Validation of a Measurement Scale on Technostress for University Students in Chile
Abstract
:1. Introduction
2. Materials and Methods
Sample Characterization
3. Results
3.1. Exploratory Factor Analysis
3.2. Confirmatory Factor Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Applied Questionnaire (In Spanish of Current Use in Chile)
Previous | Variable | Questions (In Chilean Spanish) |
---|---|---|
ADO1 | VAR_01 | Me resulta difícil satisfacer las demandas de mi universidad con respecto al uso de las tecnologías de información |
ADO2 | VAR_02 | Me resulta difícil implementar con eficacia las indicaciones de mi universidad sobre el uso de las tecnologías de información |
ADO3 | VAR_03 | Mi capacidad actual es insuficiente para implementar las indicaciones de mi universidad sobre el uso de las tecnologías de información |
ADO4 | VAR_04 | Mis habilidades actuales son insuficientes para implementar las indicaciones de mi universidad sobre el uso las tecnologías de la información |
ADO5 | VAR_05 | Me resulta difícil organizar mi horario de estudio actual para cumplir con las indicaciones de mi universidad sobre sobre el uso de las tecnologías de información |
NSO1 | VAR_06 | Mi universidad no me brinda suficiente inducción para usar las tecnologías de información de manera efectiva en mis actividades académicas |
NSO2 | VAR_07 | Mi universidad no me brinda incentivos suficientes para utilizar las tecnologías de información de manera efectiva en mis actividades como estudiante |
NSO3 | VAR_08 | La inducción desarrollada por mi universidad no es muy útil para lograr un uso efectivo de las tecnologías de información |
NSO4 | VAR_09 | En mi universidad no existe una cultura que fomente el uso de herramientas innovadoras como las tecnologías de información |
ADT1 | VAR_10 | Me siento presionado/a para usar las tecnologías de información de manera efectiva en mis trabajos universitarios |
ADT2 | VAR_11 | Me resulta difícil utilizar las tecnologías de información de manera efectiva debido al poco tiempo y esfuerzo que le dedico |
ADT3 | VAR_12 | Me resulta difícil hacer frente a las altas demandas de las tecnologías de información con mi capacidad actual |
ADT4 | VAR_13 | Me resulta difícil ponerme al día con los rápidos cambios de las tecnologías de información |
NST1 | VAR_14 | Las tecnologías de información en mi universidad no son efectivas para ayudarme a aumentar mi desempeño académico |
NST2 | VAR_15 | Las tecnologías de información en mi universidad no son muy importantes |
NST3 | VAR_16 | Estoy abrumado/a por la gran variedad de tecnologías de información que se utilizan en mi universidad |
NST4 | VAR_17 | Las diversas tecnologías de información complican mi proceso de toma de decisiones académicas |
NST5 | VAR_18 | Me molesta el uso excesivo de las tecnologías de información en mi universidad |
PPF1 | VAR_19 | No tengo el apoyo suficiente de mis compañeros para el uso de las tecnologías de información |
PPF2 | VAR_20 | Mis compañeros no son positivos con respecto al uso innovador de las tecnologías de información en mi universidad |
PPF3 | VAR_21 | No tengo un equipo con el que colaborar para encontrar una forma eficaz de usar las tecnologías de información en mis actividades como estudiante universitario |
PPF4 | VAR_22 | A menudo siento que estoy solo explorando el uso innovador de las tecnologías de la información |
Appendix B. Definitive TS4US Scale (Presented in Chilean Spanish)
TS4US | Variable | Questions (In Chilean Spanish) |
---|---|---|
ADTE01 | VAR_01 | Me resulta difícil satisfacer las demandas de mi universidad con respecto al uso de las tecnologías de información |
ADTE02 | VAR_02 | Me resulta difícil implementar con eficacia las indicaciones de mi universidad sobre el uso de las tecnologías de información |
ADTE03 | VAR_03 | Mi capacidad actual es insuficiente para implementar las indicaciones de mi universidad sobre el uso de las tecnologías de información |
ADTE04 | VAR_04 | Mis habilidades actuales son insuficientes para implementar las indicaciones de mi universidad sobre el uso las tecnologías de la información |
