Validation of Vibration Exercises on Enhancing Muscle Strength and Upper Limb Functionality among Pre-Frail Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Study Design
2.2. Participants
2.3. Research Device
2.4. Vibration Exercise Program in the VG
2.5. Multi-Component Exercises in the CG
2.6. Outcome Measurements
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Impacts of Combining Vibration and Multi-Component Exercises on Enhancing Muscle Strength and Functionality among Pre-Frail Older Adults
4.2. Different Vibration Approaches may Induce Different Force Transmission in Facilitating Muscle Activation in the Upper Limbs
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.C.; Wu, L.C.; Chiang, S.L.; Lu, L.H.; Chen, C.Y.; Lin, C.H.; Ni, C.H.; Lin, C.H. Validating the Capability for Measuring Age-Related Changes in Grip-Force Strength Using a Digital Hand-Held Dynamometer in Healthy Young and Elderly Adults. BioMed. Res. Int. 2020, 2020, 6936879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, J.; Hebert, R.; Bravo, G.; Rochette, A. Age-related changes in upper extremity performance of elderly people: A longitudinal study. Exp. Gerontol. 1999, 34, 393–405. [Google Scholar] [CrossRef]
- Lin, C.H.; Sung, W.H.; Chiang, S.L.; Lee, S.C.; Lu, L.H.; Wang, P.C.; Wang, X.M. Influence of aging and visual feedback on the stability of hand grip control in elderly adults. Exp. Gerontol. 2019, 119, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, D.D.; Hardoon, S.; Rait, G.; Weerasinghe, M.C.; Walters, K.R. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: A systematic review and meta-analysis. BMJ Open 2018, 8, e018195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Wu, Q.; Wang, D.; Li, Z.; Liu, H.; Liu, G.; Cui, Y.; Song, L. Effects of elastic band exercise on the frailty states in pre-frail elderly people. Physiother. Theory Pract. 2020, 36, 1000–1008. [Google Scholar] [CrossRef]
- Kang, M.G.; Kim, S.W.; Yoon, S.J.; Choi, J.Y.; Kim, K.I.; Kim, C.H. Association between Frailty and Hypertension Prevalence, Treatment, and Control in the Elderly Korean Population. Sci. Rep. 2017, 7, 7542. [Google Scholar] [CrossRef] [Green Version]
- de Nery, S.S.; Gomides, R.S.; da Silva, G.V.; de Forjaz, C.L.M.; Mion, D., Jr.; Tinucci, T. Intra-arterial blood pressure response in hypertensive subjects during low- and high-intensity resistance exercise. Clinics 2010, 65, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef]
- Mikhael, M.; Orr, R.; Amsen, F.; Greene, D.; Singh, M.A. Effect of standing posture during whole body vibration training on muscle morphology and function in older adults: A randomised controlled trial. BMC Geriatr. 2010, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, D.J. Vibration exercise: The potential benefits. Int. J. Sports Med. 2011, 32, 75–99. [Google Scholar] [CrossRef]
- Alam, M.M.; Khan, A.A.; Farooq, M. Effect of whole-body vibration on neuromuscular performance: A literature review. Work 2018, 59, 571–583. [Google Scholar] [CrossRef]
