How Do Different Urban Footpath Environments Affect the Jogging Preferences of Residents of Different Genders? Empirical Research Based on Trajectory Data
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Research Area and Research Data
2.2. Indication System of Influencing Factors
2.3. Analysis Method
3. Results
3.1. Descriptive Statistics
3.2. Identification of Environmental Factors of Footpath Construction Affecting Residents’ JA
3.3. Results of Footpath Differentiation Stage
3.4. Footpath Differentiation and Gender Difference Stage Results
4. Discussion
4.1. Overall Stage
4.2. Footpath Differentiation Stage
4.3. Footpath Differentiation and Gender Difference Stage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization, 2013; Available online: https://www.academia.edu/14763068/GLOBAL_HEALTH_RISKS_Mortality_and_burden_of_disease_attributable_to_selected_major_risks (accessed on 3 June 2022).
- Durand, C.P.; Andalib, M.; Dunton, G.F.; Wolch, J.; Pentz, M.A. A systematic review of built environment factors related to PA and obesity risk: Implications for smart growth urban planning. Obes. Rev. 2011, 12, e173–e182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, J.; Frank, L. Urban Form Relationships with Youth physical activity Implications for Research and Practice. J. Plan. Lit. 2011, 26, 280–308. [Google Scholar] [CrossRef]
- Renalds, A.; Smith, T.H.; Hale, P.J. A Systematic Review of Built Environment and Health. Fam. Community Health 2010, 33, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Adhikari, B.; White, K.R.; Dummer, T.; Sandhu, J.; Demlow, E.; Hu, Y.M.; Hong, A.; Van den Bosch, M. Chronic disease and where you live: Built and natural environment relationships with physical activity, obesity, and diabetes. Environ. Int. 2022, 158, 106958. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, S.J.; Miao, S.Y.; Yu, Y.F. Exploring the Mediating Effect of Physical Activities on Built Environment and Obesity for Elderly People: Evidence From Shanghai, China. Front. Public Health 2022, 10, 853292. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, S.; Chen, Z. Towards Smarter Cities:Human-oriented Urban Planning and Management Based on Space-Time Behavior Research. Urban Plan. Int. 2014, 29, 31–37+50. [Google Scholar]
- Chen, Z.F.; Chai, Y.W.; Zhou, S.H. A Comparative Studies Of Suburban Residents’ Travel Behavior On Weekdays under Different Suburbanization Modes: A Case Analysis Of Beijing and Guangzhou. Hum. Geogr. 2015, 30, 23–30. [Google Scholar]
- Chakravarty, E.F.; Hubert, H.B.; Lingala, V.B.; Fries, J.F. Reduced disability and mortality among aging runners—A 21-year longitudinal study. Arch. Intern. Med. 2008, 168, 1638–1646. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.L.; Xiang, Y.B.; Li, H.L.; Yang, G.; Gao, J.; Zheng, W.; Shu, X.O. Associations of Tai Chi, Walking, and Jogging with Mortality in Chinese Men. Am. J. Epidemiol. 2013, 178, 791–796. [Google Scholar] [CrossRef]
- Schnohr, P.; O’Keefe, J.H.; Marott, J.L.; Lange, P.; Jensen, G.B. Dose of Jogging and Long-Term Mortality the Copenhagen City Heart Study. J. Am. Coll. Cardiol. 2015, 65, 411–419. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, L. Spatio-temporal pattern of residents’ daily activities based on T-GIS: A case study in Guangzhou, China. Acta Geogr. Sin. 2010, 65, 1454–1463. [Google Scholar]
- Zhang, J.; Zhou, S. The diversity of different groups’ job-housing patterns and their impact factors under the background of institutional transformation: A case study of Guangzhou, China. Geogr. Res. 2018, 37, 564–576. [Google Scholar]
