Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Chemical Properties Analysis
2.4. DNA Extraction from Various Samples
2.5. ARGs and 16S rRNA Quantification
2.6. 16S rRNA Gene High-Throughput Sequencing
2.7. Statistical Analysis
3. Results and Discussion
3.1. Evaluating Changes in Earthworm Population and Enzyme Activity during Vermicomposting
3.2. Vermicomposting Reduced Some ARG Abundance and Mobile Genetic Element (MGE) Marker Genes in Cow Manure
3.3. Arsenic Enriched ARGs in Vermicompost Products and Fresh Earthworm Casts
3.4. Earthworm and Arsenic Treatment Reshaped Microbial Compositions in Vermicompost Products and Fresh Earthworm Casts
3.5. Driving Forces of the Changes in ARG Abundance during Vermicomposting
4. Conclusions
- (1)
- Vermicomposting reduced the abundance of most ARGs in cow dung and changed the structure of microbial communities in the related environment.
- (2)
- Arsenic residues in cow dung enriched ARG abundance and also reshaped microbial compositions in vermicompost products, significantly increasing the number of Bacteroides and Proteus.
- (3)
- The MGEs exhibited a trend similar to that of ARGs during vermicomposting of cow manure, which might be explained by the synchronous shift in ARGs and MRGs.
- (4)
- In the vermicomposting process, changes in physicochemical factors in cow dung played a direct or indirect role in ARG variation, and TP was the dominant factor driving the proliferation of ARGs.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, Z.; Peng, H.; Lu, X.; Liu, Q.; Huang, R.; Hu, B.; Kachanoski, G.; Zuidhof, M.J.; Le, X.C. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens. Environ. Sci. Technol. 2016, 50, 6737–6743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehata, E.; Cheng, D.-M.; Ma, Q.-Q.; Li, Y.-L.; Liu, Y.-W.; Feng, Y.; Ji, Z.-Y.; Li, Z.-J. Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline. J. Integr. Agric. 2021, 20, 1649–1659. [Google Scholar] [CrossRef]
- Wang, H.-T.; Liang, Z.-Z.; Ding, J.; Xue, X.-M.; Li, G.; Fu, S.-L.; Zhu, D. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity. J. Hazard. Mater. 2021, 417, 126018. [Google Scholar] [CrossRef] [PubMed]
- Pass, D.A.; Morgan, A.J.; Read, D.S.; Field, D.; Weightman, A.J.; Kille, P. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ. Microbiol. 2015, 17, 1884–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhu, D.; Yi, X.; Su, J.; Duan, G.; Tang, X.; Zhu, Y. Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. J. Environ. Sci. 2021, 109, 171–180. [Google Scholar] [CrossRef]
- UNEP. Frontiers 2017: Emerging Issues of Environmental Concern; UNEP: Nairobi, Kenya, 2017. [Google Scholar]
- Zhu, W.J.; Zhu, F.X.; Wang, W.P.; Hong, C.L.; Yao, Y.L. Degradation Characteristics of Antibiotics During Composting of Four Types of Feces. Huan Jing Ke Xue= Huanjing Kexue 2020, 41, 1005–1012. [Google Scholar]
- Li, M.; Yang, L.; Yen, H.; Zhao, F.; Wang, X.; Zhou, T.; Feng, Q.; Chen, L. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration. J. Environ. Sci. 2023, 125, 678–690. [Google Scholar] [CrossRef]
- Miao, J.; Yin, Z.; Yang, Y.; Liang, Y.; Xu, X.; Shi, H. Abundance and Dynamic Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary Antibiotic Manufacturing Site. Antibiotics 2021, 10, 1361. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Gillings, M.; Simonet, P.; Stekel, D.; Banwart, S.; Penuelas, J. Microbial mass movements. Science 2017, 357, 1099–1100. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Klümper, U.; Voolaid, V.; Berendonk, T.U.; Kneis, D. Simultaneous estimation of parameters governing the vertical and horizontal transfer of antibiotic resistance genes. Sci. Total Environ. 2021, 798, 149174. [Google Scholar] [CrossRef]
