Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Measurement and Instrument
2.3. Variables
2.3.1. Outcome Variable
2.3.2. Covariates
Socioeconomic Characteristic
Stress Associated with Neglect and Negative Reactions by Online Peers and Fear of Missing Out
Status of Social Media Platform Usage
2.4. Data Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Status of Social Media Addiction among Vietnamese Youths
3.3. Structural Validity of Bergen Social Media Addiction Scale
3.4. Potential Predictors of Social Media Addiction
4. Discussion
4.1. Principal Results
4.2. Comparison with Prior Work
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragan, I.; Dalessandri, D.; Johnson, L.; Tucker, A.; Walmsley, A. (Eds.) Impact of scientific and technological advances. Eur. J. Dent. Educ. 2018, 22, 17–20. [Google Scholar] [CrossRef]
- Chopik, W.J. The benefits of social technology use among older adults are mediated by reduced loneliness. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Kosakowski, J. The Benefits of Information Technology; ERIC Clearinghouse on Information and Technology: Syracuse, NY, USA, 1998. [Google Scholar]
- World Health Organization. Addictive behaviours: Gaming Disorder. 2018. Available online: https://www.who.int/news-room/q-a-detail/addictive-behaviours-gaming-disorder (accessed on 15 November 2021).
- Chaffey, D. Global Social Media Research Summary 2021; Smart Insights: Leeds, UK, 2021. [Google Scholar]
- Kemp, S. Digital 2020: July Global Statshot; Kepios: Singapore, 2021. [Google Scholar]
- Number of Social Media Users in 2022/2023: Demographics & Predictions; FinancesOnline: Warsaw, Poland; Boston, MA, USA, 2022.
- Cheng, C.; Lau, Y.C.; Chan, L.; Luk, J.W. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict. Behav. 2021, 117, 106845. [Google Scholar] [CrossRef] [PubMed]
- Pantic, I. Online social networking and mental health. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z. Chapter 6-Social Networking Addiction: An overview of preliminary findings. In Behavioral Addictions; Rosenberg, K.P., Feder, L.C., Eds.; Academic Press: San Diego, SD, USA, 2014; pp. 119–141. [Google Scholar]
- Schmeichel, M.; Hughes, H.E.; Kutner, M. Qualitative research on youths’ social media use: A review of the literature. Middle Grades Rev. 2018, 4, 4. [Google Scholar]
- Swist, T.; Collin, P.; McCormack, J.; Third, A. Social Media and the Wellbeing of Children and Young People: A Literature Review; Western Sydney University: Penrith, Australia, 2015. [Google Scholar]
- Goodyear, V.A.; Armour, K.M. Young People, Social Media and Health; Taylor & Francis: Abingdon, UK, 2019. [Google Scholar]
- Van Der Velden, M.; El Emam, K. “Not all my friends need to know”: A qualitative study of teenage patients, privacy, and social media. J. Am. Med. Inform. Assoc. 2013, 20, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Primi, C.; Fioravanti, G.; Casale, S.; Donati, M.A. Measuring problematic Facebook use among adolescents and young adults with the bergen Facebook addiction scale: A psychometric analysis by applying item response theory. Int. J. Env. Res. Public Health 2021, 18, 2979. [Google Scholar] [CrossRef]
- Lin, C.Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric validation of the Persian Bergen social media addiction scale using classic test theory and Rasch models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef]
- Duradoni, M.; Innocenti, F.; Guazzini, A. Well-being and social media: A systematic review of Bergen addiction Scales. Future Internet 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Monacis, L.; De Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen social media addiction scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Leung, H.; Pakpour, A.H.; Strong, C.; Lin, Y.C.; Tsai, M.C.; Griffiths, M.D.; Lin, C.Y.; Chen, I.H. Measurement invariance across young adults from Hong Kong and Taiwan among three internet-related addiction scales: Bergen Social Media Addiction Scale (BSMAS), smartphone application-based addiction scale (SABAS), and internet gaming disorder scale-short form (IGDS-SF9) (Study part A). Addict. Behav. 2020, 101, 105969. [Google Scholar]
- Chen, I.H.; Strong, C.; Lin, Y.C.; Tsai, M.C.; Leung, H.; Lin, C.Y.; Pakpour, A.H.; Griffiths, M.D. Time invariance of three ultra-brief internet-related instruments: Smartphone application-based addiction scale (SABAS), Bergen social media addiction scale (BSMAS), and the nine-item internet gaming disorder scale- short form (IGDS-SF9) (Study part B). Addict. Behav. 2020, 101, 105960. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Ebrahimi, O.V.; Luk, J.W. Heterogeneity of prevalence of social media addiction across multiple classification schemes: Latent profile analysis. J. Med. Internet Res. 2022, 24, e27000. [Google Scholar] [CrossRef] [PubMed]
- Stănculescu, E. The Bergen social media addiction scale validity in a Romanian sample using item response theory and network analysis. Int. J. Ment. Health Addict. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Statista. Forecast of the Internet Penetration in Vietnam from 2010 to 2025. 2021. Available online: https://www.statista.com/forecasts/1137902/internet-penetration-forecast-in-vietnam (accessed on 15 November 2021).