- Lu, Y.; Yang, Y.Y.; Sun, G.B.; Gou, Z.H. Associations between overhead-view and eye-level urban greenness and cycling behaviors. Cities 2019, 88, 10–18. [Google Scholar] [CrossRef]
- Yang, Y.Y.; He, D.S.; Gou, Z.H.; Wang, R.Y.; Liu, Y.; Lu, Y. Association between street greenery and walking behavior in older adults in Hong Kong. Sustain. Cities Soc. 2019, 51, 101747. [Google Scholar] [CrossRef]
- Netto, V.M.; Pinheiro, M.S.; Paschoalino, R. Segregated Networks in the City. Int. J. Urban Reg. Res. 2016, 39, 1084–1102. [Google Scholar] [CrossRef]
- Ferreira, I.; van der Horst, K.; Wendel-Vos, W.; Kremers, S.; van Lenthe, F.J.; Brug, J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007, 8, 129–154. [Google Scholar] [CrossRef]
- Strath, S.J.; Greenwald, M.J.; Isaacs, R.; Hart, T.L.; Lenz, E.K.; Dondzila, C.J.; Swartz, A.M. Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults. Int. J. Behav. Nutr. PA 2012, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Bucksch, J.; Kopcakova, J.; Inchley, J.; Troped, P.J.; Sudeck, G.; Sigmundova, D.; Nalecz, H.; Borraccino, A.; Salonna, F.; Veselska, Z.D. Associations between perceived social and physical environmental variables and physical activity and screen time among adolescents in four European countries. Int. J. Public Health 2019, 64, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Cleland, V.; Sodergren, M.; Otahal, P.; Timperio, A.; Ball, K.; Crawford, D.; Salmon, J.; McNaughton, S.A. Associations between the perceived environment and physical activity among adults aged 55–65 years: Does urban-rural area of residence matter? J. Aging Phys. Act. 2015, 23, 55–63. [Google Scholar] [CrossRef]
- Calogiuri, G.; Patil, G.G.; Aamodt, G. Is green exercise for all? A descriptive study of greenexercise habits and promoting factors in adult Norwegians. Int. J. Environ. Res. Public Health 2016, 13, 1165. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Cortes, F.; Garcia-Ramon, M.D. Women, daily life and public spaces in barcelona’s metropolitan area: A case-study of the Ca N’anglada District of Terrassa. Finisterra-Rev. Port. Geogr. 2010, 90, 49–69. [Google Scholar]
- Mackness, K. Building Inclusive Cities: Women’s Safety and the Right to the City. Urban Policy Res. 2013, 31, 496–498. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y. Segregation through space: A scope of the flow-based spatial interaction model. J. Transp. Geogr. 2019, 76, 10–23. [Google Scholar] [CrossRef]
- Ball, K.; Bauman, A.; Leslie, E.; Owen, N. Perceived environmental aesthetics and convenience and company are associated with walking for exercise among Australian adults. Prev. Med. 2001, 55, 50–55. [Google Scholar] [CrossRef]
- Karusisi, N.; Bean, K.; Oppert, J.M.; Pannier, B.; Chaix, B. Multiple dimensions of residential environments, neighborhood experiences, and jogging behavior in the RECORD Study. Prev. Med. 2012, 55, 50–55. [Google Scholar] [CrossRef]
- Chen, D.R.; Lin, Y.C. Social identity, perceived urban neighborhood quality, and physical inactivity: A comparison study of China, Taiwan, and South Korea. Health Place 2016, 41, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Yang, W.; Luo, C. Effects of urban park environment on recreational jogging activity based on trajectory data: A case of Chongqing, China. Urban For. Urban Green. 2022, 67, 127443. [Google Scholar] [CrossRef]
- Han, K.T. The effect of environmental factors and physical activity on emotions and attention while walking and jogging. J. Leis. Res. 2020, 52, 619–641. [Google Scholar] [CrossRef]