ADTE05 | VAR_05 | Me resulta difícil organizar mi horario de estudio actual para cumplir con las indicaciones de mi universidad sobre sobre el uso de las tecnologías de información |
ADTE06 | VAR_11 | Me resulta difícil utilizar las tecnologías de información de manera efectiva debido al poco tiempo y esfuerzo que le dedico |
ADTE07 | VAR_12 | Me resulta difícil hacer frente a las altas demandas de las tecnologías de información con mi capacidad actual |
ADTE08 | VAR_13 | Me resulta difícil ponerme al día con los rápidos cambios de las tecnologías de información |
ADTE09 | VAR_16 | Estoy abrumado/a por la gran variedad de tecnologías de información que se utilizan en mi universidad |
ADTE10 | VAR_17 | Las diversas tecnologías de información complican mi proceso de toma de decisiones académicas |
ADTE11 | VAR_18 | Me molesta el uso excesivo de las tecnologías de información en mi universidad |
NSR01 | VAR_06 | Mi universidad no me brinda suficiente inducción para usar las tecnologías de información de manera efectiva en mis actividades académicas |
NSR02 | VAR_07 | Mi universidad no me brinda incentivos suficientes para utilizar las tecnologías de información de manera efectiva en mis actividades como estudiante |
NSR03 | VAR_08 | La inducción desarrollada por mi universidad no es muy útil para lograr un uso efectivo de las tecnologías de información |
NSR04 | VAR_09 | En mi universidad no existe una cultura que fomente el uso de herramientas innovadoras como las tecnologías de información |
NSR05 | VAR_14 | Las tecnologías de información en mi universidad no son efectivas para ayudarme a aumentar mi desempeño académico |
NSR06 | VAR_15 | Las tecnologías de información en mi universidad no son muy importantes |
PPF1 | VAR_19 | No tengo el apoyo suficiente de mis compañeros para el uso de las tecnologías de información |
PPF2 | VAR_20 | Mis compañeros no son positivos con respecto al uso innovador de las tecnologías de información en mi universidad |
PPF3 | VAR_21 | No tengo un equipo con el que colaborar para encontrar una forma eficaz de usar las tecnologías de información en mis actividades como estudiante universitario |
PPF4 | VAR_22 | A menudo siento que estoy solo explorando el uso innovador de las tecnologías de la información |
References
- Abdullah, F.; Ward, R.; Ahmed, E. Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Comput. Hum. Behav. 2016, 63, 75–90. [Google Scholar] [CrossRef]
- Zokirovna, O.D. The Effectiveness of Implementation of ICT in Learning Process. Eur. Sch. J. 2020, 1, 9–11. Available online: https://scholarzest.com/index.php/esj/article/view/76 (accessed on 10 October 2022).
- Büyükbaykal, C.I. Communication Technologies and Education in the Information Age. Procedia Soc. Behav. Sci. 2015, 174, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Talebian, S.; Mohammadi, H.M.; Rezvanfar, A. Information and Communication Technology (ICT) in Higher Education: Advantages, Disadvantages, Conveniences and Limitations of Applying E-learning to Agricultural Students in Iran. Procedia Soc. Behav. Sci. 2014, 152, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Ben Youssef, A.; Dahmani, M.; Ragni, L. ICT Use, Digital Skills and Students’ Academic Performance: Exploring the Digital Divide. Information 2022, 13, 129. [Google Scholar] [CrossRef]
- Laleye, A.M. Practical and Technological Skills: An Inevitable Social Engineering Tool for Sustainable Development. Eur. J. Educ. Pedagog. 2022, 3, 171–177. [Google Scholar] [CrossRef]
- Sianes, A.; Vega-Muñoz, A.; Tirado-Valencia, P.; Ariza-Montes, A. Impact of the Sustainable Development Goals on the academic research agenda. A scientometric analysis. PLoS ONE 2022, 17, e0265409. [Google Scholar] [CrossRef]
- International Labour Organization. Estrés en el Trabajo: Un Reto Colectivo. 2016. Available online: https://www.ilo.org/safework/info/publications/WCMS_466549/lang--es/index.htm (accessed on 10 October 2022).