- Tran, B.X.; Huong, L.T.; Hinh, N.D.; Nguyen, L.H.; Le, B.N.; Nong, V.M.; Thuc, V.T.M.; Tho, T.D.; Latkin, C.; Zhang, M.W.; et al. A study on the influence of internet addiction and online interpersonal influences on health-related quality of life in young Vietnamese. BMC Public Health 2017, 17, 138. [Google Scholar] [CrossRef] [Green Version]
- Vietnam National Assembly. Youth Law (Law No. 53/2005/QH11); Vietnam National Assembly: Hanoi, Vietnam, 2005.
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252. [Google Scholar] [CrossRef] [Green Version]
- Yam, C.W.; Pakpour, A.H.; Griffiths, M.D.; Yau, W.Y.; Lo, C.L.M.; Ng, J.M.; Lin, C.Y.; Leung, H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatr. Q. 2019, 90, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Department of Public Health. Young Adults, Ages 18–24. Available online: https://portal.ct.gov/DPH/Health-Education-Management--Surveillance/Tobacco/Adults-18–24-years-old (accessed on 22 October 2022).
- Association of Maternal & Child Health Program (AMCHP). Adolescent Health. Available online: https://amchp.org/adolescent-health/. (accessed on 15 November 2021).
- Fabris, M.A.; Marengo, D.; Longobardi, C.; Settanni, M. Investigating the links between fear of missing out, social media addiction, and emotional symptoms in adolescence: The role of stress associated with neglect and negative reactions on social media. Addict. Behav. 2020, 106, 106364. [Google Scholar] [CrossRef]
- Can, G.; Satici, S.A. Adaptation of fear of missing out scale (FoMOs): Turkish version validity and reliability study. Psicol. Reflexão E Crítica 2019, 32, 3. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, R.D.; Valero-Mora, P. Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Pract. Assess. Res. Eval. 2007, 12, 2. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural equation modeling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2007, 6, 53–60. [Google Scholar]
- Alnjadat, R.; Hmaidi, M.M.; Samha, T.E.; Kilani, M.M.; Hasswan, A.M. Gender variations in social media usage and academic performance among the students of University of Sharjah. J. Taibah Univ. Med. Sci. 2019, 14, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Stănculescu, E.; Griffiths, M.D. Social media addiction profiles and their antecedents using latent profile analysis: The contribution of social anxiety, gender, and age. Telemat. Inform. 2022, 74, 101879. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook addiction scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Buntting, C.; de Vries, M.J. The developing field of technology education: A review to look forward. Int. J. Technol. Des. Educ. 2013, 23, 191–212. [Google Scholar] [CrossRef]
- Fabry, D.L.; Higgs, J.R. Barriers to the effective use of technology in education: Current status. J. Educ. Comput. Res. 1997, 17, 385–395. [Google Scholar] [CrossRef]