- Jansen, F.M.; Ettema, D.F.; Kamphuis, C.B.M.; Pierik, F.H.; Dijst, M.J. How do type and size of natural environments relate to physical activity behavior? Health Place 2017, 46, 73–81. [Google Scholar] [CrossRef]
- Lee, J.; Healy, S.; Haegele, J.A. Environmental and social determinants of leisure-time physical activity in children with autism spectrum disorder. Disabil. Health J. 2022, 15, 101340. [Google Scholar] [CrossRef]
- Fain, R.S.; Hayat, S.A.; Luben, R.; Pari, A.A.A.; Yip, J.L.Y. Effects of social participation and physical activity on all-cause mortality among older adults in Norfolk, England: An investigation of the EPIC-Norfolk study. Public Health 2022, 202, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Bjork, J.; Albin, M.; Grahn, P.; Jacobsson, H.; Ardo, J.; Wadbro, J.; Ostergren, P.O.; Skarback, E. Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing. J. Epidemiol. Community Health 2008, 62, e2. [Google Scholar] [CrossRef] [Green Version]
- O’Loughlin, E.K.; Sabiston, C.M.; DeJonge, M.L.; Lucibello, K.M.; O’Loughlin, J.L. Associations among physical activity tracking, physical activity motivation and level of physical activity in young adults. J. Health Psychol. 2022, 27, 1833–1845. [Google Scholar] [CrossRef]
- Viktoryia, K.; Kopcakova, J.; Geckova, A.M.; Klein, D.; de Winter, A.F.; Reijneveld, S.A. Body image, body composition and environment: Do they affect adolescents’ physical activity? Eur. J. Public Health 2022, 32, 341–346. [Google Scholar]
- Petrunoff, N.A.; Edney, S.; Yi, N.X.; Dickens, B.L.; Joel, K.R.; Xin, W.N.; Sia, A.; Leong, D.; van Dam, R.M.; Cook, A.R. Associations of park features with park use and park-based physical activity in an urban environment in Asia: A cross-sectional study. Health Place 2022, 75, 102790. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Weng, G.; Liu, Z. Feminist Geographical Research on the Behavior Spaces of Female Residents In Chinese Cities. Hum. Geogr. 2003, 4, 1–4. [Google Scholar]
- Basu, N.; Haque, M.M.; King, M.; Kamruzzaman, M.; Oviedo-Trespalacios, O. The unequal gender effects of the suburban built environment on perceptions of security. J. Transp. Health 2021, 23, 101243. [Google Scholar] [CrossRef]
- Li, J.W.; Tian, L.; Ouyang, W. Exploring the Relationship Between Neighborhood-Built Environment and Elderly Health: A Research Based on Heterogeneity of Age and Gender Groups in Beijing. Front. Public Health 2022, 10, 882361. [Google Scholar] [CrossRef]
- Slapsinskaite, A.; Lukoeviiut, J.; Migelskas, K. Interplay between adolescent physical activity and life satisfaction: Gender as potential effect modifier. Int. J. Public Health 2020, 65, 1355–1363. [Google Scholar] [CrossRef]
- Pardhan, S.; Smith, L.; Davis, A.; Bourne, R.; Barnett, Y.; Jacob, L.; Koyanagi, A.; Radziminski, L.; Skalska, M.; Jastrzebska, J.; et al. Gender differences in the association between physical activity and obesity in adults with vision and hearing losses. Eur. J. Public Health 2021, 31, 835–840. [Google Scholar] [CrossRef]
- Adlakha, D.; Parra, D.C. Mind the gap: Gender differences in walkability, transportation and physical activity in urban India. J. Transp. Health 2020, 18, 100875. [Google Scholar] [CrossRef]
- Park, Y.; Neckerman, K.M.; Quinn, J.; Weiss, C.; Rundle, A. Place of birth, duration of residence, neighborhood immigrant composition and body mass index in New York City. Int. J. Behav. Nutr. Phys. 2008, 5, 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Deng, L.; Kwan, M.-P.; Yan, R. Social and spatial differentiation of high and low income groups’ out-of-home activities in Guangzhou, China. Cities 2015, 45, 81–90. [Google Scholar] [CrossRef]