- da Silva, U.; Villagra, H.A.; Oliva, L.L.; Marconi, N.F. EMG activity of upper limb on spinal cord injury individuals during whole-body vibration. Physiol. Int. 2016, 103, 361–367. [Google Scholar] [CrossRef] [Green Version]
- de Souza, A.L.C.; Mendonca, V.A.; de Oliveira, A.C.C.; da Fonseca, S.F.; Santos, L.M.M.; Fernandes, J.S.C.; Leite, H.R.; de Martins, F.L.M.; Dos Santos, J.M.D.; de Silva, A.F.; et al. Whole body vibration in the static modified push-up position in untrained healthy women stimulates neuromuscular system potentiating increased handgrip myogenic response. J. Bodyw. Mov. Ther. 2020, 24, 233–238. [Google Scholar] [CrossRef]
- Jones, M.T.; Martin, J.R.; Jagim, A.R.; Oliver, J.M. Effect of Direct Whole-Body Vibration on Upper-Body Muscular Power in Recreational, Resistance-Trained Men. J. Strength Cond. Res. 2017, 31, 1371–1377. [Google Scholar] [CrossRef]
- Ashnagar, Z.; Shadmehr, A.; Hadian, M.; Talebian, S.; Jalaei, S. The effects of whole body vibration on EMG activity of the upper extremity muscles in static modified push up position. J. Back Musculoskelet. Rehabil. 2016, 29, 557–563. [Google Scholar] [CrossRef]
- Costa, V.; da Silva, F.F.; de Lima, R.M.; Mezêncio, B.; Ferreira, J.C. Mechanical Vibration Increases EMG Activity But Does Not Affect Strength Resistance Performance. J. Prof. Exerc. Physiol. 2019, 22, 120–129. [Google Scholar]
- Morel, D.S.; Marín, P.J.; Moreira-Marconi, E.; Dionello, C.F.; Bernardo-Filho, M. Can Whole-Body Vibration Exercises in Different Positions Change Muscular Activity of Upper Limbs? A Randomized Trial. Dose Response 2018, 16, 1559325818804361. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, C.Y.; Kim, H.D. Short-Term Effects of Whole-Body Vibration Combined with Task-Related Training on Upper Extremity Function, Spasticity, and Grip Strength in Subjects with Poststroke Hemiplegia: A Pilot Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2016, 95, 608–617. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Kim, H.; Park, C.B. Effects of Whole-Body Vibration on Upper Extremity Function and Grip Strength in Patients with Subacute Stroke: A Randomised Single-Blind Controlled Trial. Occup. Ther. Int. 2019, 2019, 5820952. [Google Scholar] [CrossRef]
- Lau, R.W.; Yip, S.P.; Pang, M.Y. Whole-body vibration has no effect on neuromotor function and falls in chronic stroke. Med. Sci. Sports Exerc. 2012, 44, 1409–1418. [Google Scholar] [CrossRef]
- Pang, M.Y.; Lau, R.W.; Yip, S.P. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2013, 49, 439–450. [Google Scholar] [PubMed]
- Xue, Q.L. The frailty syndrome: Definition and natural history. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, P.J.; Santos-Lozano, A.; Santin-Medeiros, F.; Vicente-Rodriguez, G.; Casajus, J.A.; Hazell, T.J.; Garatachea, N. Whole-body vibration increases upper and lower body muscle activity in older adults: Potential use of vibration accessories. J. Electromyogr. Kinesiol. 2012, 22, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Kin-Isler, A.; Acikada, C.; Aritan, S. Effects of vibration on maximal isometric muscle contraction at different joint angles. Isokinet. Exerc. Sci. 2006, 14, 213–220. [Google Scholar] [CrossRef]