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, B.S.; Ragu-Nathan, T.S. The Impact of Technostress on Role Stress and Productivity. J. Manag. Inf. Syst. 2007, 24, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Brod, C. Technostress: The Human Cost of the Computer Revolution; Addison Wesley Publishing Company: Boston, MA, USA, 1984. [Google Scholar]
- Bondanini, G.; Giorgi, G.; Ariza-Montes, A.; Vega-Muñoz, A.; Andreucci-Annunziata, P. Technostress Dark Side of Technology in the Workplace: A Scientometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8013. [Google Scholar] [CrossRef]
- Nisafani, A.S.; Kiely, G.; Mahony, C. Workers’ technostress: A review of its causes, strains, inhibitors, and impacts. J. Decis. Syst. 2020, 29, 243–258. [Google Scholar] [CrossRef]
- Salanova, M.; Llorens, S.; Cifre, E. The dark side of technologies: Technostress among users of information and communication technologies. Int. J. Psychol. 2013, 48, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, M.; Cooper, C.L.; Stich, J. The technostress trifecta-techno eustress, techno distress and design: Theoretical directions and an agenda for research. Inf. Syst. J. 2019, 29, 6–42. [Google Scholar] [CrossRef] [Green Version]
- Albirini, A. Teachers’ attitudes toward information and communication technologies: The case of Syrian EFL teachers. Comput. Educ. 2006, 47, 373–398. [Google Scholar] [CrossRef]
- Joo, Y.J.; Lim, K.Y.; Kim, N.H. The effects of secondary teachers’ technostress on the intention to use technology in South Korea. Comput. Educ. 2016, 95, 114–122. [Google Scholar] [CrossRef]
- Truzoli, R.; Pirola, V.; Conte, S. The impact of risk and protective factors on online teaching experience in high school Italian teachers during the COVID-19 pandemic. J. Comput. Assist. Learn. 2021, 37, 940–952. [Google Scholar] [CrossRef]
- Estrada-Muñoz, C.; Castillo, D.; Vega-Muñoz, A.; Boada-Grau, J. Teacher Technostress in the Chilean School System. Int. J. Environ. Res. Public Health 2020, 17, 5280. [Google Scholar] [CrossRef]
- Estrada-Muñoz, C.; Vega-Muñoz, A.; Castillo, D.; Müller-Pérez, S.; Boada-Grau, J. Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking. Int. J. Environ. Res. Public Health 2021, 18, 5458. [Google Scholar] [CrossRef]
- Jena, R. Technostress in ICT enabled collaborative learning environment: An empirical study among Indian academician. Comput. Hum. Behav. 2015, 51 Pt B, 1116–1123. [Google Scholar] [CrossRef]
- Wang, X.; Li, B. Technostress among University Teachers in Higher Education: A Study Using Multidimensional Person-Environment Misfit Theory. Front. Psychol. 2019, 10, 1791. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, X. Technostress inhibitors and creators and their impacts on university teachers’ work performance in higher education. Cogn. Technol. Work 2021, 23, 315–330. [Google Scholar] [CrossRef]
- Abilleira, M.P.; Rodicio-García, M.-L.; Deus, M.P.R.-D.; Mosquera-González, M.J. Technostress in Spanish University Teachers During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 496. [Google Scholar] [CrossRef]
- Zainun, N.F.H.; Johari, J.; Adnan, Z. Technostress and Commitment to Change: The Moderating Role of Internal Communication. Int. J. Public Adm. 2020, 43, 1327–1339. [Google Scholar] [CrossRef]
- Estrada-Muñoz, C.; Vega-Muñoz, A.; Boada-Grau, J.; Castillo, D.; Müller-Pérez, S.; Contreras-Barraza, N. Impact of Techno-Creators and Techno-Inhibitors on Techno-Stress Manifestations in Chilean Kindergarten Directors in the Context of the COVID-19 Pandemic and Teleworking. Front. Psychol. 2022, 13, 865784. [Google Scholar] [CrossRef] [PubMed]
- Al-Qallaf, C.L. Librarians and Technology in Academic and Research Libraries in Kuwait: Perceptions and Effects. Libri 2006, 56, 168–179. [Google Scholar] [CrossRef]
- Wang, X.; Tan, S.C.; Li, L. Technostress in university students’ technology-enhanced learning: An investigation from multidimensional person-environment misfit. Comput. Hum. Behav. 2020, 105, 106208. [Google Scholar] [CrossRef]
- González-López, O.R.; Buenadicha-Mateos, M.; Sánchez-Hernández, M. Overwhelmed by Technostress? Sensitive Archetypes and Effects in Times of Forced Digitalization. Int. J. Environ. Res. Public Health 2021, 18, 4216. [Google Scholar] [CrossRef]