- Hou, X.L.; Wang, H.Z.; Hu, T.Q.; Gentile, D.A.; Gaskin, J.; Wang, J.L. The relationship between perceived stress and problematic social networking site use among Chinese college students. J. Behav. Addict. 2019, 8, 306–317. [Google Scholar] [CrossRef]
- Chotpitayasunondh, V.; Douglas, K.M. How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Comput. Hum. Behav. 2016, 63, 9–18. [Google Scholar] [CrossRef]
Characteristics | Below 18 Years Old | 18–24 Years Old | Above 24 Years Old | Total | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||
Total | 36 | 20.8 | 109 | 63.0 | 28 | 16.2 | 173 | 100.0 | |
Gender | |||||||||
Male | 10 | 27.8 | 15 | 13.8 | 7 | 25.0 | 32 | 18.5 | 0.11 |
Female | 26 | 72.2 | 94 | 86.2 | 21 | 75.0 | 141 | 81.5 | |
Education | |||||||||
Below high school and high school | 35 | 97.2 | 8 | 7.3 | 2 | 7.1 | 45 | 26.0 | <0.001 |
College | 1 | 2.8 | 25 | 22.9 | 4 | 14.3 | 30 | 17.3 | |
Tertiary and higher | 0 | 0.0 | 76 | 69.7 | 22 | 78.6 | 98 | 56.7 | |
Current location | |||||||||
Urban | 23 | 63.9 | 51 | 46.8 | 5 | 17.9 | 79 | 45.7 | <0.001 |
Suburban | 2 | 5.6 | 16 | 14.7 | 9 | 32.1 | 27 | 15.6 | |
Rural/mountain area | 11 | 30.6 | 42 | 38.5 | 14 | 50.0 | 67 | 38.7 | |
Marital status | |||||||||
Single | 32 | 88.9 | 107 | 98.2 | 8 | 28.6 | 147 | 85.0 | <0.001 |
other (married/widowed/not want to share) | 4 | 11.1 | 2 | 1.8 | 20 | 71.4 | 26 | 15.0 | |
Currently living with | |||||||||
Family | 35 | 97.2 | 83 | 76.2 | 26 | 92.9 | 144 | 83.2 | <0.001 |
Others | 1 | 2.8 | 26 | 23.9 | 2 | 7.1 | 29 | 16.8 | |
The number of social networks used | |||||||||
1 | 6 | 16.7 | 6 | 5.5 | 2 | 7.1 | 14 | 8.1 | 0.12 |
≥2 | 30 | 83.3 | 103 | 94.5 | 26 | 92.9 | 159 | 91.9 | |
Social networks used | |||||||||
36 | 100.0 | 106 | 97.2 | 26 | 92.9 | 168 | 97.1 | 0.18 | |
Zalo | 20 | 55.6 | 94 | 86.2 | 26 | 92.9 | 140 | 80.9 | <0.001 |
Youtube | 29 | 80.6 | 87 | 79.8 | 15 | 53.6 | 131 | 75.7 | 0.01 |
18 | 50.0 | 75 | 68.8 | 8 | 28.6 | 101 | 58.4 | <0.001 | |
14 | 38.9 | 17 | 15.6 | 2 | 7.1 | 33 | 19.1 | <0.001 | |
Snapchat | 10 | 27.8 | 18 | 16.5 | 1 | 3.6 | 29 | 16.8 | 0.03 |
9 | 25.0 | 19 | 17.4 | 0 | 0.0 | 28 | 16.2 | 0.01 | |
The main purpose of using social networks | |||||||||
Talk with friends | 19 | 52.8 | 49 | 45.0 | 8 | 28.6 | 76 | 43.9 | 0.04 |
Update news | 14 | 38.9 | 49 | 45.0 | 19 | 67.9 | 82 | 47.4 | |
Play games | 3 | 8.3 | 2 | 1.8 | 0 | 0.0 | 5 | 2.9 | |
Other | 0 | 0.0 | 9 | 8.3 | 1 | 3.6 | 10 | 5.8 | |
Mean | SD | Mean | SD | Mean | SD | Mean | SD | p-Value | |
Age | 16.4 | 0.5 | 19.9 | 1.2 | 28.8 | 2.1 | 20.6 | 4.1 | <0.001 |
Years of use of social networks | 4.3 | 3.1 | 5.7 | 2.3 | 8.9 | 3.4 | 5.9 | 3.0 | <0.001 |
Time using social platforms/day(hours) | 3.9 | 3.0 | 4.7 | 2.6 | 2.9 | 2.1 | 4.3 | 2.7 | <0.001 |
Number of social platformsused | 1.8 | 0.4 | 1.9 | 0.2 | 1.9 | 0.3 | 1.9 | 0.3 | 0.10 |