- Bourdeau-Lepage, L.; Tovar, E. Functional Hyper-Centrality and Segregation in the Paris Region [La puissance du cur de la métropole parisienne]. 2016; Post-Print. [Google Scholar]
- Park, Y.M.; Kwan, M.P. Beyond residential segregation: A spatiotemporal approach to examining multi-contextual segregation. Comput. Environ. Urban Syst. 2018, 71, 98–108. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhou, S.H.; Li, Q.P.; Zhan, W. Research on social differentiation of urban road network in Guangzhou: Gender differences of travel distribution based on trajectory data. Geogr. Res. 2021, 40, 1652–1666. [Google Scholar]
- Sun, C.; Chen, X.H.; Zhang, H.M.; Huang, Z. An Evaluation Method of Urban Public Transport Facilities Resource Supply Based on Accessibility. J. Adv. Transp. 2018, 3754205. [Google Scholar] [CrossRef]
- Duleba, S. Investigation of the Relationship between the Perceived Public Transport Service Quality and Satisfaction: A PLS-SEM Technique. Sustainability 2021, 13, 13018. [Google Scholar]
- Liu, K.; Michael, K.W.; Gong, X.Y.; Gao, Y.; Lu, D. Where do networks really work? The effects of the ShenZhen greenway network on supporting physical activities. Landsc. Urban Plan. 2016, 152, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Lyu, F.N.; Zhang, L. Using multi-source big data to understand the factors affecting urban park use in Wuhan. Urban For. Urban Green. 2019, 43, 126367. [Google Scholar] [CrossRef]
- Gazendam, M.G.; Hof, A.L. Averaged EMG profiles in jogging and jogging at different speeds. Gait Posture 2007, 25, 604–614. [Google Scholar] [CrossRef]
- Xu, S.D.; Liang, Z.Q.; Liu, Y.W.; Fekete, G. Biomechanical Performance of Habitually Barefoot and Shod Runners during Barefoot Jogging and Running. J. Biomim. Biomater. Biomed. Eng. 2018, 38, 1–10. [Google Scholar] [CrossRef]
- Greiwe, J.S.; Kohrt, W.M. Energy expenditure during walking and jogging. J. Sport. Med. Phys. Fit. 2000, 40, 297–302. [Google Scholar]
- Rothman, L.; Buliung, R.; To, T.; Macarthur, C.; Macpherson, A.; Howard, A. Associations between parents perception of traffic danger, the built environment and walking to school. J. Transp. Health 2015, 2, 327–335. [Google Scholar] [CrossRef]
- Smith, M.; Hosking, J.; Woodward, A.; Witten, K.; MacMillan, A.; Field, A.; Baas, P.; Mackie, H. Systematic literature review of built environment effects on physical activity and active transport—An update and new findings on health equity. Int. J. Behav. Nutr. PA 2017, 14, 158. [Google Scholar] [CrossRef]
- Sun, B.; Yin, C. Relationship between multi-scale urban built environments and body mass index: A study of China. Appl. Geogr. 2018, 94, 230–240. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef]
- Li, B.; Liu, Q.H.; Wang, T.; He, H.; Peng, Y.; Feng, T. Analysis of Urban Built Environment Impacts on Outdoor Physical Activities-A Case Study in China. Front. Public Health 2022, 10, 861456. [Google Scholar] [CrossRef]
- Edwards, N.M.; Myer, G.D.; Kalkwarf, H.J.; Woo, J.G.; Khoury, P.R.; Hewett, T.E.; Daniels, S.R. Outdoor Temperature, Precipitation, and Wind Speed Affect Physical Activity Levels in Children: A Longitudinal Cohort Study. J. Phys. Act. Health 2015, 12, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Inoue, S.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Tudor-Locke, C.; Hikihara, Y.; Tanaka, S. Lower youth steps/day values observed at both high and low population density areas: A cross-sectional study in metropolitan Tokyo. BMC Public Health 2018, 18, 1132. [Google Scholar] [CrossRef]
- Kabisch, N.; Kraemer, R. Physical activity patterns in two differently characterised urban parks under conditions of summer heat. Environ. Sci. Policy 2020, 107, 56–65. [Google Scholar] [CrossRef]
