Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Strava Data
2.3. Neighborhood Variables
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Generalized Linear Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Deelen, I.; Janssen, M.; Vos, S.; Kamphuis, C.B.M.; Ettema, D. Attractive running environments for all? A cross-sectional study on physical environmental characteristics and runners’ motives and attitudes, in relation to the experience of the running environment. BMC Public Health 2019, 19, 366. [Google Scholar] [CrossRef] [Green Version]
- Pascual, C.; Regidor, E.; Martínez, D.; Calle, M.E.; Domínguez, V. Socioeconomic environment, availability of sports facilities, and jogging, swimming and gym use. Health Place 2009, 15, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Ettema, D. Runnable Cities: How Does the Running Environment Influence Perceived Attractiveness, Restorativeness, and Running Frequency? Environ. Behav. 2016, 48, 1127–1147. [Google Scholar] [CrossRef]
- Hitchings, R.; Latham, A. Exercise and environment: New qualitative work to link popular practice and public health. Health Place 2017, 46, 300–306. [Google Scholar] [CrossRef]
- Shipway, R.; Holloway, I. Running free: Embracing a healthy lifestyle through distance running. Perspect Public Health 2010, 130, 270–276. [Google Scholar] [CrossRef]
- Latham, A. The history of a habit: Jogging as a palliative to sedentariness in 1960s America. Cult. Geogr. 2015, 22, 103–126. [Google Scholar] [CrossRef]
- Cook, S.; Shaw, J.; Simpson, P. Jography: Exploring Meanings, Experiences and Spatialities of Recreational Road-running. Mobilities 2016, 11, 744–769. [Google Scholar] [CrossRef]
- Pontin, F. Utilising smartphone data to explore spatial influences on physical activity. In Big Data Applications in Geography and Planning; Edward Elgar Publishing: Cheltenham, UK, 2021; pp. 79–92. [Google Scholar] [CrossRef]
- Shashank, A.; Schuurman, N.; Copley, R.; Lear, S. Creation of a rough runnability index using an affordance-based framework. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 321–334. [Google Scholar] [CrossRef]
- Wolf, I.D.; Wohlfart, T. Walking, hiking and running in parks: A multidisciplinary assessment of health and well-being benefits. Landsc. Urban Plan. 2014, 130, 89–103. [Google Scholar] [CrossRef]
- Kozlovskaia, M.; Vlahovich, N.; Rathbone, E.; Manzanero, S.; Keogh, J.; Hughes, D.C. A profile of health, lifestyle and training habits of 4720 Australian recreational runners—The case for promoting running for health benefits. Health Promot. J. Austral. 2019, 30, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Maclagan, L.C.; Tu, J.V. Using the concept of ideal cardiovascular health to measure population health: A review. Curr. Opin. Cardiol. 2015, 30, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Schnohr, P.; Marott, J.L.; Lange, P.; Jensen, G.B. Longevity in Male and Female Joggers: The Copenhagen City Heart Study. Am. J. Epidemiol. 2013, 177, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Tang, B.; Younis, A.; Kong, J.D.; Zhong, W.; Bragazzi, N.L. Regional and socioeconomic disparities in cardiovascular disease in Canada during 2005–2016: Evidence from repeated nationwide cross-sectional surveys. BMJ Glob. Health 2021, 6, e006809. [Google Scholar] [CrossRef] [PubMed]
- Miniño, A.M. Death in the United States. NCHS Data Brief 2011, 2009, 8. [Google Scholar]
- Fryar, C.D.; Te-Ching, C.; Xianfen, L. Prevalence of Uncontrolled Risk Factors for Cardiovascular Disease: United States, 1999–2010. NCHS Data Brief 2012, 1–8. Available online: https://pubmed.ncbi.nlm.nih.gov/23101933/ (accessed on 1 June 2022).
