010, 10, 11905–11919. [Google Scholar] [CrossRef] [Green Version]
- Thongyen, T.; Limpaseni, W.; Preuksasit, T.; Otani, Y.; Furuuchi, M. Nanoparticles concentrations in Bangkok ambient air. In Proceedings of the 2010 Annual Meeting of Japan Society of Civil Engineers, Chubu branch, Kanazawa, Japan, 7 September 2010; Kanazawa Institute of Technology: Ishikawa, Japan, 2010; Volume VII-18, pp. 577–588. [Google Scholar]
- Wimolwattanapun, W.; Hopke, P.K.; Pongkiatkul, P. Source apportionment and potential source location of PM2.5 and PM2.5-10 at residential sites in Metropolitan Bangkok. Atmos. Pollut. Res. 2011, 2, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Sakunkoo, P.; Thonglua, T.; Sangkham, S.; Jirapornkul, C.; Limmongkon, Y.; Daduang, S.; Tessiri, T.; Rayubkul, J.; Thongtip, S.; Maneenin, N.; et al. Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon 2022, 8, e09572. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Sooktawee, S.; Patpai, A.; Vatanasomboon, P. Temporal variations and potential source areas of fine particulate matter in Bangkok, Thailand. Air Soil Water Res. 2020, 13, 1178622120978203. [Google Scholar] [CrossRef]
- Bhuyan, P.; Barman, N.; Begum, S.; Gogoi, D.; Borah, S.; Kumar, M.; Sarma, K.P.; Hoque, R.R. Spatial and seasonal variations of Water-soluble ions in PM10 of Mid-Brahmaputra plain of Assam valley. Asian J. Water Environ. Pollut. 2016, 13, 69–81. [Google Scholar] [CrossRef]
- Thammasaroj, P.; Jinsart, W. Effects of overcrowded traffic and road construction activities in Bangkok on PM2.5, PM10, and heavy metals composition. Environ. Asia 2019, 12, 28–35. [Google Scholar]
- Han, Y.M.; Cao, J.J.; Lee, S.C.; Ho, K.F.; An, Z.S. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmos. Chem. Phys. 2010, 10, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Han, Y.; Cao, J.; Tian, J.; Zhu, C.; Liu, S.; Liu, P.; Wang, Y. Characteristics of traffic-related emissions: A case study in roadside ambient air over Xi’an, China. Aerosol Air Qual. Res. 2010, 10, 292–300. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Markwitz, A.; Hopke, P.K. Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Qual. Res. 2010, 10, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Yadav, S. Seasonal variations in water-soluble inorganic ions, OC and EC in PM10 and PM>10 aerosols over Delhi: Influence of sources and meteorological factors. Aerosol Air Qual. Res. 2016, 16, 1165–1178. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, T. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Zhang, B.; Bai, Y. A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012. Atmos. Environ. 2016, 124 Pt B, 98–108. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, X.; Chen, J.; Gao, L.; Zhu, A.; Wang, Z.; Li, S.; Shan, J.; Long, Y.; Yan, C.; et al. Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China. Environ. Geochem. Health 2018, 41, 715–728. [Google Scholar] [CrossRef]