- Silva, H.R.; Couto, B.P.; Szmuchrowski, L.A. Effects of mechanical vibration applied in the opposite direction of muscle shortening on maximal isometric strength. J. Strength Cond. Res. 2008, 22, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Hazell, T.J.; Jakobi, J.M.; Kenno, K.A. The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl. Physiol. Nutr. Metab. 2007, 32, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, A.; Delecluse, C.; Claessens, A.L.; Coudyzer, W.; Boonen, S.; Verschueren, S.M. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: A 1-year randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.; Hill, K.D.; Ball, M.; Hetherington, S.; Williams, A.D. The long-term benefits of a multi-component exercise intervention to balance and mobility in healthy older adults. Arch. Gerontol. Geriatr. 2011, 52, 211–216. [Google Scholar] [CrossRef]
- von Stengel, S.; Kemmler, W.; Engelke, K.; Kalender, W.A. Effect of whole-body vibration on neuromuscular performance and body composition for females 65 years and older: A randomized-controlled trial. Scand. J. Med. Sci. Sports 2012, 22, 119–127. [Google Scholar] [CrossRef]
- Boo, J.A.; Moon, S.H.; Lee, S.M.; Choi, J.H.; Park, S.E. Effect of whole-body vibration exercise in a sitting position prior to therapy on muscle tone and upper extremity function in stroke patients. J. Phys. Ther. Sci. 2016, 28, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Toraman, N.F.; Erman, A.; Agyar, E. Effects of multicomponent training on functional fitness in older adults. J. Aging Phys. Act. 2004, 12, 538–553. [Google Scholar] [CrossRef]
- Swain, D.P.; Leutholtz, B.C. Exercise Prescription: A Case Study Approach to the ACSM Guidelines; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Vermeulen, J.; Neyens, J.C.; Spreeuwenberg, M.D.; van Rossum, E.; Hewson, D.J.; de Witte, L.P. Measuring grip strength in older adults: Comparing the grip-ball with the Jamar dynamometer. J. Geriatr. Phys. Ther. 2015, 38, 148–153. [Google Scholar] [CrossRef]
- American Society of Hand Therapists. Clinical Assessment Recommendations; The Society: Chicago, IL, USA, 1992. [Google Scholar]
- Kuzala, E.A.; Vargo, M.C. The relationship between elbow position and grip strength. Am. J. Occup. Ther. 1992, 46, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wu, W.; Zhang, C.; Wang, D.; Chen, C.; Tang, Y.; Li, K.; Xu, J.; Luo, F. Reliability and validity of three isometric back extensor strength assessments with different test postures. J. Int. Med. Res. 2020, 48, 300060519885268. [Google Scholar] [CrossRef] [Green Version]
- Nepomuceno, B.R.V.; Dos Santos Menezes, M.P.; Dos Santos, K.R.B.; Gomes, M. Comparison of methods for evaluating upper limb strength by hand-held dynamometry. Rev. Bras. Med. Esporte 2021, 27, 42–48. [Google Scholar] [CrossRef]