- Brown, A.F.; Liang, L.-J.; Vassar, S.D.; Escarce, J.J.; Merkin, S.S.; Cheng, E.; Richards, A.; Seeman, T.; Longstreth, W.T. Trends in Racial/Ethnic and Nativity Disparities in Cardiovascular Health Among Adults without Prevalent Cardiovascular Disease in the United States, 1988 to 2014. Ann. Intern. Med. 2018, 168, 541. [Google Scholar] [CrossRef]
- Hitchings, R.; Latham, A. How ‘social’ is recreational running? Findings from a qualitative study in London and implications for public health promotion. Health Place 2017, 46, 337–343. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sport. Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [Green Version]
- Barnfield, A. Public health, physical exercise and non-representational theory—A mixed method study of recreational running in Sofia, Bulgaria. Crit. Public Health 2016, 26, 281–293. [Google Scholar] [CrossRef]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef]
- Paul, A.; Nath, T.K.; Noon, S.J.; Islam, M.M.; Lechner, A.M. Public Open space, Green exercise and well-being in Chittagong, Bangladesh. Urban For. Urban Green. 2020, 55, 126825. [Google Scholar] [CrossRef]
- Akpınar, A. Green Exercise: How Are Characteristics of Urban Green Spaces Associated with Adolescents’ Physical Activity and Health? Int. J. Environ. Res. Public Health 2019, 16, 4281. [Google Scholar] [CrossRef] [Green Version]
- Bodin, M.; Hartig, T. Does the outdoor environment matter for psychological restoration gained through running? Psychol. Sport Exerc. 2003, 4, 141–153. [Google Scholar] [CrossRef]
- Foley, R.; Kistemann, T. Blue space geographies: Enabling health in place. Health Place 2015, 35, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.L.; Phoenix, C.; Lovell, R.; Wheeler, B.W. Seeking everyday wellbeing: The coast as a therapeutic landscape. Soc. Sci. Med. 2015, 142, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Couper, P.R. The embodied spatialities of being in nature: Encountering the nature/culture binary in green/blue space. Cult. Geogr. 2018, 25, 285–299. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Time for ‘Green’ during COVID-19? Inequities in Green and Blue Space Access, Visitation and Felt Benefits. Int. J. Environ. Res. Public Health 2021, 18, 2757. [Google Scholar] [CrossRef]
- Huang, D. Analyzing the effects of nature exposure on perceived satisfaction with running routes: An activity path-based measure approach. Urban For. Urban Green. 2022, 68, 127480. [Google Scholar] [CrossRef]
- Schuurman, N.; Rosenkrantz, L.; Lear, S.A. Environmental Preferences and Concerns of Recreational Road Runners. Int. J. Environ. Res. Public Health 2021, 18, 6268. [Google Scholar] [CrossRef]
- van Renswouw, L.; Bogers, S.; Vos, S. Urban Planning for Active And Healthy Public Spaces with User-Generated Big Data. In Proceedings of the Data for Policy 2016—Frontiers of Data Science for Government: Ideas, Practices and Projections (Data for Policy), Cambridge, UK, 15–16 September 2017. [Google Scholar] [CrossRef]
- Boone-Heinonen, J.; Roux, A.V.D.; Kiefe, C.I.; Lewis, C.E.; Guilkey, D.K.; Gordon-Larsen, P. Neighborhood socioeconomic status predictors of physical activity through young to middle adulthood: The CARDIA study. Soc. Sci. Med. 2011, 72, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Estabrooks, P.A.; Lee, R.E.; Gyurcsik, N.C. Resources for physical activity participation: Does availability and accessibility differ by neighborhood socioeconomic status? Ann. Behav. Med. 2003, 25, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Cubbin, C. Striding Toward Social Justice: The Ecologic Milieuof Physical Activity. Exerc. Sport Sci. Rev. 2009, 37, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Meakins, G.; Hamidi, S.; Nelson, A.C. Relationship between urban sprawl and physical activity, obesity, and morbidity—Update and refinement. Health Place 2014, 26, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, J. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Wang, F. Built environment and obesity by urbanicity in the U.S. Health Place 2015, 34, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y. Exploring potential of crowdsourced geographic information in studies of active travel and health: Strava data and cycling behaviour. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W 2017, 7, 1357–1361. [Google Scholar] [CrossRef] [Green Version]
- Al-Ramini, A.; Takallou, M.A.; Piatkowski, D.P.; Alsaleem, F. Quantifying changes in bicycle volumes using crowdsourced data. Environ. Plan. B: Urban Anal. City Sci. 2022, 49, 1612–1630. [Google Scholar] [CrossRef]
- Jestico, B.; Nelson, T.; Winters, M. Mapping ridership using crowdsourced cycling data. J. Transp. Geogr. 2016, 52, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Nelson, T.; Ferster, C.; Laberee, K.; Fuller, D.; Winters, M. Crowdsourced data for bicycling research and practice. Transp. Rev. 2021, 41, 97–114. [Google Scholar] [CrossRef]
- Nelson, T.; Roy, A.; Ferster, C.; Fischer, J.; Brum-Bastos, V.; Laberee, K.; Yu, H.; Winters, M. Generalized model for mapping bicycle ridership with crowdsourced data. Transp. Res. Part C Emerg. Technol. 2021, 125, 102981. [Google Scholar] [CrossRef]
- Roy, A.; Nelson, T.A.; Fotheringham, A.S.; Winters, M. Correcting Bias in Crowdsourced Data to Map Bicycle Ridership of All Bicyclists. Urban Sci. 2019, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Nelson, T.; Winters, M. Comparing Spatial Associations of Commuting versus Recreational Ridership Captured by the Strava Fitness App. Findings 2020, 16710. [Google Scholar] [CrossRef]
- Lee, K.; Sener, I.N. Strava Metro data for bicycle monitoring: A literature review. Transp. Rev. 2021, 41, 27–47. [Google Scholar] [CrossRef]
- Orellana, D.; Guerrero, M.L. Exploring the influence of road network structure on the spatial behaviour of cyclists using crowdsourced data. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1314–1330. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Bardin, E.; Ahmouda, A. Estimating bicycle trip volume for Miami-Dade county from Strava tracking data. J. Transp. Geogr. 2019, 75, 58–69. [Google Scholar] [CrossRef]
- Statistics Canada, Vancouver [Census Metropolitan Area], British Columbia and British Columbia [Province] (Table). Census Profile. 2016 Census, Statistics Canada, Ottawa. 2017. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (accessed on 5 August 2022).