- Upadhyaya, P.; Vrinda. Impact of technostress on academic productivity of university students. Educ. Inf. Technol. 2021, 26, 1647–1664. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Q.; Wu, L.; Dong, Y. Exploring the Structural Relationship Between University Support, Students’ Technostress, and Burnout in Technology-enhanced Learning. Asia Pac. Educ. Res. 2021, 31, 463–473. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol. 2020, 25, 5261–5280. [Google Scholar] [CrossRef]
- Alvarez, J.; Labraña, J.; Brunner, J.J. La educación superior técnico profesional frente a nuevos desafíos: La Cuarta Revolución Industrial y la Pandemia por COVID-19. Rev. Educ. Política Soc. 2021, 6, 11–38. [Google Scholar] [CrossRef]
- Watermeyer, R.; Crick, T.; Knight, C.; Goodall, J. COVID-19 and digital disruption in UK universities: Afflictions and affordances of emergency online migration. High. Educ. 2021, 81, 623–641. [Google Scholar] [CrossRef] [PubMed]
- Mok, K.H.; Xiong, W.; Ke, G.; Cheung, J.O.W. Impact of COVID-19 pandemic on international higher education and student mobility: Student perspectives from mainland China and Hong Kong. Int. J. Educ. Res. 2021, 105, 101718. [Google Scholar] [CrossRef] [PubMed]
- Gopal, R.; Singh, V.; Aggarwal, A. Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19. Educ. Inf. Technol. 2021, 26, 6923–6947. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.; Knight, E.; Rowley, J. The role of hybrid learning spaces in enhancing higher education students’ employability. Br. J. Educ. Technol. 2020, 51, 1188–1202. [Google Scholar] [CrossRef] [Green Version]
- Coates, H.; Xie, Z.; Hong, X. Engaging transformed fundamentals to design global hybrid higher education. Stud. High. Educ. 2021, 46, 166–176. [Google Scholar] [CrossRef]
- Abilleira, M.P.; Rodicio-García, M.L.; Ríos-De-Deus, M.P.; Mosquera-González, M.J. Technostress in Spanish University Students: Validation of a Measurement Scale. Front. Psychol. 2020, 11, 582317. [Google Scholar] [CrossRef]
- Hughes, D.J. Psychometric Validity. In The Wiley Handbook of Psychometric Testing; Irwing, P., Booth, T., Hughes, D.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 751–779. [Google Scholar] [CrossRef]
- Lloret-Segura, S.; Ferreres-Traver, A.; Hernandez, A.; Tomás, I. Exploratory Item Factor Analysis: A practical guide revised and up-dated. An. Psicol. 2014, 30, 1151–1169. [Google Scholar] [CrossRef]
- Ferrando, P.J.; Lorenzo-Seva, U. Program FACTOR at 10: Origins, development and future directions. Psicothema 2017, 29, 236–240. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Timmerman, M.E.; Kiers, H.A.L. The Hull Method for Selecting the Number of Common Factors. Multivar. Behav. Res. 2011, 46, 340–364. [Google Scholar] [CrossRef]
- Kyriazos, T.A. Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General. Psychology 2018, 09, 2207–2230. [Google Scholar] [CrossRef]
- Velicer, W.F.; Fava, J.L. Affects of variable and subject sampling on factor pattern recovery. Psychol. Methods 1998, 3, 231–251. [Google Scholar] [CrossRef]
- Sun, J. Assessing Goodness of Fit in Confirmatory Factor Analysis. Meas. Eval. Couns. Dev. 2005, 37, 240–256. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods Psychol. Res. 2003, 8, 23–74. Available online: https://www.stats.ox.ac.uk/~snijders/mpr_Schermelleh.pdf (accessed on 9 August 2022).
- Kalkan, K.; Kelecioğlu, H. The Effect of Sample Size on Parametric and Nonparametric Factor Analytical Methods. Educ. Sci. Theory Pract. 2016, 16, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Puentes-Martínez, L.; Díaz-Rábago, A.B. Reliability and construct validity of the Perceived Stress Scale in medical students. Rev. de Cienc. Médicas de Pinar del Río 2019, 23, 373–379. Available online: http://ref.scielo.org/d6gmjs (accessed on 10 October 2022).
- Murguia-Ramirez, A.C.; Pozos-Radillo, B.E.; Plascencia-Campos, A.R. Work stress and its relationship with socio-labor factors in teachers of a public preparatory school and of a private one. Rev. Cuba. de Salud y Trab. 2019, 20, 52–57. Available online: http://revsaludtrabajo.sld.cu/index.php/revsyt/article/view/81 (accessed on 10 October 2022).