- Tsai, J.H.; Lin, J.H.; Yao, Y.C.; Chiang, H.L. Size distribution and water-soluble ions of ambient particulate matter on the episode and non-episode days in Southern Taiwan. Aerosol Air Qual. Res. 2012, 12, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Vet, R.; Wiebe, A.; Mihele, C.; Sukloff, B.; Chan, E.; Moran, M.D.; Iqbal, S. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites. Atmos. Chem. Phys. 2008, 8, 7133–7151. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.G.; Jo, B.H.; Kang, D.G.; Kim, C.S.; Choi, Y.S.; Cha, H.J. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 2012, 87, 1091–1096. [Google Scholar] [CrossRef]
- Rastogi, N.; Singh, A.; Sarin, M.M.; Singh, D. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmos. Environ. 2016, 125, 396–403. [Google Scholar] [CrossRef]
- Yadav, S.; Rajamani, V. Geochemistry of aerosols of the north-western part of India adjoining the Thar Desert. Geochim. Cosmochim. Acta 2004, 68, 1975–1988. [Google Scholar] [CrossRef]
- Kumar, S.; Aggarwal, S.G.; Gupta, P.K.; Kawamura, K. Investigation of the tracers for plastic-enriched waste burning aerosols. Atmos. Environ. 2015, 108, 49–58. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Huang, Z.; Gao, W.; Nian, H.; Fu, Z.; Gao, J.; Chai, F.; Zhou, Z. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing. Atmos. Environ. 2014, 94, 323–331. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modeling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mansha, M.; Ghauri, B.; Rahman, S.; Amman, A. Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci. Total Environ. 2012, 425, 176–183. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Polkowska, Ż.; Namieśnik, J. Influence of mobile sources on pollution of runoff waters from roads with high traffic intensity. Pol. J. Environ. Stud. 2007, 16, 889–897. [Google Scholar]
- Hu, X.; Zhang, Y.; Ding, Z.H.; Wang, T.J.; Lian, H.Z.; Sun, Y.Y.; Wu, J. Bio-accessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Diaz, R.V.; Dominguez, E.R. Health risk by inhalation of PM2.5 in the metropolitan zone of the city of Mexico. Ecotoxicol. Environ. Saf. 2009, 72, 866–871. [Google Scholar] [CrossRef]