- Hu, H.-W.; Wang, J.-T.; Li, J.; Shi, X.-Z.; Ma, Y.-B.; Chen, D.; He, J.-Z. Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environ. Sci. Technol. 2017, 51, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-F.; Shu, B.; Li, Z.; Liu, G.; Liu, W.; Yang, Y.; Ma, L. Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Front. Microbiol. 2022, 13, 820920. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban soil and human health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Mahjoory, Y.; Aliasgharzad, N.; Moghaddam, G.; Bybordi, A. Long-term Application of Manure Alters Culturable Soil Microbial Populations and Leads to Occurrence of Antibiotic resistant Bacteria. Soil Sediment Contam. Int. J. 2022, 31, 423–437. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, Y.; Liu, Y.; Sun, Y.; Xia, S.; Zhao, J. Effects of coexistence of tetracycline, copper and microplastics on the fate of antibiotic resistance genes in manured soil. Sci. Total Environ. 2021, 790, 148087. [Google Scholar] [CrossRef]
- Fu, X.; Huang, K.; Chen, X.; Li, F.; Cui, G. Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthworms Bimastus parvus. Bioresour. Technol. 2015, 175, 646–650. [Google Scholar] [CrossRef]
- Cui, G.; Li, F.; Li, S.; Bhat, S.A.; Ishiguro, Y.; Wei, Y.; Yamada, T.; Fu, X.; Huang, K. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Sci. Total Environ. 2018, 644, 494–502. [Google Scholar] [CrossRef]
- Tian, X.; Han, B.; Liang, J.; Yang, F.; Zhang, K. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. Ecotoxicol. Environ. Saf. 2021, 222, 112538. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Li, X.; Song, P.; Wang, J. Effects of diisononyl phthalate exposure on the oxidative stress and gut microorganisms in earthworms (Eisenia fetida). Sci. Total Environ. 2022, 822, 153563. [Google Scholar] [CrossRef]
- Chao, H.; Kong, L.; Zhang, H.; Sun, M.; Ye, M.; Huang, D.; Zhang, Z.; Sun, D.; Zhang, S.; Yuan, Y.; et al. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes. Sci. Total Environ. 2019, 669, 353–361. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA: Beirut, Lebanon, 2007. [Google Scholar]
- Yang, F.; Tian, X.; Han, B.; Zhao, R.; Li, J.; Zhang, K. Tracking high-risk β-lactamase gene (bla gene) transfers in two Chinese intensive dairy farms. Environ. Pollut. 2021, 274, 116593. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Sarkar, S.; Mondal, S.; Agarwal, B.; Kumar, A.; Bhattacharya, S.; Bhattacharya, S.S.; Bhattacharyya, P. Eisenia fetida mediated vermi-transformation of tannery waste sludge into value added eco-friendly product: An insight on microbial diversity, enzyme activation, and metal detoxification. J. Clean. Prod. 2022, 348, 131368. [Google Scholar] [CrossRef]
- Tang, R.; Lan, P.; Ding, C.; Wang, J.; Zhang, T.; Wang, X. A new perspective on the toxicity of arsenic-contaminated soil: Tandem mass tag proteomics and metabolomics in earthworms. J. Hazard. Mater. 2020, 398, 122825. [Google Scholar] [CrossRef]
- Wu, M.; Dick, W.A.; Li, W.; Wang, X.; Yang, Q.; Wang, T.; Xu, L.; Zhang, M.; Chen, L. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int. Biodeterior. Biodegradation 2016, 107, 158–164. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Wang, Z.; Zheng, K.L.; Cheng, J.M. Properties of Modified Nano Black Carbon and Its Effects on Soil Enzyme Activities. Mater. Sci. Forum 2022, 1060, 169–176. [Google Scholar] [CrossRef]
- Minatel, B.C.; Sage, A.P.; Anderson, C.; Hubaux, R.; Marshall, E.A.; Lam, W.L.; Martinez, V.D. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ. Int. 2018, 112, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Cheng, Y.; Zhang, Y.; Liu, Z.; Zhang, M. Oxidative stress, DNA damage, and gene expression induced by flufiprole enantiomers in the earthworms (Eisenia fetida). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. CBP 2022, 257, 109341. [Google Scholar] [CrossRef]
- Dedeke, G.; Iwuchukwu, P.; Aladesida, A.; Afolabi, T.; Ayanda, I. Impact of heavy metal bioaccumulation on antioxidant activities and DNA profile in two earthworm species and freshwater prawn from Ogun River. Sci. Total Environ. 2018, 624, 576–585. [Google Scholar] [CrossRef]