- National Statistics Institute. Population and Housing Census. Available online: https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/censo-de-poblacion-y-vivienda (accessed on 24 October 2022).
- National Education Council. Regional INDICES. Available online: https://www.cned.cl/indices_New_~/regional.php (accessed on 24 October 2022).
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The job demands-resources model of burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef]
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological Antecedents and Implications. MIS Q. 2011, 35, 831–858. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Does Stress from Cell Phone Use Increase Negative Emotions at Work? Soc. Behav. Personal. Int. J. 2016, 44, 705–715. [Google Scholar] [CrossRef]
- Johnson, J.V.; Hall, A.M. Job strain, work place social support, and cardiovascular disease: A cross-sectional study of a random sample of the Swedish working population. Am. J. Public Health 1988, 78, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- French, J.R.P., Jr.; Rodgers, W.; Cobb, S. Adjustment as person-environment fit. In Coping and Adaptation; Coelho, G.V., Hamburg, D.A., Adams, J.E., Eds.; Basic Books: New York, NY, USA, 1974; pp. 316–333. [Google Scholar]
- Harrison, R.V. Person-environment fit and job stress. In Stress at Work; Cooper, C.L., Payne, R., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1978; pp. 175–205. [Google Scholar]
- Caplan, R.D. Person-environment fit theory and organizations: Commensurate dimensions, time perspectives, and mechanisms. J. Vocat. Behav. 1987, 31, 248–267. [Google Scholar] [CrossRef] [Green Version]
- Caplan, R.D.; Van Harrison, R. Person-Environment Fit Theory: Some History, Recent Developments, and Future Directions. J. Soc. Issues 1993, 49, 253–275. [Google Scholar] [CrossRef]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, T.S.; Ragu-Nathan, B.S. Crossing to the dark side: Examining, creators, outcomes, and inhibitors of technostress. Commun. ACM 2011, 54, 113–120. [Google Scholar] [CrossRef]
- Hwang, I.; Cha, O. Examining technostress creators and role stress as potential threats to employees’ information security compliance. Comput. Hum. Behav. 2018, 81, 282–293. [Google Scholar] [CrossRef]
- Ones, D.S.; Viswesvaran, C.; Schmidt, F.L. Realizing the full potential of psychometric meta-analysis for a cumulative science and practice of human resource management. Hum. Resour. Manag. Rev. 2017, 27, 201–215. [Google Scholar] [CrossRef]
- Dahlke, J.A.; Wiernik, B.M. psychmeta: An R Package for Psychometric Meta-Analysis. Appl. Psychol. Meas. 2019, 43, 415–416. [Google Scholar] [CrossRef]
- Graham, C.R. Blended Learning Systems: Definition, Current Trends, and Future Directions. In Handbook of Blended Learning: Global Perspectives, Local Designs; Bonk, C.J., Graham, C.R., Eds.; Pfeiffer Publishing: San Francisco, CA, USA, 2006; pp. 3–21. Available online: https://media.wiley.com/product_data/excerpt/86/07879775/0787977586-3.pdf (accessed on 30 May 2022).
- Porter, W.W.; Graham, C.; Spring, K.A.; Welch, K.R. Blended learning in higher education: Institutional adoption and implementation. Comput. Educ. 2014, 75, 185–195. [Google Scholar] [CrossRef]
- Ferrando, P.J.; Lorenzo-Seva, U.; Hernández-Dorado, A.; José Muñiz, J. Decalogue for the Factor Analysis of Test Items. Psicothema 2022, 34, 7–17. [Google Scholar] [CrossRef]
- Vega-Muñoz, A.; Estrada-Muñoz, C. Evaluating Technostress to Improve Teaching Performance: Chilean Higher Education Case. In Evaluating Mental Workload for Improved Work-Place Performance; Realyvásquez-Vargas, A., Arredondo-Soto, K., Hernández-Escobedo, G., González-Reséndiz, J., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 161–183. [Google Scholar] [CrossRef]
- Valdez-Bonilla, H.; Ron-Murguía, C. Escala Utrecht de Engagement en el Trabajo (Utrecht Work Engagement Scale, UWES). Utrecht: Occupational Health Psychology Unit Utrecht University. 2011. Available online: https://www.wilmarschaufeli.nl/publications/Schaufeli/Test%20Manuals/Test_manual_UWES_Espanol.pdf (accessed on 10 August 2022).