- Yadav, S.; Satsangi, P.G. Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ. Monit. Assess. 2013, 185, 7365–7379. [Google Scholar] [CrossRef]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Niu, C.; Zhou, J.; Kong, S.; Bai, Z.; Xu, H. Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: An exposure panel study in Tianjin, China. Air Qual. Atmos. Health 2015, 8, 347–357. [Google Scholar] [CrossRef]
- Srimuruganandam, B.; Nagendra, S.S. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at the urban roadside. Sci. Total Environ. 2012, 433, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Srimuruganandam, B.; Nagendra, S.S. Application of positive matrix factorization in the characterization of PM10 and PM2.5 emission sources at the urban roadside. Chemosphere 2012, 88, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Kothai, P.; Saradhi, I.V.; Prathibha, P.; Hopke, P.K.; Pandit, G.G.; Puranik, V.D. Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual. Res. 2008, 8, 423–436. [Google Scholar]
- Sharma, S.K.; Mandal, T.K.; Srivastava, M.K.; Chatterjee, A.; Jain, S.; Saxena, M.; Singh, B.P.; Sharma, A.; Adak, A.; Ghosh, S.K. Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic plain of India. Environ. Sci. Pollut. Res. 2016, 23, 18809–18822. [Google Scholar] [CrossRef]
- Marmur, A.; Unal, A.; Mulholland, J.A.; Russell, A.G. Optimization-based source apportionment of PM2.5 incorporating gas-to-particle ratios. Environ. Sci. Technol. 2005, 39, 3245–3254. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Wahlin, P.; Raaschou-Nielsen, O.; Scheike, T.; Loft, S. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of northeast India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
(a) | ||||||
Ari | Din Daeng | Bangna | Ari | Din Daeng | ||
Mean ± Stdv | Range | Mean ± Stdv | Mean ± Stdv | Range | ||
PM2.5, Carbonaceous Species, and Ions (µg/m3) | ||||||
PM | 27.8 ± 16.1 | 7.4–63.0 | 31.3 ± 18.9 | 9.1–69.1 | 26.8 ± 14.7 | 8.1–55.8 |
OC | 8.4 ± 7.0 | 1.8–28.2 | 14.5 ± 7.4 | 4.2–38.0 | 8.3 ± 6.7 | 1.4–24.8 |
EC | 0.7 ± 0.6 | 0.0–1.9 | 1.5 ± 1.3 | 0.1–5.0 | 0.8 ± 0.7 | 0.1–3.1 |
POC | 2.6 ± 2.2 | 0.0–6.9 | 3.2 ± 2.6 | 0.2–10.6 | 2.0 ± 1.7 | 0.3–7.9 |
SOC | 5.9 ± 5.5 | 0.0–23.7 | 11.3 ± 7.1 | 0.0–33.0 | 6.3 ± 5.7 | 0.0–21.1 |
Na+ | 0.4 ± 0.3 | 0.0–1.1 | 0.5 ± 0.4 | 0.0–1.7 | 0.4 ± 0.4 | 0.0–1.6 |
NH4+ | 0.5 ± 0.5 | 0.0–2.0 | 0.5 ± 0.5 | 0.0–1.8 | 0.4 ± 0.5 | 0.0–2.0 |
K+ | 0.3 ± 0.3 | 0.0–1.3 | 0.3 ± 0.4 | 0.0–1.7 | 0.3 ± 0.3 | 0.0–1.7 |
Mg2+ | 0.1 ± 0.1 | 0.0–0.2 | BDL | BDL | 0.1 ± 0.1 | 0.0–0.2 |
Ca2+ | 0.2 ± 0.2 | 0.0–0.8 | 0.2 ± 0.3 | 0.0–1.1 | 0.2 ± 0.2 | 0.0–0.8 |
NO3− | 0.1 ± 0.1 | 0.0–0.2 | 0.1 ± 0.1 | 0.0–0.3 | 0.1 ± 0.1 | 0.0–0.3 |
SO42− | 0.1 ± 0.1 | 0.0–0.3 | 0.2 ± 0.2 | 0.0–0.6 | 0.1 ± 0.1 | 0.0–0.4 |