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Browning, M.; Lee, K. Within What Distance Does “Greenness” Best Predict Physical Health? A Systematic Review of Articles with GIS Buffer Analyses across the Lifespan. Int. J. Environ. Res. Public Health 2017, 14, 675. [Google Scholar] [CrossRef] [Green Version]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Gehring, U.; Strak, M.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Janssen, N.A.H. Green space definition affects associations of green space with overweight and physical activity. Environ. Res. 2018, 160, 531–540. [Google Scholar] [CrossRef]
- Bell, N.; Hayes, M.V. The Vancouver Area Neighbourhood Deprivation Index (VANDIX): A census-based tool for assessing small-area variations in health status. Can. J. Public Health 2012, 103, S28–S32. [Google Scholar] [CrossRef]
- Knighton, A.J.; Savitz, L.; Belnap, T.; Stephenson, B.; VanDerslice, J. Introduction of an Area Deprivation Index Measuring Patient Socio-economic Status in an Integrated Health System: Implications for Population Health. EGEMs 2016, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Krieger, N.; Kim, R.; Feldman, J.; Waterman, P.D. Using the Index of Concentration at the Extremes at multiple geographical levels to monitor health inequities in an era of growing spatial social polarization: Massachusetts, USA (2010–14). Int. J. Epidemiol. 2018, 47, 788–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuurman, N.; Bell, N.; Dunn, J.R.; Oliver, L. Deprivation Indices, Population Health and Geography: An Evaluation of the Spatial Effectiveness of Indices at Multiple Scales. J. Urban Health. 2007, 84, 591–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, N.; Schuurman, N.; Oliver, L.; Hayes, M.V. Towards the construction of place-specific measures of deprivation: A case study from the Vancouver metropolitan area: A case study from the Vancouver metropolitan area. Can. Geogr. Le Géographe Can. 2007, 51, 444–461. [Google Scholar] [CrossRef]
- Auluck, A.; Walker, B.B.; Hislop, G.; Lear, S.A.; Schuurman, N.; Rosin, M. Socio-economic deprivation: A significant determinant affecting stage of oral cancer diagnosis and survival. BMC Cancer 2016, 16, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, N.J.; Schuurman, N.; Hameed, S.M. A small-area population analysis of socioeconomic status and incidence of severe burn/fire-related injury in British Columbia, Canada. Burns 2009, 35, 1133–1141. [Google Scholar] [CrossRef]
- MacKinnon, A.L.; Tomfohr-Madsen, L.; Tough, S. Neighborhood Socio-Economic Factors and Associations with Infant Sleep Health. Behav. Sleep Med. 2021, 19, 458–470. [Google Scholar] [CrossRef]
- Swanlund, D. Vandix_Calculator. 2021. Available online: https://github.com/TheTinHat/vandix_calculator (accessed on 12 May 2022).
- S.C. Government of Canada. 2016 Census Boundary Files. 2016. Available online: https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2016-eng.cfm (accessed on 22 September 2022).
- Hermosillo-Gallardo, M.E.; Jago, R.; Sebire, S.J. Association between urbanicity and physical activity in Mexican adolescents: The use of a composite urbanicity measure. PLoS ONE 2018, 13, e0204739. [Google Scholar] [CrossRef] [Green Version]
- Attard, S.M.; Howard, A.-G.; Herring, A.H.; Zhang, B.; Du, S.; Aiello, A.E.; Popkin, B.M.; Gordon-Larsen, P. Differential associations of urbanicity and income with physical activity in adults in urbanizing China: Findings from the population-based China Health and Nutrition Survey 1991–2009. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 6 February 2022).