- Elipe, P.; Mora-Merchán, J.A.; Nacimiento, L. Development and Validation of an Instrument to Assess the Impact of Cyberbullying: The Cybervictimization Emotional Impact Scale. Cyberpsychology Behav. Soc. Netw. 2017, 20, 479–485. [Google Scholar] [CrossRef]
- Moon, S.J.; Hwang, J.S.; Kim, J.Y.; Shin, A.L.; Bae, S.M.; Kim, J.W. Psychometric Properties of the Internet Addiction Test: A Systematic Review and Meta-Analysis. Cyberpsychology Behav. Soc. Netw. 2018, 21, 473–484. [Google Scholar] [CrossRef]
Article | Country | Sample | Method | Factors | MIF | χ2/df | RMSEA | AGFI | GFI | CFI | RFI | NFI | NNFI | RMSR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wang et al. [21] | China | 343 | EFA/CFA | 5 | 4 | 2.06 * | 0.06 * | NR | NR | 0.95 * | NR | 0.91 * | NR | NR |
Penado-Abilleira et al. [38] | Spain | 1744 | EFA/CFA | 5 | 3 | NR | NR | 0.994 ** | 0.995 ** | NR | 0.993 ** | 0.994 ** | NR | 0.054 * |
Schermelleh-Engel et al. [46] | Parameters | ≥200 | Good fit | - | NR | ≥0 ≤2 | ≤0.05 | ≥0.90 ≤1.00 | ≥0.95 ≤1.00 | ≥0.97 ≤1.00 | >0.90 + | ≥0.95 ≤1.00 | ≥0.97 ≤1.00 | <0.05 ++ |
Acceptable fit | - | ≥3 | >2 ≤3 | >0.05 ≤0.08 | ≥0.85 <0.90 | ≥0.90 <0.95 | ≥0.95 <0.97 | NR | ≥0.90 <0.95 | ≥0.95 <0.97 | ≥0.05 ≤0.08 ++ |
Variable | Category/Level | Frequency | Percentage |
---|---|---|---|
University Type | State University | 71 | 33.5% |
Private University | 141 | 66.5% | |
Educational Level | Postgraduate | 10 | 4.7% |
Undergraduate | 202 | 95.3% | |
Educational Journey | Daytime (synchronous) | 129 | 60.8% |
Evening (synchronous) | 30 | 14.2% | |
Weekends (synchronous) | 6 | 2.8% | |
Online (asynchronous) | 47 | 22.2% | |
Age Level | Less than 20 years old | 67 | 31.6% |
21 to 30 years | 116 | 54.7% | |
31 to 40 years old | 22 | 10.4% | |
41 to 50 years old | 5 | 2.4% | |
51 to 60 years old | 1 | 0.5% | |
60 years and older | 1 | 0.5% | |
Average age | N/A | N/A | |
Job Condition (Chilean census standard) | I am looking for a job for the first time (unemployed) | 13 | 6.1% |
I am unemployed (unemployed) | 21 | 9.9% | |
I am physically or mentally unable to work (unemployed) | 3 | 1.4% | |
I am exclusively studying (not working) | 114 | 53.8% | |
I am busy | 56 | 26.4% | |
I am not interested in working | 5 | 2.4% | |
Gender | Female | 151 | 71.2% |
Male | 61 | 28.8% |
Variable | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 0.639 | 0.670 | 0.707 | 0.713 | 0.669 | 0.610 | 0.721 | 0.581 | 0.505 | 0.744 | 0.633 | 0.497 | 0.465 | 0.480 | 0.638 | 0.494 | 0.462 | 0.468 | 0.470 |
Extraction | 0.568 | 0.573 | 0.718 | 0.833 | 0.661 | 0.641 | 0.742 | 0.604 | 0.427 | 0.755 | 0.655 | 0.449 | 0.405 | 0.497 | 0.683 | 0.477 | 0.524 | 0.563 | 0.525 |
KMO and Bartlett’s Test | |||||
---|---|---|---|---|---|
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.897 | ||||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 2432.170 | |||