- Song, Y.L.; Fu, Z.F. Uncertain multivariable regression model. Soft Comput. 2018, 22, 5861–5866. [Google Scholar] [CrossRef]
- Grant, S.W.; Hickey, G.L.; Head, S.J. Statistical primer: Multivariable regression considerations and pitfalls. Eur. J. Cardio-Thorac. Surg. 2019, 55, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.Y.; Grekousis, G.; Liu, Y.Q.; Yuan, Y.; Li, Z.G. Neighbourhood greenness and mental wellbeing in Guangzhou, China: What are the pathways? Landsc. Urban Plan. 2019, 190, 103602. [Google Scholar] [CrossRef]
- Orstad, S.L.; McDonough, M.H.; James, P.; Klenosky, D.B.; Laden, F.; Mattson, M.; Troped, P.J. Neighborhood walkability and physical activity among older women Tests of mediation by perceptions and moderation by depressive symptoms. Prev. Med. 2018, 116, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Levinger, P.; Sales, M.; Polman, R.; Haines, T.; Dow, B.; Biddle, S.J.H.; Duque, G.; Hill, K.D. Outdoor physical activity for older people-the senior exercise park: Current research, challenges and future directions. Health Promot. J. Aust. 2018, 29, 353–359. [Google Scholar] [CrossRef]
- Asiamah, N.; Kouveliotis, K.; Petersen, C.; Eduafo, R. The Association Between Social Capital Factors and Sedentary Behaviour Among Older Adults: Does the Built Environment Matter? Adv. Gerontol. = Uspekhi Gerontol. 2019, 32, 234–242. [Google Scholar]
- Estabrooks, P.A.; Carron, A.V. The Physical Activity Group Environment Questionnaire: An instrument for the assessment of cohesion in exercise classes. Group Dyn. Theory Res. Pract. 2000, 4, 230–243. [Google Scholar] [CrossRef]
- Hino, A.A.F.; Reis, R.S.; Sarmiento, O.L.; Parra, D.C.; Brownson, R.C. Built Environment and Physical Activity for Transportation in Adults from Curitiba, Brazil. J. Urban Health 2014, 91, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Salvo, D.; Reis, R.S.; Hino, A.A.F.; Hallal, P.C.; Pratt, M. Intensity-specific leisure-time Physical Activity and The Built Environment Among Brazilian Adults: A Best-Fit Model. J. PA Health 2015, 12, 307–318. [Google Scholar] [CrossRef]
- Schipperijn, J.; Cerin, E.; Adams, M.A.; Reis, R.; Smith, G.; Cain, K.; Christiansen, L.B.; van Dyck, D.; Gidlow, C.; Frank, L.D.; et al. Access to parks and physical activity: An eight country comparison. Urban For. Urban Green. 2017, 27, 253–263. [Google Scholar] [CrossRef]
- Sun, B.; Yan, H.; Zhang, T. Built environmental impacts on individual mode choice and BMI: Evidence from China. J. Transp. Geogr. 2017, 63, 11–21. [Google Scholar] [CrossRef]
- Kenworthy, J.; Hu, G. Transport and Urban Form in Chinese Cities: An International Comparative and Policy Perspective with Implications for Sustainable Urban Transport in China. Disp. Plan. Rev. 2002, 38, 4–14. [Google Scholar] [CrossRef]
- Rundle, A.; Roux, A.V.D.; Freeman, L.M.; Miller, D.; Neckerman, K.M.; Weiss, C.C. The Urban Built Environment and Obesity in New York City: A Multilevel Analysis. Am. J. Health Promot. 2007, 21, 326–334. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.M.; Stokes, R.J.; Cohen, D.A.; Kofner, A.; Ridgeway, G.K. The effect of light rail transit on body mass index and PA. Am. J. Prev. Med. 2010, 39, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morland, K.B.; Evenson, K.R. Obesity prevalence and the local food environment. Health Place 2009, 15, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Garcia, B.E.; Spence, J.C.; McGannon, K.R. Gender differences in perceived environmental correlates of PA. Int. J. Behav. Nutr. Phys. Act. 2005, 2, 12. [Google Scholar]