- Andrews, A.W.; Thomas, M.W.; Bohannon, R.W. Normative Values for Isometric Muscle Force Measurements Obtained With Hand-held Dynamometers. Phys. Ther. 1996, 76, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M.M. The reliability and validity of self-report activities of daily living scales. Can. J. Occup. Ther. 1990, 57, 273–278. [Google Scholar] [CrossRef]
- Liang, K.Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Hu, S.; Chen, H.; Zhang, M.; Yang, Y.; Liu, Y. Effects of multicomponent exercise on the muscle strength, muscle endurance and balance of frail older adults: A meta-analysis of randomised controlled trials. J. Clin. Nurs. 2022. Ahead-of-Print. [Google Scholar] [CrossRef]
- Bray, N.W.; Jones, G.J.; Rush, K.L.; Jones, C.A.; Jakobi, J.M. Multi-Component Exercise with High-Intensity, Free-Weight, Functional Resistance Training in Pre-Frail Females: A Quasi-Experimental, Pilot Study. J. Frailty Aging 2020, 9, 111–117. [Google Scholar] [CrossRef]
- Šarabon, N.; Kozinc, Ž.; Löfler, S.; Hofer, C. Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 2902. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Mao, L.; Feng, Y.; Ainsworth, B.E.; Liu, Y.; Chen, N. Effects of different exercise training modes on muscle strength and physical performance in older people with sarcopenia: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 1–30. [Google Scholar] [CrossRef]
- Santos, L.M.M.; Oliveira, A.C.C.; Fonseca, S.F.; Silva, A.F.; Santos, J.N.V.; Souza, A.L.C.; Santos, J.M.; Ribeiro, V.G.C.; Arrieiro, A.N.; Prates, A.C.N.; et al. Whole-Body Vibration Exercise in Different Postures on Handgrip Strength in Healthy Women: A Cross-Over Study. Front. Physiol. 2020, 11, 469499. [Google Scholar] [CrossRef] [PubMed]
- Moran, K.; McNamara, B.; Luo, J. Effect of vibration training in maximal effort (70% 1RM) dynamic bicep curls. Med. Sci. Sports Exerc. 2007, 39, 526–533. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Hawke, E.J. Effects of acute upper-body vibration on strength and power variables in climbers. J. Strength Cond. Res. 2007, 21, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Sanudo, B.; Taiar, R.; Furness, T.; Bernardo-Filho, M. Clinical Approaches of Whole-Body Vibration Exercises in Individuals with Stroke: A Narrative Revision. Rehabil. Res. Pract. 2018, 2018, 8180901. [Google Scholar] [CrossRef]
Variable | All | CG | VG | Z | p |
---|---|---|---|---|---|
n = 31 | n = 16 | n = 15 | |||
Age (year) | 75.4 (5.5) | 74.9 (5.9) | 75.9 (5.2) | −0.60 | 0.55 |
Body height (cm) | 153.7 (4.7) | 153.4 (4.2) | 154.1 (5.4) | −0.35 | 0.73 |
Body weight (kg) | 60.2 (7.3) | 60.2 (6.8) | 60.1 (8.0) | −0.26 | 0.80 |
Body mass index (kg/m2) | 25.6 (3.5) | 25.7 (3.2) | 25.5 (3.9) | −0.10 | 0.92 |
MMSE | 27.5 (2.1) | 28.0 (1.9) | 27.0 (2.3) | −1.25 | 0.21 |
Variable | CG (n =16) | VG (n = 15) | Between Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | After | Z | ap | Baseline | After | Z | ap | Baseline | After | ||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | d | d | bp | |||||