Degree of freedom | 171 | ||||
Significance | 0.000 | ||||
Pattern Matrix a | |||||
ID | Variable | Factor | |||
1 | 2 | 3 | 4 | ||
ADO1 | VAR_01 | 0.678 | |||
ADO2 | VAR_02 | 0.534 | |||
ADO3 | VAR_03 | 0.692 | |||
ADO4 | VAR_04 | 0.864 | |||
NSO1 | VAR_06 | 0.783 | |||
NSO2 | VAR_07 | 0.739 | |||
NSO3 | VAR_08 | 0.902 | |||
NSO4 | VAR_09 | 0.774 | |||
ADT3 | VAR_12 | 0.603 | |||
ADT4 | VAR_13 | 0.702 | |||
NST1 | VAR_14 | 0.623 | |||
NST2 | VAR_15 | 0.544 | |||
NST3 | VAR_16 | 0.729 | |||
NST4 | VAR_17 | 0.709 | |||
NST5 | VAR_18 | 0.651 | |||
PPF1 | VAR_19 | 0.695 | |||
PPF2 | VAR_20 | 0.712 | |||
PPF3 | VAR_21 | 0.628 | |||
% of Variance | 41.176 | 10.083 | 4.655 | 3.561 | |
Cumulative % | 41.176 | 51.259 | 55.915 | 59.476 | |
Factor Correlation Matrix b | |||||
Factor | 1 | 2 | 3 | 4 | |
1 | 1.000 | ||||
2 | 0.458 | 1.000 | |||
3 | 0.369 | 0.492 | 1.000 | ||
4 | 0.553 | 0.367 | 0.314 | 1.000 |
Variable | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 0.639 | 0.670 | 0.707 | 0.713 | 0.669 | 0.610 | 0.721 | 0.581 | 0.505 | 0.744 | 0.633 | 0.497 | 0.465 | 0.480 | 0.638 | 0.494 | 0.462 | 0.468 | 0.470 |
Extraction | 0.541 | 0.581 | 0.550 | 0.503 | 0.650 | 0.638 | 0.746 | 0.602 | 0.424 | 0.768 | 0.647 | 0.432 | 0.402 | 0.414 | 0.647 | 0.429 | 0.509 | 0.540 | 0.519 |
Pattern Matrix a | ||||
---|---|---|---|---|
ID | Variable | Factor | ||
1 | 2 | 3 | ||
ADO1 | VAR_01 | 0.724 | ||
ADO2 | VAR_02 | 0.733 | ||
ADO3 | VAR_03 | 0.727 | ||
ADO4 | VAR_04 | 0.691 | ||
NSO1 | VAR_06 | 0.789 | ||
NSO2 | VAR_07 | 0.746 | ||
NSO3 | VAR_08 | 0.916 | ||
NSO4 | VAR_09 | 0.776 | ||
ADT2 | VAR_11 | 0.652 | ||
ADT3 | VAR_12 | 0.887 | ||
ADT4 | VAR_13 | 0.831 | ||
NST1 | VAR_14 | 0.614 | ||
NST2 | VAR_15 | 0.539 | ||
NST3 | VAR_16 | 0.649 | ||
NST4 | VAR_17 | 0.745 | ||
NST5 | VAR_18 | 0.620 | ||
PPF1 | VAR_19 | 0.683 | ||
PPF2 | VAR_20 | 0.720 | ||
PPF3 | VAR_21 | 0.624 | ||
% of Variance | 40.952 | 9.937 | 4.583 | |
Cumulative % | 40.952 | 50.890 | 55.473 | |
Factor Correlation Matrix b | ||||
Factor | 1 | 2 | 3 | |
1 | 1.000 | |||
2 | 0.536 | 1.000 | ||
3 | 0.447 | 0.503 | 1.000 |
Rotated Loading Matrix | |||||
---|---|---|---|---|---|
Previous | TS4US | Variable | Factor | ||
1 | 2 | 3 | |||
ADO1 | ADTE01 | VAR_01 | 0.732 | ||
ADO2 | ADTE02 | VAR_02 | 0.745 | ||
ADO3 | ADTE03 | VAR_03 | 0.734 | ||
ADO4 | ADTE04 | VAR_04 | 0.696 | ||
NSO1 | NSR01 | VAR_06 | 0.794 | ||
NSO2 | NSR02 | VAR_07 | 0.747 | ||
NSO3 | NSR03 | VAR_08 | 0.924 | ||
NSO4 | NSR04 | VAR_09 | 0.779 | ||
ADT2 | ADTE05 | VAR_11 | 0.657 | ||
ADT3 | ADTE06 | VAR_12 | 0.894 | ||
ADT4 | ADTE07 | VAR_13 | 0.841 | ||
NST1 | NSR05 | VAR_14 | 0.612 | ||
NST2 | NSR06 | VAR_15 | 0.535 | ||
NST3 | ADTE08 | VAR_16 | 0.657 | ||
NST4 | ADTE09 | VAR_17 | 0.749 | ||
NST5 | ADTE10 | VAR_18 | 0.629 | ||