- Deliens, T.; Clarys, P.; De Bourdeaudhuij, I.; Deforche, B. Weight, socio-demographics, and health behaviour related correlates of academic performance in first year university students. Nutr. J. 2013, 12, 162. [Google Scholar] [CrossRef]
- Lin, W.J.; Yu, J.; Yang, C.B. Study on the Outdoor Exercises of the Aged in Residental Area and Relevant Space Features: Case Investigation of Outdoor Exercises in Summer. Archit. J. 2011, 02, 73–77. [Google Scholar]
- Ma, W.C.; Lin, J.Z.; Shen, J.; Chen, L.M.; Yu, P.B. The road traffic noise exposure patterns of the residential areas in compact and high-rise city and their applications to SEA. Acta Sci. Circumstantiae 2002, 4, 514–518. [Google Scholar]
Category | Variable | Calculation Method | Abbreviation |
---|---|---|---|
Independent | Residential land density | Residential land area/Buffer zone area | RLD |
Green land density | Green land area/Buffer zone area | GD | |
Nighttime light | Sum of average units/Buffer zone area | NTL | |
Arterial road density | Arterial road quantity/Buffer zone area | ARD | |
Secondary road density | Secondary road quantity/Buffer zone area | SRD | |
Branch road density | Branch road quantity/Buffer zone area | BRD | |
Land-use mix | Land-use mix area/Buffer zone area | LM | |
Facilities diversity | The number of POIS in 13 types of facilities, including restaurants, scenic spots services, public services, enterprises, shopping services, transportation, financial services, education and culture services, commercial housings, life services, sports and leisure services, medical treatment, and government services/Buffer zone area | FD | |
Metro line density | The length of the subway line/Buffer zone area | MLD | |
Bus stop density | Bus stop quantity/Buffer zone area | BSD | |
Precipitation | Sum of average units/Buffer zone area | PR | |
Temperature | Sum of average units/Buffer zone area | TEMP | |
Normalized difference vegetation index | Sum of average units/Buffer zone area | NDVI | |
Slope | Sum of average units/Buffer zone area | SL | |
Bus distance density | Distance to the bus stop/Buffer zone area | BDD | |
Metro distance density | Distance to the metro stop/Buffer zone area | MDD | |
Population density | Sum of average units/Buffer zone area | PD | |
Gross Domestic Product | Sum of average units/Buffer zone area | GDP | |
Dependent | Activity distance | The total jogging distance of a single person in the buffer zone | AD |
Type | Female Activity | Male Activity | Female-Male Ratio | |
---|---|---|---|---|
Total Value | frequency | 4919 | 3392 | |
percentage | 59.20% | 40.80% | 145.02% | |
Urban footpath | frequency | 871 | 635 | |
percentage | 10.48% | 7.64% | 137.17% | |
Community Footpath | frequency | 3309 | 2174 | |
percentage | 39.81% | 26.16% | 152.21% | |
Green land Footpath | frequency | 739 | 583 | |
percentage | 8.89% | 7.01% | 126.76% |
Variable | β | p | Influence |
---|---|---|---|
RLD | −0.034 | 0.002 | ** |
NTL | 0.014 | 0.2 | — |
GD | 0.041 | <0.001 | ** |
ARD | 0.048 | <0.001 | ** |
SRD | 0.089 | <0.001 | ** |
BRD | 0.090 | <0.001 | ** |
FD | −0.036 | 0.001 | ** |
LM | 0.015 | 0.163 | — |
PR | 0.002 | 0.821 | — |
TEMP | 0.030 | 0.007 | ** |
NDVI | 0.002 | 0.843 | — |
SL | −0.063 | <0.001 | ** |
PD | −0.055 | <0.001 | ** |
GDP | −0.014 | 0.198 | — |
MLD | 0.017 | 0.125 | — |
BSD | −0.046 | <0.001 | ** |
MDD | −0.021 | 0.059 | — |
BDD | −0.211 | <0.001 | ** |
Variable | β | p | VIF | Tolerance Value |
---|---|---|---|---|
RLD | −0.03 | 0.034 * | 1.743 | 0.574 |
GD | −0.001 | 0.955 | 1.125 | 0.889 |
ARD | 0.023 | 0.161 | 2.417 | 0.414 |