- Sugg, M.M.; Spaulding, T.J.; Lane, S.J.; Runkle, J.D.; Harden, S.R.; Hege, A.; Iyer, L.S. Mapping community-level determinants of COVID-19 transmission in nursing homes: A multi-scale approach. Sci. Total Environ. 2021, 752, 141946. [Google Scholar] [CrossRef]
- Zwilling, M.L. Negative Binomial Regression. Math. J. 2013, 18, 3–17. [Google Scholar] [CrossRef]
- Metro Vancouver, Population by Age Group, Urban Centre and FTDA Data Profiles. (n.d.). Available online: http://www.metrovancouver.org/UrbanCentreProfiles/pages/ (accessed on 29 April 2022).
- Strava Press, Strava Releases 2020 Year in Sport Data Report. 2020. Available online: https://blog.strava.com/press/yis2020/ (accessed on 4 March 2022).
- Fong, K.C.; Hart, J.E.; James, P. A Review of Epidemiologic Studies on Greenness and Health: Updated Literature Through 2017. Curr. Envir. Health Rpt. 2018, 5, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, E.A.; Pearce, J.; Mitchell, R.; Kingham, S. Role of physical activity in the relationship between urban green space and health. Public Health 2013, 127, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladwell, V.F.; Brown, D.K.; Wood, C.; Sandercock, G.R.; Barton, J.L. The great outdoors: How a green exercise environment can benefit all. Extrem. Physiol. Med. 2013, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kistemann, T. Gesundheitliche Bedeutung Blauer Stadtstrukturen; ARL-Akademie für Raumentwicklung in der Leibniz-Gemeinschaft: Hannover, Germany, 2018. [Google Scholar]
- Jansen, M.; Kamphuis, C.B.M.; Pierik, F.H.; Ettema, D.F.; Dijst, M.J. Neighborhood-based PA and its environmental correlates: A GIS- and GPS based cross-sectional study in the Netherlands. BMC Public Health 2018, 18, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Spoon, C.; Cavill, N.; Engelberg, J.K.; Gebel, K.; Parker, M.; Thornton, C.M.; Lou, D.; Wilson, A.L.; Cutter, C.L.; et al. Co-benefits of designing communities for active living: An exploration of literature. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Powell, L.M.; Slater, S.; Chaloupka, F.J. The relationship between community physical activity settings and race, ethnicity and socioeconomic status. Evid.-Based Prev. Med. 2004, 1, 135–144. [Google Scholar]
- Griffin, G.P.; Jiao, J. Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. J. Transp. Health 2015, 2, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Crouse, D.L.; Pinault, L.; Balram, A.; Hystad, P.; Peters, P.A.; Chen, H.; van Donkelaar, A.; Martin, R.V.; Ménard, R.; Robichaud, A.; et al. Urban greenness and mortality in Canada’s largest cities: A national cohort study. Lancet Planet. Health 2017, 1, e289–e297. [Google Scholar] [CrossRef]
- Rahoui, H. Greenest City 2020, Vancouver. In Urban Planning for Transitions, 1st ed.; Douay, N., Minja, M., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 47–67. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Sheppard, S.R.J.; Girling, C. The dimensions of urban green equity: A framework for analysis. Urban For. Urban Green. 2018, 34, 240–248. [Google Scholar] [CrossRef]
- McMorris, O.; Villeneuve, P.J.; Su, J.; Jerrett, M. Urban greenness and physical activity in a national survey of Canadians. Environ. Res. 2015, 137, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Nelson, T.; Winters, M. Changes in the Representativeness of Strava Bicycling Data during COVID-19. Findings 2022, 1–6. [Google Scholar] [CrossRef]
Variable | Description | Source | Measure |
---|---|---|---|