IADL | 21.4 (2.4) | 20.8 (4.9) | −3.2 | 0.002 | 21.3 (2.4) | 22.3 (1.6) | −2.8 | 0.01 | −0.01 | −0.22 | 0.55 |
ADL | 98.8 (2.9) | 97.5 (8.8) | −3.5 | <0.001 | 100 (0) | 100 (0) | −3.4 | 0.001 | −0.62 | −0.50 | 0.16 |
Maximal grip strength | |||||||||||
Dominant | 15.3 (5.1) | 18.4 (4.1) | −0.6 | 0.54 | 18.9 (4.9) | 20.2 (4.1) | −3.4 | 0.001 | −0.01 | −0.46 | 0.21 |
Non-dominant | 16.6 (5.0) | 16.3 (4.0) | −0.2 | 0.84 | 16.5 (6.1) | 18.2 (5.1) | −3.2 | 0.001 | −0.21 | −0.60 | 0.10 |
Wrist flexion | |||||||||||
Dominant | 4.5 (1.8) | 5.0 (1.7) | −3.2 | 0.001 | 4.4 (1.2) | 7.3 (1.7) | −3.0 | 0.002 | −0.12 | −1.17 | 0.001 |
Non-dominant | 4.7 (1.8) | 5.0 (1.8) | −2.8 | 0.01 | 4.2 (1.0) | 6.5 (1.6) | −2.3 | 0.03 | −0.02 | −0.74 | 0.04 |
Wrist extension | |||||||||||
Dominant | 5.1 (1.9) | 6.2 (1.5) | −2.8 | 0.01 | 4.8 (1.5) | 6.5 (1.4) | −3.4 | 0.001 | −0.12 | −0.31 | 0.39 |
Non-dominant | 4.6 (1.8) | 5.5 (1.5) | −1.1 | 0.29 | 4.7 (1.6) | 5.6 (1.8) | −3.0 | 0.002 | −0.16 | −0.02 | 0.95 |
Brachioradialis | |||||||||||
Dominant | 7.2 (2.1) | 9.3 (3.1) | −2.9 | 0.003 | 6.8 (1.6) | 12.8 (3.9) | −3.4 | 0.001 | −0.20 | −0.87 | 0.02 |
Non-dominant | 6.9 (2.7) | 8.6 (3.2) | −0.3 | 0.78 | 7.3 (2.0) | 11.9 (4.9) | −3.4 | 0.001 | −0.29 | −0.84 | 0.02 |
Biceps brachii | |||||||||||
Dominant | 7.6 (1.7) | 9.2 (2.7) | −3.3 | 0.001 | 8.3 (1.9) | 13.0 (3.7) | −2.1 | 0.04 | −0.46 | −1.07 | 0.003 |
Non-dominant | 6.7 (2.4) | 8.6 (2.5) | −2.9 | 0.003 | 8.0 (2.1) | 12.2 (4.1) | −2.9 | 0.003 | −0.60 | −0.95 | 0.01 |
Triceps brachii | |||||||||||
Dominant | 8.6 (2.5) | 10.5 (2.3) | −3.2 | 0.002 | 8.2 (1.5) | 9.9 (1.7) | −3.4 | 0.001 | −0.12 | −0.17 | 0.65 |
Non-dominant | 8.2 (2.6) | 9.9 (2.4) | −0.6 | 0.57 | 8.7 (1.9) | 9.6 (2.2) | −2.4 | 0.02 | −0.31 | −0.01 | 0.97 |
Deltoid anterior | |||||||||||
Dominant | 7.0 (2.2) | 8.2 (2.2) | −2.7 | 0.01 | 7.3 (1.9) | 9.6 (1.8) | −3.0 | 0.003 | −0.23 | −0.63 | 0.08 |
Non-dominant | 6.1 (2.6) | 7.2 (2.3) | −1.9 | 0.05 | 6.4 (1.4) | 8.9 (2.2) | −2.7 | 0.01 | −0.41 | −0.70 | 0.04 |
Deltoid lateral | |||||||||||
Dominant | 7.0 (2.0) | 7.9 (2.8) | −2.1 | 0.04 | 6.7 (1.9) | 9.4 (2.5) | −3.2 | 0.001 | −0.01 | −0.62 | 0.09 |
Non-dominant | 6.0 (2.6) | 7.5 (2.7) | −1.1 | 0.26 | 6.3 (1.8) | 8.5 (2.3) | −1.8 | 0.08 | −0.47 | −0.44 | 0.22 |
Deltoid posterior | |||||||||||
Dominant | 6.5 (2.7) | 8.2 (1.8) | −2.0 | 0.04 | 6.9 (2.3) | 8.8 (2.2) | −2.5 | 0.01 | −0.14 | −0.25 | 0.49 |
Non-dominant | 6.8 (3.0) | 7.7 (2.0) | −0.9 | 0.38 | 6.9 (2.0) | 8.8 (2.3) | −1.3 | 0.19 | −0.09 | −0.47 | 0.19 |
Supraspinatus | |||||||||||
Dominant | 8.2 (1.4) | 8.7 (2.5) | −1.0 | 0.33 | 7.7 (1.6) | 8.6 (2.2) | −2.3 | 0.02 | −0.42 | −0.08 | 0.83 |
Non-dominant | 7.6 (2.1) | 8.0 (2.1) | −1.2 | 0.25 | 7.2 (1.7) | 8.1 (2.0) | −2.2 | 0.03 | −0.11 | −0.14 | 0.71 |
Variable | Within-Time | Between-Group | Interaction Group (CG) × Time | ||||
---|---|---|---|---|---|---|---|
Ref: Baseline | CG vs.VG | Ref: (VG) × Time | |||||
ß | p | ß | p | ß | 95% CI | p | |
IADL | 1.07 | 0.14 | 1.80 | 0.39 | −1.69 | −4.7−1.3 | 0.26 |
ADL | 0.00 | 0.07 | 0.00 | 1.00 | −1.25 | −5.6−3.1 | 0.58 |