Cl− | 0.6 ± 1.1 | 0.0–5.2 | 0.6 ± 1.0 | 0.0–4.7 | 0.6 ± 1.1 | 0.0–2.3 |
Metals (ng/m3) | ||||||
Na | 585.6 ± 855.9 | 0.0–2446.0 | 1036.3 ± 1374.4 | 0.0–5970.3 | 1255.6 ± 2310.3 | 0.0–11329.3 |
Mg | 679.8 ± 833.5 | 0.0–2685.6 | 704.9 ± 770.5 | 7.9–3054.2 | 716.5 ± 785.6 | 0.0–2542.0 |
Al | 489.9 ± 695.2 | 0.0–2727.7 | 853.3 ± 1006.0 | 0.0–3736.7 | 988.4 ± 1695.6 | 0.0–8232.4 |
K | 92.2 ± 198.6 | 0.0–875.3 | 201.7 ± 393.2 | 0.0–1573.6 | 259.5 ± 539.5 | 0.0–2563.6 |
Ca | 4586.2 ± 8038.2 | 0.0–32,000.5 | 4844.3 ± 8728.0 | 0.0–35,668.0 | 4998.1 ± 9410.9 | 0.0–37,143.8 |
Sc | 42.6 ± 58.0 | 0.0–191.4 | 48.4 ± 64.4 | 0.2–213.5 | 54.4 ± 69.1 | 0.2–241.7 |
Ti | 45.4 ± 79.8 | 0.0–287.2 | 52.8 ± 75.9 | 0.6–290.5 | 54.5 ± 69.5 | 0.3–244.2 |
V | 0.7 ± 1.3 | 0.0–4.2 | 1.2 ± 1.7 | 0.0–5.5 | 0.9 ± 1.3 | 0.0–5.1 |
Cr | 2.6 ± 7.7 | 0.0–41.9 | 1.9 ± 3.2 | 0.0–15.5 | 3.1 ± 6.0 | 0.0–27.3 |
Mn | 51.2 ± 126.6 | 0.0–431.3 | 58.9 ± 120.4 | 0.0–405.1 | 49.9 ± 116.2 | 0.0–394.4 |
Fe | 132.3 ± 192.4 | 0.0–829.5 | 174.7 ± 180.4 | 7.2–865.9 | 154.0 ± 160.1 | 0.0–478.9 |
Co | BDL | BDL | 2.3 ± 8.2 | 0.0–42.7 | 2.2 ± 10.4 | 0.0–57.5 |
Ni | 76.9 ± 150.3 | 0.0–484.7 | 85.8 ± 147.7 | 0.0–505.7 | 78.4 ± 134.7 | 0.0–465.1 |
Cu | 2.4 ± 3.0 | 0.0–11.3 | 6.2 ± 6.2 | 0.1–24.6 | 5.2 ± 8.7 | 0.0–47.2 |
Zn | 28.1 ± 39.5 | 0.0–144.9 | 35.4 ± 36.7 | 0.0–106.9 | 62.1 ± 97.8 | 0.0–395.0 |
As | 8.8 ± 15.8 | 0.0–46.1 | 8.7 ± 16.3 | 0.0–54.1 | 9.6 ± 19.3 | 0.0–68.2 |
Se | 4.6 ± 4.3 | 0–8.5 | 4.6 ± 4.3 | 0.0–8.5 | 4.6 ± 4.3 | 0.0–8.5 |
Cd | BDL | BDL | 1.2 ± 3.4 | 0.0–16.8 | 1.9 ± 4.4 | 0.0–17.0 |
Ba | 15.5 ± 24.4 | 0.0–108.7 | 24.3 ± 31.1 | 0.0–146.3 | 29.3 ± 48.8 | 0.0–239.5 |
Ce | BDL | BDL | 0.6 ± 0.4 | 0.1–1.8 | 0.6 ± 0.5 | 0.0–2.3 |
Pt | BDL | BDL | BDL | BDL | BDL | BDL |
Pb | 3.6 ± 5.0 | 0.0–17.4 | 7.0 ± 13.9 | 0.0–66.2 | 10.8 ± 22.1 | 0.0–109.6 |
(b) | ||||||
Ari | Din Daeng | Bangna | ||||
Mean ± Stdv | Range | Mean ± Stdv | Mean ± Stdv | Range | Mean ± Stdv | |
PM10, Carbonaceous Species, and Ions (µg/m3) | ||||||
PM | 21.9 ± 8.7 | 3.4–36.9 | 21.0 ± 7.0 | 5.8–33.2 | 22.6 ± 7.9 | 6.2–36.9 |
OC | 2.7 ± 0.9 | 1.2–4.9 | 4.8 ± 1.8 | 2.6–10.5 | 2.9 ± 1.0 | 1.0–5.3 |
EC | 0.3 ± 0.4 | 0.0–1.4 | 1.2 ± 1.0 | 0.0–3.8 | 0.7 ± 0.3 | 0.2–1.4 |
POC | 1.2 ± 0.4 | 0.5–2.1 | 2.0 ± 1.6 | 0.4–6.1 | 1.3 ± 0.6 | 0.3–2.6 |
SOC | 1.5 ± 0.8 | 0.0–3.2 | 2.9 ± 1.2 | 0.0–6.2 | 1.7 ± 0.8 | 0.0–3.8 |
Na+ | 0.3 ± 0.3 | 0.0–0.8 | 0.3 ± 0.3 | 0.0–1.9 | 0.3 ± 0.3 | 0.0–0.8 |
NH4+ | BDL | BDL | BDL | BDL | BDL | BDL |
K+ | 0.1 ± 0.1 | 0.0–0.5 | 0.1 ± 0.2 | 0.0–0.6 | 0.1 ± 0.2 | 0.0–0.6 |