Fear of missing out (FOMO Scale) (range: 10–50) | 28.4 | 10.7 | 26.0 | 8.3 | 22.0 | 9.6 | 25.8 | 9.2 | 0.02 |
Stress associated with neglect and negative reactions by online Peers (range: 8–40) | 18.5 | 7.5 | 17.6 | 8.1 | 12.3 | 6.7 | 16.9 | 8.0 | <0.001 |
Stress associated with neglect by other users (SSN) (range: 4–20) | 8.9 | 4.1 | 8.2 | 4.2 | 6.0 | 3.5 | 8.0 | 4.1 | 0.02 |
Stress associated with negative reactions by other users (range: 4–20) | 9.7 | 3.9 | 9.3 | 4.4 | 6.3 | 3.5 | 8.9 | 4.3 | <0.001 |
Social Media Addiction (Range: 6–30) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Below 18 | 18–24 | Above 24 | Total | |||||||||
Mean | SD | p-Value | Mean | SD | p-Value | Mean | SD | p-Value | Mean | SD | p-Value | |
Total | 15.1 | 4.5 | 15.1 | 4.7 | 12.6 | 4.3 | 14.7 | 4.7 | ||||
Gender | ||||||||||||
Male | 16.3 | 4.5 | 0.42 | 16.0 | 4.7 | 0.25 | 12.4 | 5.1 | 0.63 | 15.3 | 4.8 | 0.33 |
Female | 14.7 | 4.5 | 14.9 | 4.7 | 12.7 | 4.2 | 14.5 | 4.6 | ||||
Education | ||||||||||||
Below high school and high school | 15.3 | 4.5 | 0.23 | 13.8 | 4.9 | 0.01 | 14.5 | 9.2 | 0.14 | 15.0 | 4.7 | 0.20 |
College | 10.0 | 0.0 | 12.8 | 4.5 | 17.3 | 5.1 | 13.3 | 4.8 | ||||
Tertiary and higher | 0.0 | 0.0 | 15.9 | 4.5 | 11.6 | 3.2 | 15.0 | 4.6 | ||||
Location | ||||||||||||
Urban | 14.8 | 4.7 | 0.92 | 15.0 | 4.9 | 0.23 | 12.0 | 4.2 | 0.94 | 14.7 | 4.8 | 0.18 |
Suburban | 16.0 | 2.8 | 13.4 | 5.6 | 12.6 | 2.2 | 13.3 | 4.6 | ||||
Rural/mountain area | 15.7 | 4.6 | 15.8 | 4.0 | 12.9 | 5.4 | 15.1 | 4.5 | ||||
Current living with | ||||||||||||
Family | 15.0 | 4.6 | 0.39 | 14.6 | 4.4 | 0.12 | 12.8 | 4.4 | 0.19 | 14.4 | 4.5 | 0.12 |
Others | 19.0 | 0.0 | 16.7 | 5.4 | 9.5 | 2.1 | 16.2 | 5.4 | ||||
Marital status | ||||||||||||
Single | 15.2 | 4.6 | 0.95 | 15.1 | 4.6 | 0.92 | 10.6 | 2.6 | 0.16 | 14.9 | 4.6 | 0.28 |
Other (married/widowed/not want to share) | 14.8 | 4.3 | 13.5 | 10.6 | 13.4 | 4.6 | 13.6 | 4.8 | ||||
The purpose of using social networks | ||||||||||||
Talk with friends | 14.2 | 4.8 | 0.15 | 15.5 | 4.9 | 0.90 | 14.0 | 4.5 | 0.07 | 15.0 | 4.8 | 0.39 |
The news feed | 15.3 | 3.6 | 14.7 | 4.3 | 11.5 | 3.6 | 14.1 | 4.2 | ||||
Play games | 20.3 | 4.7 | 12.0 | 8.5 | 0.0 | 0.0 | 17.0 | 7.1 | ||||
Other | 0.0 | 0.0 | 15.2 | 5.9 | 22.0 | 0.0 | 15.9 | 5.9 | ||||
The number of social networks used | ||||||||||||
1 | 14.2 | 3.7 | 0.58 | 16.3 | 4.3 | 0.46 | 8.5 | 0.7 | 0.10 | 14.3 | 4.4 | 0.78 |
≥2 | 15.3 | 4.7 | 15.0 | 4.7 | 12.9 | 4.3 | 14.7 | 4.7 |
Items | Mean | SD | Factor Loading | Krewness | Kurtosis | Item–Total Correlation | Cronbach’s Alpha If Item Deleted |
---|---|---|---|---|---|---|---|
BSMAS 1 | 2.64 | 1.03 | 0.51 | −0.03 | 2.57 | 0.63 | 0.86 |
BSMAS 2 | 2.51 | 1.01 | 0.63 | 0.04 | 2.32 | 0.72 | 0.83 |
BSMAS 3 | 2.54 | 1.05 | 0.68 | 0.13 | 2.49 | 0.75 | 0.83 |
BSMAS 4 | 2.53 | 1.07 | 0.73 | 0.07 | 2.28 | 0.78 | 0.82 |