- Deng, S.; Wu, Y.; Duan, H.; Cavanagh, J.-A.E.; Wang, X.; Qiu, J.; Li, Y. Toxicity assessment of earthworm exposed to arsenate using oxidative stress and burrowing behavior responses and an integrated biomarker index. Sci. Total Environ. 2021, 800, 149479. [Google Scholar] [CrossRef]
- Han, B.; Yang, F.; Tian, X.; Mu, M.; Zhang, K. Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotoxicol. Environ. Saf. 2021, 219, 112335. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.R.; Mohammed, Z.; Olfa, B.B.; Mohammed, B.; Hamid, H.A. Antimicrobials Use in Broiler Chicken Breeding: Case Of the Ain Defla Province (Algeria). Plant Arch. 2021, 21, 295–304. [Google Scholar] [CrossRef]
- Cui, G.; Bhat, S.; Li, W.; Wei, Y.; Kui, H.; Fu, X.; Gui, H.; Wei, C.; Li, F. Gut digestion of earthworms significantly attenuates cell-free and -associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles. Sci. Total Environ. 2019, 691, 644–653. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. npj Clean Water 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, K.; Murugaiyan, J.; Halat, D.H.; El Hage, S.; Chibabhai, V.; Adukkadukkam, S.; Roques, C.; Molinier, L.; Salameh, P.; Van Dongen, M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics 2022, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Yin, Z.; Wang, P.; Guan, J.; Chen, F.; Wang, L.; Li, X.; Mu, X.; Zhou, D. A Genomic and Bioinformatics View of the Classification and Evolution of Morganella Species and Their Chromosomal Accessory Genetic Elements Harboring Antimicrobial Resistance Genes. Microbiol. Spectr. 2022, 10, e02650-21. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, L.; Chang, X.; Pan, Z.; Zhou, B.; Sun, Y.; Li, X.; Weng, L.; Li, Y. Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). Sci. Total Environ. 2021, 781, 146679. [Google Scholar] [CrossRef]
- Hanc, A.; Dume, B.; Hrebeckova, T. Differences of Enzymatic Activity During Composting and Vermicomposting of Sewage Sludge Mixed With Straw Pellets. Front. Microbiol. 2022, 12, 801107. [Google Scholar] [CrossRef]
- Li, Y.; Luo, J.; Hu, J.; Gu, C.; Luo, G. Research on the effect of pig dung and cow dung in feeding earthworm with Pleurotus ostreatus residue. J. Biol. 2021, 38, 77–81. [Google Scholar]
- Aslam, Z.; Ahmad, A.; Ibrahim, M.; Iqbal, N.; Idrees, M.; Ali, A.; Ahmad, I.; Belliturk, K.; Nawaz, M.; Aslam, M.; et al. Microbial enrichment of vermicompost through earthworm eisenia fetida (Savigny, 1926) for agricultural waste management and development of useful organic fertilizer. Pak. J. Agric. Sci. 2021, 58, 851–861. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Aira, M.; Lores, M.; Domínguez, J. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes. PLoS ONE 2011, 6, e24786. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Wu, M.; Liu, J.; Tu, W.; Xie, F.; Wang, H. Deciphering the extracellular and intracellular antibiotic resistance genes in multiple environments reveals the persistence of extracellular ones. J. Hazard. Mater. 2022, 429, 128275. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, J.; Bhat, S.A.; Wei, Y.; Deng, Z.; Li, F. Elimination of antibiotic resistance genes from excess activated sludge added for effective treatment of fruit and vegetable waste in a novel vermireactor. Bioresour. Technol. 2021, 325, 124695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Qin, S.; Guan, X.; Jiang, K.; Jiang, M.; Liu, F. Distribution of Antibiotic Resistance Genes in Karst River and Its Ecological Risk. Water Res. 2021, 203, 117507. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.; Cui, G.; Li, F.; Chen, Y.; Wu, N. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhu, D.; Ding, L.; Wang, Y.; Su, J.; Duan, G.; Zhu, Y. Co-occurrence of genes for antibiotic resistance and arsenic biotransformation in paddy soils. J. Environ. Sci. 2023, 125, 701–711. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zan, K.; Wang, Y.; Zuo, T.; Jin, H.; Zhang, B.; Ma, S. Medicinal Earthworm: Speciation and Bioaccessibility of Arsenic and Its Potential Health Risks. Front. Pharmacol. 2022, 13, 929. [Google Scholar] [CrossRef] [PubMed]