SRD | 0.083 | <0.001 *** | 2.482 | 0.403 |
BRD | 0.048 | <0.001 *** | 1.576 | 0.635 |
FD | −0.057 | 0.001 ** | 2.882 | 0.347 |
TEMP | 0.069 | <0.001 *** | 1.479 | 0.676 |
SL | −0.039 | 0.003 ** | 1.567 | 0.638 |
PD | −0.045 | 0.003 ** | 2.115 | 0.473 |
BSD | −0.035 | 0.023 * | 2.152 | 0.465 |
BDD | −0.232 | <0.001 *** | 1.085 | 0.922 |
p | <0.001 *** | |||
R2 | 0.725 |
Variable | Model 1: Urban Footpath | Model 2: Community Footpath | Model 3: Green Land Footpath | |||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
RLD | −0.135 | 0.014 * | 0.159 | <0.001 *** | 0.318 | <0.001 *** |
GD | −0.03 | 0.253 | 0.29 | <0.001 *** | 0.122 | 0.002 ** |
ARD | 0.086 | 0.188 | −0.15 | <0.001 *** | 0.49 | <0.001 *** |
SRD | 0.312 | <0.001 *** | 0.08 | <0.001 *** | 0.017 | 0.802 |
BRD | 0.472 | <0.001 *** | 0.597 | <0.001 *** | −0.105 | 0.25 |
FD | −0.249 | <0.001 *** | −0.12 | <0.001 *** | 0.033 | 0.646 |
TEMP | −0.057 | 0.037 * | 0.003 | 0.845 | −0.067 | 0.003 ** |
SL | −0.088 | 0.001 ** | −0.091 | <0.001 *** | −0.052 | 0.018 * |
PD | 0.129 | 0.059 | 0.034 | 0.249 | 0.198 | <0.001 *** |
BSD | 0.382 | <0.001 *** | 0.235 | <0.001 *** | −0.067 | 0.22 |
BDD | 0.036 | 0.271 | −0.061 | 0.001 ** | 0.155 | <0.001 *** |
p | <0.001 *** | <0.001 *** | <0.001 *** | |||
R2 | 0.79 | 0.769 | 0.875 |
Variable | Model 1: Urban Footpath | Model 2: Community Footpath | Model 3: Green Land Footpath | |||
---|---|---|---|---|---|---|
Female | Male | Female | Male | Female | Male | |
RLD | 0.422 *** | −0.08 | 0.123 ** | 0.398 *** | 0.122 | 0.58 *** |
GD | 0.013 | −0.086 * | 0.15 *** | 0.484 *** | 0.208 *** | 0.038 |
ARD | −0.29 *** | 0.596 *** | 0.184 *** | −0.428 *** | 0.21 | 0.541 *** |
SRD | 0.146 ** | 0.07 | 0.062 * | 0.079 * | 0.378 *** | −0.023 |
BRD | 0.458 *** | 0.571 *** | 0.478 *** | 0.525 *** | −0.23 | 0.065 |
FD | −0.039 | −0.784 ** | −0.325 *** | −0.015 | −0.283 *** | 0.377 *** |
TEMP | −0.023 | −0.052 | 0.004 | 0.008 | −0.056 | −0.033 * |
SL | −0.101 *** | −0.046 | −0.074 *** | −0.102 *** | −0.042 | −0.017 |
PD | 0.03 | −0.099 | 0.05 | 0.108 | 0.463 *** | −0.163 ** |
BSD | 0.145 *** | 0.838 *** | 0.343 *** | 0.041 | 0.135 * | −0.43 *** |
BDD | 0.196 *** | −0.118 | −0.089 *** | −0.011 | 0.238 *** | 0.12 *** |
p | <0.001 *** | −0.08 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
R2 | 0.910 | 0.894 | 0.804 | 0.764 | 0.852 | 0.977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Li, B.; Chen, Y. How Do Different Urban Footpath Environments Affect the Jogging Preferences of Residents of Different Genders? Empirical Research Based on Trajectory Data. Int. J. Environ. Res. Public Health 2022, 19, 14372. https://doi.org/10.3390/ijerph192114372
Zhong Q, Li B, Chen Y. How Do Different Urban Footpath Environments Affect the Jogging Preferences of Residents of Different Genders? Empirical Research Based on Trajectory Data. International Journal of Environmental Research and Public Health. 2022; 19(21):14372. https://doi.org/10.3390/ijerph192114372
Chicago/Turabian StyleZhong, Qikang, Bo Li, and Yue Chen. 2022. "How Do Different Urban Footpath Environments Affect the Jogging Preferences of Residents of Different Genders? Empirical Research Based on Trajectory Data" International Journal of Environmental Research and Public Health 19, no. 21: 14372. https://doi.org/10.3390/ijerph192114372
APA StyleZhong, Q., Li, B., & Chen, Y. (2022). How Do Different Urban Footpath Environments Affect the Jogging Preferences of Residents of Different Genders? Empirical Research Based on Trajectory Data. International Journal of Environmental Research and Public Health, 19(21), 14372. https://doi.org/10.3390/ijerph192114372