Mg2+ | 0.1 ± 0.1 | 0.0–0.2 | 0.1 ± 0.1 | 0.0–0.2 | 0.1 ± 0.1 | 0.0–0.2 |
Ca2+ | 0.3 ± 0.4 | 0.0–1.1 | 0.3 ± 0.4 | 0.0–1.3 | 0.2 ± 0.3 | 0.0–0.8 |
NO3− | 0.3 ± 0.2 | 0.0–1.0 | 0.4 ± 0.2 | 0.0–0.9 | 0.4 ± 0.2 | 0.1–0.9 |
SO42− | 1.1 ± 0.9 | 0.1–3.3 | 1.0 ± 0.8 | 0.0–3.2 | 1.1 ± 0.9 | 0.0–3.4 |
Cl− | 0.4 ± 0.2 | 0.1–1.1 | 0.4 ± 0.3 | 0.1–1.3 | 0.4 ± 0.2 | 0.1–0.9 |
Metals (ng/m3) | ||||||
Na | 193.2 ± 404.0 | 0.0–1438.6 | 475.4 ± 844.4 | 0.0–3315.4 | 634.0 ± 1476.4 | 0.0–7709.7 |
Mg | 337.5 ± 425.7 | 0.0–1373.8 | 354.6 ± 335.5 | 7.5–1290.3 | 366.4 ± 386.4 | 0.0–1262.4 |
Al | 264.3 ± 288.1 | 0.0–876.9 | 462.9 ± 778.9 | 0.0–3593.7 | 549.4 ± 1082.6 | 0.0–5441.3 |
K | 70.9 ± 167.2 | 0.0–643.2 | 119.4 ± 221.5 | 0.0–977.2 | 158.3 ± 379.6 | 0.0–1884.7 |
Ca | 514.2 ± 798.6 | 0.0–3048.4 | 791.6 ± 576.3 | 0.0–1893.3 | 482.5 ± 743.5 | 0.0–2555.2 |
Sc | 22.1 ± 30.2 | 0.0–107.7 | 23.1 ± 30.9 | 0.0–101.9 | 24.6 ± 33.4 | 0.0–118.1 |
Ti | 26.4 ± 37.9 | 0.0–124.3 | 34.5 ± 41.8 | 0.0–160.1 | 27.6 ± 35.8 | 0.0–106.8 |
V | BDL | BDL | BDL | BDL | BDL | BDL |
Cr | 1.3 ± 2.4 | 0.0–11.8 | 3.3 ± 6.8 | 0.0–36.4 | 1.6 ± 4.3 | 0.0–22.5 |
Mn | 33.5 ± 66.9 | 0.0–210.3 | 27.3 ± 52.8 | 0.0–165.6 | 26.6 ± 58.0 | 0.0–183.5 |
Fe | 325.8 ± 270.4 | 0.0–1021.5 | 502.4 ± 356.3 | 115.1–1586.2 | 345.3 ± 243.4 | 20.4–819.9 |
Co | 1.1 ± 6.1 | 0.0–33.7 | 0.5 ± 2.7 | 0.0–15.0 | BDL | BDL |
Ni | 39.9 ± 72.8 | 0–242.6 | 40.8 ± 69.3 | 0.0–225.8 | 38.8 ± 66.6 | 0.0–234.4 |
Cu | 1.4 ± 2.2 | 0.0–10.0 | 5.7 ± 8.3 | 0.0–42.5 | 2.0 ± 2.4 | 0.0–7.6 |
Zn | 47.7 ± 187.7 | 0.0–1037.9 | 18.8 ± 31.0 | 0.0–119.6 | 20.3 ± 33.8 | 0.0–139.8 |
As | 4.6 ± 9.5 | 0.0–30.0 | 3.6 ± 8.1 | 0.0–30.1 | 3.9 ± 8.3 | 0.0–31.7 |
Se | BDL | BDL | BDL | BDL | BDL | BDL |
Cd | BDL | BDL | BDL | BDL | BDL | BDL |
Ba | 7.8 ± 18.2 | 0.0–93.5 | 17.9 ± 24.9 | 0.0–106.4 | 12.0 ± 25.2 | 0.0–115.8 |
Ce | 0.3 ± 0.3 | 0.0–1.0 | 0.4 ± 0.5 | 0.0–2.4 | 0.4 ± 0.5 | 0.0–2.2 |
Pt | BDL | BDL | BDL | BDL | BDL | BDL |
Pb | 2.7 ± 9.9 | 0.0–54.7 | 2.7 ± 6.1 | 0.0–29.5 | 3.7 ± 7.7 | 0.0–35.0 |
Ari | Din Daeng | Bangna | ||||
---|---|---|---|---|---|---|
PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | |
Temperature | 0.10 | −0.02 | 0.15 | 0.01 | 0.21 | −0.16 |
Wind Speed | −0.44 * | 0.31 | −0.49 ** | 0.26 | −0.36 | 0.29 |
Relative Humidity | 0.48 ** | −0.39 * | 0.69 ** | −0.31 | 0.36 * | −0.24 |
PM2.5 | Carcinogenic (CR) | Non-Carcinogenic (HQ) | PM10 | Carcinogenic (CR) | Non-Carcinogenic (HQ) | ||||
---|---|---|---|---|---|---|---|---|---|
Ari | Children | Adult | Children | Adult | Children | Adult | Children | Adult | |
As | 3.26 × 10−6 | 1.63 × 10−5 | 1.89 × 10−1 | 5.66 × 10−1 | 1.68 × 10−6 | 8.42 × 10−6 | 8.23 × 10−2 | 2.47 × 10−1 | |