PPF1 | PPF1 | VAR_19 | 0.714 | ||
PPF2 | PPF2 | VAR_20 | 0.760 | ||
PPF3 | PPF3 | VAR_21 | 0.652 | ||
% of Variance | 43.204 | 12.112 | 6.991 | ||
Cumulative % | 43.204 | 55.316 | 62.307 | ||
Factor Correlation Matrix | |||||
Factor | 1 | 2 | 3 | ||
1 | 1.000 | ||||
2 | 0.510 | 1.000 | |||
3 | 0.558 | 0.545 | 1.000 |
Article | Country | Sample | Method | Factors | MIF | χ2/df | RMSEA | AGFI | GFI | CFI | RFI | NFI | NNFI | RMSR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wang et al. [21] | China | 343 | EFA/CFA | 5 | 4 | 2.06 * | 0.06 * | NR | NR | 0.95 * | NR | 0.91 * | NR | NR |
Penado-Abilleira et al. [38] | Spain | 1744 | EFA/CFA | 5 | 3 | NR | NR | 0.994 ** | 0.995 ** | NR | 0.993 ** | 0.994 ** | NR | 0.054 * |
Proposed Model | Chile | 212 | EFA/CFA | 3 | 4 | NR | 0.072 * | 0.986 ** | 0.990 ** | 0.979 ** | NR | NR | 0.970 ** | 0.047 ** |
Schermelleh-Engel et al. [46] | Parameters | ≥200 | Good fit | - | NR | ≥0 ≤2 | ≤0.05 | ≥0.90 ≤1.00 | ≥0.95 ≤1.00 | ≥0.97 ≤1.00 | >0.90 + | ≥0.95 ≤1.00 | ≥0.97 ≤1.00 | <0.05 ++ |
Acceptable fit | - | ≥3 | >2 ≤3 | >0.05 ≤0.08 | ≥0.85 <0.90 | ≥0.90 <0.95 | ≥0.95 <0.97 | NR | ≥0.90 <0.95 | ≥0.95 <0.97 | ≥0.05 ≤0.08 ++ |
Factor | Factor Name | Cronbach’s Alpha | Cronbach’s Alpha Base on Standardized Items | Number of Items |
---|---|---|---|---|
1 | Needs-Supplies Resources, NSR | 0.887 | 0.886 | 6 |
2 | Person-People Factor, PPF | 0.753 | 0.754 | 3 |
3 | Abilities-Demands Techno-Educational, ADTE | 0.921 | 0.922 | 10 |
Total | TS4US scale | 0.925 | 0.925 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Muñoz, A.; Estrada-Muñoz, C.; Andreucci-Annunziata, P.; Contreras-Barraza, N.; Bilbao-Cotal, H. Validation of a Measurement Scale on Technostress for University Students in Chile. Int. J. Environ. Res. Public Health 2022, 19, 14493. https://doi.org/10.3390/ijerph192114493
Vega-Muñoz A, Estrada-Muñoz C, Andreucci-Annunziata P, Contreras-Barraza N, Bilbao-Cotal H. Validation of a Measurement Scale on Technostress for University Students in Chile. International Journal of Environmental Research and Public Health. 2022; 19(21):14493. https://doi.org/10.3390/ijerph192114493
Chicago/Turabian StyleVega-Muñoz, Alejandro, Carla Estrada-Muñoz, Paola Andreucci-Annunziata, Nicolas Contreras-Barraza, and Heidi Bilbao-Cotal. 2022. "Validation of a Measurement Scale on Technostress for University Students in Chile" International Journal of Environmental Research and Public Health 19, no. 21: 14493. https://doi.org/10.3390/ijerph192114493
APA StyleVega-Muñoz, A., Estrada-Muñoz, C., Andreucci-Annunziata, P., Contreras-Barraza, N., & Bilbao-Cotal, H. (2022). Validation of a Measurement Scale on Technostress for University Students in Chile. International Journal of Environmental Research and Public Health, 19(21), 14493. https://doi.org/10.3390/ijerph192114493