BSMAS 5 | 2.32 | 1.06 | 0.81 | 0.19 | 2.15 | 0.84 | 0.81 |
BSMAS 6 | 2.14 | 1.00 | 0.77 | 0.42 | 3.35 | 0.80 | 0.82 |
BSMAS score (range: 6–30) | 14.68 | 4.68 | 0.12 | 2.74 |
Characteristics | Social Media Addiction | |
---|---|---|
Coeff. | 95% CI | |
Individual Characteristics | ||
Age group | ||
Below 18 | Ref. | |
18–24 | −1.48 | −4.38; 1.43 |
Above 24 | −2.96 | −6.85; 0.93 |
Education | ||
Below high school and high school | Ref. | |
College | 1.06 | −1.97; 4.08 |
Tertiary and higher | 2.08 | −0.74; 4.91 |
Gender | ||
Male | Ref. | |
Female | −1.02 | −2.80; 0.75 |
Current living with | ||
Family | Ref. | |
Others | 0.85 | −1.01; 2.70 |
Marital status | ||
Single | Ref. | |
Other (married/widowed/not want to share) | 0.72 | −1.90; 3.33 |
Social Media Used | ||
The purpose of using social networks | ||
Talk with friends | Ref. | |
The news feed | −0.89 | −2.31; 0.53 |
Play games | 3.30 | −0.96; 7.55 |
Other | 0.11 | −2.77; 2.99 |
Number of social networks used | 0.46 | −1.96; 2.88 |
Years of use of social networks (years) | 0.03 | −0.22; 0.28 |
Time using social networks/day (hours) | 0.08 | −0.18; 0.34 |
Stress and Fear of Missing out Are Associated with Social Networks | ||
Stress associated with Neglect and Negative Reactions by Online Peers | ||
Stress associated with neglect by other users (SSN) (Unit: one score) | 0.35 b | 0.08; 0.62 |
Stress associated with negative reactions by other users (Unit: one score) | 0.07 | −0.19; 0.33 |
Fear of missing out (FOMO Scale) (Unit: one score) | 0.08 a | −0.01; 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, L.P.; Le, L.K.; Nguyen, T.T.; Nguyen, T.T.P.; Le, M.N.V.; Vu, G.T.; Latkin, C.A.; Ho, C.S.H.; Ho, R.C.M.; Zhang, M.W.B. Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors. Int. J. Environ. Res. Public Health 2022, 19, 14416. https://doi.org/10.3390/ijerph192114416
Doan LP, Le LK, Nguyen TT, Nguyen TTP, Le MNV, Vu GT, Latkin CA, Ho CSH, Ho RCM, Zhang MWB. Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors. International Journal of Environmental Research and Public Health. 2022; 19(21):14416. https://doi.org/10.3390/ijerph192114416
Chicago/Turabian StyleDoan, Linh Phuong, Linh Khanh Le, Tham Thi Nguyen, Thao Thi Phuong Nguyen, Minh Ngoc Vu Le, Giang Thu Vu, Carl A. Latkin, Cyrus S. H. Ho, Roger C. M. Ho, and Melvyn W. B. Zhang. 2022. "Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors" International Journal of Environmental Research and Public Health 19, no. 21: 14416. https://doi.org/10.3390/ijerph192114416
APA StyleDoan, L. P., Le, L. K., Nguyen, T. T., Nguyen, T. T. P., Le, M. N. V., Vu, G. T., Latkin, C. A., Ho, C. S. H., Ho, R. C. M., & Zhang, M. W. B. (2022). Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors. International Journal of Environmental Research and Public Health, 19(21), 14416. https://doi.org/10.3390/ijerph192114416