Cd | 1.25 × 10−7 | 6.23 × 10−7 | 2.58 × 10−2 | 7.75 × 10−2 | 5.40 × 10−8 | 2.70 × 10−7 | 1.92 × 10−2 | 5.75 × 10−2 | |
Cr | 1.82 × 10−5 | 9.11 × 10−5 | 8.29 × 10−2 | 2.49 × 10−2 | 8.86 × 10−6 | 4.43 × 10−5 | 5.25 × 10−2 | 1.58 × 10−2 | |
Pb | 2.46 × 10−6 | 1.23 × 10−7 | NA | NA | 1.81 × 10−8 | 9.35 × 10−8 | NA | NA | |
Ni | 1.58 × 10−6 | 7.91 × 10−6 | 4.91 × 10−1 | 1.47 × 100 | 8.21 × 10−6 | 4.10 × 10−6 | 2.48 × 10−1 | 7.44 × 10−1 | |
Mn | NA | NA | 3.27 × 10−1 | 1.02 × 100 | NA | NA | 1.70 × 10−1 | 5.09 × 10−1 | |
Total | 2.32 × 10−5 | 1.16 × 10−4 | 1.04 × 100 | 3.16 × 100 | 1.14 × 10−5 | 5.72 × 10−5 | 5.25 × 10−1 | 1.57 × 100 | |
Din Daeng | |||||||||
As | 3.21 × 10−6 | 1.60 × 10−5 | 1.86 × 10−1 | 5.57 × 10−1 | 1.31 × 10−6 | 6.55 × 10−6 | 7.58 × 10−2 | 2.27 × 10−1 | |
Cd | 1.85 × 10−7 | 9.24 × 10−7 | 3.83 × 10−2 | 1.15 × 10−1 | 9.00 × 10−8 | 4.50 × 10−7 | 1.86 × 10−2 | 5.59 × 10−2 | |
Cr | 1.37 × 10−5 | 6.83 × 10−5 | 6.22 × 10−2 | 1.86 × 10−2 | 2.29 × 10−5 | 1.15 × 10−4 | 1.04 × 10−2 | 1.58 × 10−2 | |
Pb | 4.82 × 10−8 | 2.41 × 10−7 | NA | NA | 1.85 × 10−8 | 9.23 × 10−8 | NA | NA | |
Ni | 1.77 × 10−6 | 8.83 × 10−6 | 5.49 × 10−1 | 1.65 × 100 | 8.38 × 10−7 | 4.19 × 10−6 | 2.61 × 10−1 | 7.44 × 10−1 | |
Mn | NA | NA | 3.77 × 10−1 | 1.13 × 100 | NA | NA | 1.75 × 10−1 | 5.09 × 10−1 | |
Total | 1.89 × 10−5 | 9.44 × 10−5 | 1.16 × 100 | 3.47 × 100 | 2.52 × 10−5 | 1.26 × 10−4 | 5.40 × 10−1 | 1.57 × 100 | |
Bangna | |||||||||
As | 3.52 × 10−6 | 1.77 × 10−5 | 2.05 × 10−1 | 6.14 × 10−1 | 1.42 × 10−6 | 7.11 × 10−6 | 8.23 × 10−2 | 2.47 × 10−1 | |
Cd | 9.10 × 10−8 | 1.46 × 10−6 | 6.03 × 10−2 | 1.81 × 10−1 | 9.26 × 10−8 | 4.63 × 10−7 | 1.92 × 10−2 | 5.75 × 10−2 | |
Cr | 3.30 × 10−5 | 1.09 × 10−4 | 9.88 × 10−2 | 2.96 × 10−2 | 1.16 × 10−5 | 5.78 × 10−5 | 5.25 × 10−2 | 1.58 × 10−2 | |
Pb | 9.36 × 10−9 | 3.70 × 10−7 | NA | NA | 2.51 × 10−8 | 1.25 × 10−7 | NA | NA | |
Ni | 2.93 × 10−6 | 8.07 × 10−6 | 5.01 × 10−1 | 1.50 × 100 | 7.98 × 10−7 | 3.99 × 10−6 | 2.48 × 10−1 | 7.44 × 10−1 | |
Mn | NA | NA | 3.19 × 10−1 | 9.57 × 10−1 | NA | NA | 1.70 × 10−1 | 5.09 × 10−1 | |
Total | 2.72 × 10−5 | 1.36 × 10−4 | 1.10 × 100 | 3.29 × 100 | 1.39 × 10−5 | 6.94 × 10−5 | 5.25 × 10−1 | 1.57 × 100 |
(a) | ||||||||||||
Ari | Din Daeng | Bangna | ||||||||||
Species | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 |
OC | −0.04 | 0.44 | 0.84 | 0.11 | −0.02 | 0.94 | 0.13 | 0.12 | 0.76 | 0.12 | −0.28 | −0.24 |
EC | 0.10 | 0.08 | 0.90 | −0.15 | −0.34 | 0.84 | 0.30 | −0.75 | 0.78 | −0.39 | 0.01 | −0.11 |
Na+ | 0.54 | 0.67 | 0.04 | −0.08 | 0.22 | 0.06 | 0.90 | 0.06 | 0.41 | 0.36 | 0.93 | −0.04 |