Maximal grip strength | |||||||
Dominant | 1.28 | 0.43 | −0.17 | 0.97 | −0.85 | −5.3−3.6 | 0.71 |
Non-dominant | 1.74 | 0.38 | −0.39 | 0.93 | −0.78 | −5.7−4.2 | 0.76 |
Wrist flexion | |||||||
Dominant | 2.94 | <0.001 | 2.65 | 0.03 | −2.49 | −4.0–−0.9 | 0.002 |
Non-dominant | 2.23 | <0.001 | 2.33 | 0.05 | −1.89 | −3.4–−0.4 | 0.02 |
Wrist extension | |||||||
Dominant | 1.67 | 0.001 | 0.87 | 0.51 | −0.60 | −2.1−0.9 | 0.45 |
Non-dominant | 0.92 | 0.13 | −0.15 | 0.91 | 0.01 | −1.6−1.6 | 0.99 |
Brachioradialis | |||||||
Dominant | 5.91 | <0.001 | 4.16 | 0.02 | −3.80 | −6.5–−1.1 | 0.01 |
Non-dominant | 4.61 | 0.001 | 2.53 | 0.25 | −2.93 | −6.2−0.3 | 0.08 |
Biceps brachii | |||||||
Dominant | 4.68 | <0.001 | 2.27 | 0.18 | −3.02 | −5.6–−0.5 | 0.02 |
Non-dominant | 4.19 | <0.001 | 0.93 | 0.64 | −2.24 | −5.0−0.6 | 0.12 |
Triceps brachii | |||||||
Dominant | 1.70 | 0.003 | 0.13 | 0.93 | 0.21 | −1.7−2.2 | 0.83 |
Non-dominant | 0.91 | 0.21 | −1.23 | 0.49 | 0.73 | −1.5−2.9 | 0.52 |
Deltoid anterior | |||||||
Dominant | 2.32 | <0.001 | 0.85 | 0.59 | −1.11 | −3.1−0.8 | 0.27 |
Non-dominant | 2.56 | <0.001 | 1.26 | 0.44 | −1.52 | −3.6−0.6 | 0.15 |
Deltoid lateral | |||||||
Dominant | 2.69 | 0.001 | 1.98 | 0.23 | −1.74 | −4.0−0.5 | 0.13 |
Non-dominant | 2.16 | 0.003 | 0.42 | 0.81 | −0.72 | −3.0−1.5 | 0.53 |
Deltoid posterior | |||||||
Dominant | 1.95 | 0.02 | −0.03 | 0.99 | −0.30 | −2.5−1.9 | 0.79 |
Non-dominant | 2.03 | 0.01 | 1.11 | 0.56 | −1.10 | −3.4−1.2 | 0.34 |
Supraspinatus | |||||||
Dominant | 0.92 | 0.17 | 0.92 | 0.49 | −0.41 | −2.3−1.5 | 0.67 |
Non-dominant | 0.91 | 0.16 | 0.94 | 0.53 | −0.51 | −2.4−1.4 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Chiang, S.-L.; Chou, L.-W.; Lin, C.-H.; Lu, Y.-H.; Lu, L.-H.; Wang, X.-M.; Lin, C.-H. Validation of Vibration Exercises on Enhancing Muscle Strength and Upper Limb Functionality among Pre-Frail Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 14509. https://doi.org/10.3390/ijerph192114509
Kao C-H, Chiang S-L, Chou L-W, Lin C-H, Lu Y-H, Lu L-H, Wang X-M, Lin C-H. Validation of Vibration Exercises on Enhancing Muscle Strength and Upper Limb Functionality among Pre-Frail Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(21):14509. https://doi.org/10.3390/ijerph192114509
Chicago/Turabian StyleKao, Chia-Hui, Shang-Lin Chiang, Li-Wei Chou, Chia-Huei Lin, Yueh-Hsun Lu, Liang-Hsuan Lu, Xin-Miao Wang, and Chueh-Ho Lin. 2022. "Validation of Vibration Exercises on Enhancing Muscle Strength and Upper Limb Functionality among Pre-Frail Community-Dwelling Older Adults" International Journal of Environmental Research and Public Health 19, no. 21: 14509. https://doi.org/10.3390/ijerph192114509
APA StyleKao, C. -H., Chiang, S. -L., Chou, L. -W., Lin, C. -H., Lu, Y. -H., Lu, L. -H., Wang, X. -M., & Lin, C. -H. (2022). Validation of Vibration Exercises on Enhancing Muscle Strength and Upper Limb Functionality among Pre-Frail Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 19(21), 14509. https://doi.org/10.3390/ijerph192114509