Green and/or Blue Space | Recreation areas, open spaces, protected areas, waterbodies | Metro Vancouver 2016 Land Use | Contiguity (0/1) |
SES | VANDIX values for DAs | 2016 Census | Quintiles |
Urbanicity | Population density for DAs | 2016 Census | Quintiles |
Variable | IRR | CI |
---|---|---|
Green/Blue Space | 3.81 * | 3.73–3.90 |
Relative Urbanicity | ||
Low | 0.79 * | 0.77–0.82 |
Moderately Low | 1.16 * | 1.13–1.20 |
Moderate | Referent | |
Moderately High | 1.2 * | 1.17–1.24 |
High | 2.06 * | 1.99–2.12 |
VANDIX (SES) | ||
Low | 0.51 * | 0.49–0.52 |
Moderately Low | 0.84 * | 0.81–0.86 |
Moderate | Referent | |
Moderately High | 1.37 * | 1.33–1.41 |
High | 2.26 * | 2.19–2.33 |
Men | Women | |||
---|---|---|---|---|
Variable | IRR | CI | IRR | CI |
Green/Blue Space | 3.2 * | 3.13–3.27 | 3.44 * | 3.36–3.53 |
Relative Urbanicity | ||||
Low | 1.01 | 0.98–1.04 | 0.92 * | 0.89–0.96 |
Moderately Low | 1.2 * | 1.17–1.24 | 1.21 * | 1.17–1.26 |
Moderate | Referent | Referent | ||
Moderately High | 1.24 * | 1.20–1.27 | 1.29 * | 1.25–1.33 |
High | 2.36 * | 2.29–2.43 | 2.5 * | 2.41–2.59 |
VANDIX (SES) | ||||
Low | 0.56 * | 0.54–0.57 | 0.52 * | 0.50–0.54 |
Moderately Low | 0.81 * | 0.79–0.83 | 0.81 * | 0.79–0.84 |
Moderate | Referent | Referent | ||
Moderately High | 1.4 * | 1.36–1.44 | 1.47 * | 1.42–1.52 |
High | 2.58 * | 2.51–2.66 | 2.69 * | 2.60–2.79 |
13 to 19 | 20 to 34 | 35 to 54 | 55 to 64 | 65 and Older | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | IRR | CI | IRR | CI | IRR | CI | IRR | CI | IRR | CI |
Green/ Blue Space | 4.66 * | 3.13–3.27 | 3.34 * | 3.25–3.43 | 3.3 * | 3.23–3.38 | 3.28 * | 3.18–3.39 | 4.77 * | 4.49–5.06 |
Urbanicity | ||||||||||
Low | 0.84 * | 0.98–1.04 | 1.13 * | 1.09–1.18 | 0.89 * | 0.87–0.92 | 0.98 | 0.93–1.02 | 0.76 * | 0.70–0.83 |
Mod Low | 0.7 * | 1.17–1.24 | 1.32 * | 1.28–1.37 | 1.15 * | 1.12–1.19 | 1.2 * | 1.15–1.26 | 1.1 | 1.01–1.19 |
Mod | Ref | Ref | Ref | Ref | Ref | |||||
Mod High | 0.73 * | 1.20–1.27 | 1.35 * | 1.31–1.40 | 1.21 * | 1.18–1.25 | 1.28 * | 1.23–1.34 | 0.86 * | 0.79–0.93 |
High | 0.98 | 2.29–2.43 | 2.95 * | 2.84–3.06 | 2.25 * | 2.18–2.32 | 1.99 * | 1.90–2.08 | 1.51 * | 1.39–1.64 |
SES | ||||||||||
Low | 0.63 * | 0.54–0.57 | 0.54 * | 0.52–0.56 | 0.55 * | 0.54–0.57 | 0.47 * | 0.45–0.49 | 0.38 * | 0.35–0.41 |
Mod Low | 1.02 | 0.79–0.83 | 0.79 * | 0.76–0.82 | 0.83 * | 0.80–0.85 | 0.8 * | 0.76–0.83 | 0.64 * | 0.59–0.69 |
Mod | Ref | Ref | Ref | Ref | Ref | |||||
Mod High | 1.27 * | 1.36–1.44 | 1.56 * | 1.50–1.62 | 1.38 * | 1.34–1.43 | 1.26 * | 1.20–1.31 | 1.35 * | 1.25–1.47 |
High | 1.84 * | 2.51–2.66 | 2.75 * | 2.65–2.85 | 2.63 * | 2.55–2.72 | 2.28 * | 2.18–2.38 | 2.55 * | 2.34–2.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harden, S.R.; Schuurman, N.; Keller, P.; Lear, S.A. Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14328. https://doi.org/10.3390/ijerph192114328
Harden SR, Schuurman N, Keller P, Lear SA. Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis. International Journal of Environmental Research and Public Health. 2022; 19(21):14328. https://doi.org/10.3390/ijerph192114328
Chicago/Turabian StyleHarden, Stella R., Nadine Schuurman, Peter Keller, and Scott A. Lear. 2022. "Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis" International Journal of Environmental Research and Public Health 19, no. 21: 14328. https://doi.org/10.3390/ijerph192114328
APA StyleHarden, S. R., Schuurman, N., Keller, P., & Lear, S. A. (2022). Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis. International Journal of Environmental Research and Public Health, 19(21), 14328. https://doi.org/10.3390/ijerph192114328