NH4+ | 0.05 | 0.91 | 0.08 | 0.06 | 0.02 | 0.73 | 0.41 | 0.19 | 0.92 | −0.02 | −0.19 | −0.12 |
K+ | −0.08 | 0.58 | 0.71 | 0.22 | −0.12 | 0.83 | 0.36 | −0.02 | 0.76 | −0.28 | 0.11 | −0.12 |
Mg2+ | 0.87 | −0.01 | −0.14 | −0.26 | 0.89 | −0.05 | −0.22 | −0.22 | 0.03 | 0.47 | −0.68 | 0.20 |
Ca2+ | 0.70 | −0.31 | −0.16 | −0.36 | 0.67 | −0.22 | −0.21 | −0.67 | −0.34 | 0.55 | −0.43 | −0.08 |
NO3− | −0.35 | 0.71 | 0.27 | 0.13 | −0.23 | 0.29 | 0.85 | 0.04 | 0.85 | −0.13 | 0.26 | 0.14 |
SO42− | −0.12 | 0.72 | 0.01 | 0.25 | −0.16 | 0.44 | 0.75 | 0.39 | 0.86 | −0.17 | 0.36 | 0.02 |
Cl− | 0.09 | 0.90 | 0.10 | 0.15 | 0.27 | 0.60 | 0.43 | 0.39 | 0.79 | 0.32 | −0.08 | 0.05 |
Al | 0.90 | −0.16 | −0.20 | 0.07 | 0.23 | 0.25 | 0.20 | 0.69 | 0.13 | 0.08 | 0.61 | −0.06 |
Ti | 0.98 | 0.02 | −0.02 | 0.01 | 0.92 | −0.06 | 0.13 | 0.57 | −0.03 | 0.93 | 0.23 | −0.07 |
Cr | 0.93 | 0.30 | −0.36 | −0.10 | 0.46 | −0.34 | 0.44 | 0.31 | −0.44 | 0.33 | 0.44 | 0.48 |
Mn | 0.96 | 0.01 | 0.12 | −0.01 | 0.95 | −0.04 | 0.17 | 0.15 | −0.13 | 0.94 | −0.10 | −0.15 |
Fe | −0.40 | 0.71 | 0.45 | −0.01 | −0.11 | 0.62 | 0.42 | −0.17 | 0.88 | −0.19 | 0.40 | −0.03 |
Ni | 0.97 | 0.04 | 0.05 | −0.06 | 0.89 | −0.04 | 0.15 | 0.17 | −0.03 | 0.96 | 0.01 | −0.09 |
Cu | −0.10 | 0.32 | 0.09 | 0.70 | −0.04 | 0.36 | 0.50 | 0.07 | −0.23 | −0.25 | 0.03 | 0.88 |
Zn | −0.06 | −0.05 | 0.03 | 0.92 | 0.18 | 0.13 | 0.07 | 0.67 | 0.11 | −0.21 | −0.29 | 0.91 |
As | 0.92 | −0.06 | 0.04 | 0.02 | 0.94 | −0.06 | −0.04 | 0.16 | −0.12 | 0.91 | −0.20 | −0.16 |
% of Variance | 35.6 | 20.8 | 16.0 | 9.2 | 26.8 | 18.7 | 17.7 | 12.7 | 31.8 | 25.2 | 12.0 | 11.0 |
Cumulative % | 35.6 | 56.4 | 72.4 | 81.6 | 26.8 | 45.5 | 63.1 | 75.8 | 31.8 | 57.1 | 69 | 79.9 |
(b) | ||||||||||||
Ari | Din Daeng | Bangna | ||||||||||
Species | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 |
OC | −0.01 | 0.86 | −0.22 | 0.01 | 0.89 | 0.37 | −0.06 | 0.02 | 0.47 | 0.73 | −0.03 | −0.06 |
EC | −0.28 | 0.87 | 0.16 | −0.11 | 0.9 | 0.30 | −0.21 | −0.04 | 0.57 | 0.75 | −0.17 | −0.22 |
Na+ | 0.43 | −0.07 | 0.78 | 0.02 | −0.06 | −0.07 | 0.93 | 0.09 | 0.12 | −0.62 | 0.25 | 0.86 |
NH4+ | −0.24 | 0.82 | 0.37 | −0.12 | 0.85 | 0.30 | 0.02 | −0.26 | 0.91 | 0.21 | −0.22 | 0.08 |
K+ | −0.14 | 0.39 | 0.87 | 0.04 | 0.85 | 0.15 | 0.17 | −0.35 | 0.86 | −0.32 | −0.17 | 0.08 |
Mg2+ | 0.55 | 0.01 | −0.29 | −0.14 | −0.06 | 0.01 | 0.66 | 0.42 | −0.64 | −0.24 | 0.38 | 0.50 |
Ca2+ | 0.55 | −0.31 | −0.33 | 0.14 | −0.49 | −0.34 | −0.12 | 0.70 | −0.52 | −0.03 | 0.29 | −0.23 |
NO3− | 0.84 | −0.09 | 0.13 | −0.05 | −0.02 | 0.31 | 0.89 | 0.08 | −0.31 | 0.05 | 0.35 | 0.84 |