- Freire, A.R.; Linares, P.; Peinado, F.M.; Ortiz, M.D. Toxicity of arsenic to earthworms “Eisenia andrei in soils”. In Retos y Oportunidades en la Ciencia del Suelo: VI Congreso Ibérico de la Ciencia del Suelo, Santiago de Compostela, 22–25 June 2014; Andavira: A Coruña, Spain, 2021; pp. 555–558. [Google Scholar]
- Zhao, X.; Shen, J.-P.; Zhang, L.-M.; Du, S.; Hu, H.-W.; He, J.-Z. Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. J. Hazard. Mater. 2020, 389, 121838. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Zhang, H.; Li, J. Effects of copper pollution on soil bacterial community structure and heavymetal resistance genes. Acta Sci. Circumstantiae 2021, 41, 1082–1090. [Google Scholar]
- Oliphant, K.; Ali, M.; D’Souza, M.; Hughes, P.D.; Sulakhe, D.; Wang, A.Z.; Xie, B.; Yeasin, R.; Msall, M.E.; Andrews, B.; et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 2021, 13, 1997560. [Google Scholar] [CrossRef]
- Wang, H.-T.; Chi, Q.-Q.; Zhu, D.; Li, G.; Ding, J.; An, X.-L.; Zheng, F.; Zhu, Y.-G.; Xue, X.-M. Arsenic and Sulfamethoxazole Increase the Incidence of Antibiotic Resistance Genes in the Gut of Earthworm. Environ. Sci. Technol. 2019, 53, 10445–10453. [Google Scholar] [CrossRef] [PubMed]
- Thakuria, D.; Schmidt, O.; Finan, D.; Egan, D.; Doohan, F.M. Gut wall bacteria of earthworms: A natural selection process. ISME J. 2010, 4, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Chen, Q.L.; An, X.L.; Yang, X.R.; Christie, P.; Ke, X.; Wu, L.H.; Zhu, Y.G. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 2018, 116, 302–310, Corrigendum in Soil Biol. Biochem. 2018, 124, 277–278. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Y.; Zeng, J.; Wu, Y.; Lin, X. Effects of Lignin and Earthworm on Ryegrass Biomass and Soil Microbial Community. Soils 2021, 53, 313–320. [Google Scholar]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.-J.; Su, J.-Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater. 2018, 344, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, B.; Lawrence, G.B.; Debenport, S.J.; Fahey, T.J.; Buckley, D.H.; Wilhelm, R.C.; Goodale, C.L. Watershed-scale liming reveals the short- and long-term effects of pH on the forest soil microbiome and carbon cycling. Environ. Microbiol. 2022. [Google Scholar] [CrossRef]
- Gonçalves, O.S.; Santana, M.F. The coexistence of monopartite integrative and conjugative elements in the genomes of Acidobacteria. Gene 2021, 777, 145476. [Google Scholar] [CrossRef]
- Zhou, H.; Cui, J.; Pang, L.; Wangjin, Y.; Li, M.; Zhao, Z.; Huang, L. Removal of antibiotics and antibiotic resistance genes from urban rivers using a photocatalytic-and-bionic artificial ecosystem. J. Clean. Prod. 2022, 348, 131311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, C.; Zhang, K.; Zhang, Z.; Zhao, R.; Han, B.; Yang, F.; Ding, Y. Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. Int. J. Environ. Res. Public Health 2022, 19, 14475. https://doi.org/10.3390/ijerph192114475
Li Z, Chen C, Zhang K, Zhang Z, Zhao R, Han B, Yang F, Ding Y. Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. International Journal of Environmental Research and Public Health. 2022; 19(21):14475. https://doi.org/10.3390/ijerph192114475
Chicago/Turabian StyleLi, Zijun, Chen Chen, Keqiang Zhang, Zulin Zhang, Ran Zhao, Bingjun Han, Fengxia Yang, and Yongzhen Ding. 2022. "Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung" International Journal of Environmental Research and Public Health 19, no. 21: 14475. https://doi.org/10.3390/ijerph192114475
APA StyleLi, Z., Chen, C., Zhang, K., Zhang, Z., Zhao, R., Han, B., Yang, F., & Ding, Y. (2022). Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. International Journal of Environmental Research and Public Health, 19(21), 14475. https://doi.org/10.3390/ijerph192114475