SO42− | 0.62 | 0.30 | −0.06 | −0.58 | 0.40 | 0.11 | 0.65 | 0.17 | 0.47 | 0.22 | 0.23 | 0.78 |
Cl− | 0.40 | 0.65 | 0.26 | 0.33 | 0.56 | 0.61 | 0.45 | 0.02 | 0.44 | 0.37 | 0.13 | 0.79 |
Al | 0.38 | 0.24 | 0.45 | 0.65 | 0.41 | 0.88 | 0.01 | −0.01 | 0.69 | 0.04 | 0.15 | 0.08 |
Ti | 0.84 | 0.20 | 0.22 | 0.42 | 0.24 | 0.79 | 0.35 | 0.37 | 0.35 | 0.19 | 0.76 | 0.39 |
Cr | 0.06 | 0.15 | −0.04 | 0.67 | 0.34 | 0.91 | 0.06 | −0.08 | 0.08 | 0.83 | 0.07 | 0.39 |
Mn | 0.91 | −0.07 | 0.23 | 0.19 | −0.01 | 0.29 | 0.32 | 0.89 | −0.23 | −0.05 | 0.93 | 0.18 |
Fe | 0.01 | 0.91 | 0.11 | 0.22 | 0.86 | 0.40 | 0.12 | 0.03 | 0.66 | 0.64 | −0.01 | 0.27 |
Ni | 0.96 | −0.10 | −0.05 | 0.01 | −0.11 | 0.11 | 0.58 | 0.76 | −0.09 | −0.18 | 0.90 | 0.27 |
Cu | −0.11 | 0.74 | 0.11 | 0.36 | 0.51 | 0.77 | 0.03 | −0.19 | 0.02 | 0.79 | −0.25 | 0.09 |
Zn | −0.11 | 0.08 | 0.94 | 0.11 | 0.19 | 0.91 | 0.04 | 0.03 | −0.09 | 0.87 | 0.03 | −0.04 |
As | 0.92 | −0.25 | −0.04 | 0.06 | −0.13 | −0.11 | 0.16 | 0.95 | −0.28 | −0.12 | 0.93 | 0.04 |
% of Variance | 29.9 | 23.9 | 16.2 | 9.5 | 27.2 | 25.6 | 17.9 | 17.6 | 23.8 | 21.4 | 20.0 | 17.1 |
Cumulative % | 29.9 | 53.8 | 70 | 79.4 | 27.2 | 52.8 | 70.7 | 88.3 | 23.8 | 45.2 | 65.3 | 82.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Manjantrarat, T.; Rattanawongsa, W.; Muensri, P.; Saenmuangchin, R.; Klamchuen, A.; Aueviriyavit, S.; Sukrak, K.; Kangwansupamonkon, W.; Panyametheekul, S. Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 14281. https://doi.org/10.3390/ijerph192114281
Ahmad M, Manjantrarat T, Rattanawongsa W, Muensri P, Saenmuangchin R, Klamchuen A, Aueviriyavit S, Sukrak K, Kangwansupamonkon W, Panyametheekul S. Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand. International Journal of Environmental Research and Public Health. 2022; 19(21):14281. https://doi.org/10.3390/ijerph192114281
Chicago/Turabian StyleAhmad, Mushtaq, Thanaphum Manjantrarat, Wachiraya Rattanawongsa, Phitchaya Muensri, Rattaporn Saenmuangchin, Annop Klamchuen, Sasitorn Aueviriyavit, Kanokwan Sukrak, Wiyong Kangwansupamonkon, and Sirima Panyametheekul. 2022. "Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand" International Journal of Environmental Research and Public Health 19, no. 21: 14281. https://doi.org/10.3390/ijerph192114281
APA StyleAhmad, M., Manjantrarat, T., Rattanawongsa, W., Muensri, P., Saenmuangchin, R., Klamchuen, A., Aueviriyavit, S., Sukrak, K., Kangwansupamonkon, W., & Panyametheekul, S. (2022). Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand. International Journal of Environmental Research and Public Health, 19(21), 14281. https://doi.org/10.3390/ijerph192114281