Comparison of Several Prediction Equations Using Skinfold Thickness for Estimating Percentage Body Fat vs. Body Fat Percentage Determined by BIA in 6–8-Year-Old South African Children: The BC–IT Study
Abstract
:1. Introduction
2. Materials and Methods
- Study Design and Study Sample
2.1. Measurements
Anthropometry
2.2. Body Fat Percentage by Bioelectrical Impedance Analysis (BIA)
Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Martinez, A.; Zhou, B.; Sophiea, M.K.; Bentham, J.; Paciorek, C.J.; LC Iurilli, M.; Carrillo-Larco, M.R.; Bennett, J.E.; Di Cesare, M.; Taddei, C. Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: A pooled analysis of 2181 population-based studies with 65 million participants. Lancet 2020, 396, 1511–1524. [Google Scholar] [CrossRef]
- Must, A.; Hollander, S.A.; Economos, C.D. Childhood obesity: A growing public health concern. Exp. Rev. Endocrinol. Met. 2014, 1, 233–254. [Google Scholar] [CrossRef] [PubMed]
- McPhee, P.G.; Singh, S.; Morrison, K.M. Childhood Obesity and Cardiovascular Disease Risk: Working Toward Solutions. Can. J. Cardiol. 2020, 36, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Nurwanti, E.; Hadi, H.; Chang, J.; Chao, J.C.; Paramashanti, B.A.; Gittelsohn, J.; Bai, C.H. Rural–Urban Differences in Dietary Behavior and Obesity: Results of the Riskesdas Study in 10–18-Year-Old Indonesian Children and Adolescents. Nutrients 2019, 11, 2813. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Zhou, Z.; Lai, S.; Tao, X.; Zhao, D.; Dong, W.; Li, D.; Lan, X.; Gao, J. Urban-rural-specific trend in prevalence of general and central obesity, and association with hypertension in Chinese adults, aged 18–65 years. BMC Public Health 2019, 19, 661. [Google Scholar] [CrossRef] [Green Version]
- Monyeki, M.A.; Koppes, L.L.J.; Kemper, H.C.G.; Monyeki, K.D.; Toriola, A.L.; Pienaar, A.E.; Twisk, J.W.R. Body composition and physical fitness of undernourished South African rural primary school children. Eur. J. Clin. Nutr. 2005, 59, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Rolland-Cachera, M.F.; Deheeger, M.; Maillot, M.; Bellisle, F. Early adiposity rebound: Causes and consequences for obesity in children and adults. Int. J. Obes. 2006, 30, S11–S17. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Ambrosi, J.; Silva, C.; Calofre, J.C.; Escalada, J.; Santos, S.; Millán, D.; Vila, N.; Ibañez, P.; Gil, M.J.; Valentí, V.; et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. Obes. 2012, 36, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Onat, A.; Avci, G.S.; Barlan, M.M.; Uyarel, H.; Uzunlar, B.; Sansoy, V. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Luke, A.; Bovet, P.; Forrester, T.E.; Lambert, E.V.; Plange-Rhule, J.; Dugas, L.R.; Durazo-Arvizu, R.A.; Kroff, J.; Richie, W.N.; Schoeller, D.A. Prediction of Fat-Free Mass Using Bioelectrical Impedance Analysis in Young Adults from Five Populations of African Origin. Eur. J. Clin. Nutr. 2013, 67, 956–960. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C.K.; Haroun, D.; Williams, J.E.; Wilson, C.; Darch, T.; Viner, R.M.; Eaton, S.; Fewtrell, M.S. Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5 to 21 years. Int. J. Obes. 2010, 34, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushner, R.F.; Schoeller, D.A.; Fjeld, C.R.; Danford, L. Is the impedance index (Ht2/R) significant in predicting total body water? Am. J. Clin. Nutr. 1992, 56, 835–839. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [Green Version]
- González-Ruíz, K.; Medrano, M.; Correa-Bautista, J.E.; García-Hermoso, A.; Prieto-Benavides, D.H.; Tordecilla-Sanders, A.; Agostinis-Sobrinho, C.; Correa-Rodríguez, M.; Schmidt Rio-Valle, J.; González-Jiménez, E.; et al. Comparison of Bioelectrical Impedance Analysis, Slaughter Skinfold-Thickness Equations, and Dual-Energy X-ray Absorptiometry for Estimating Body Fat Percentage in Colombian Children and Adolescents with Excess of Adiposity. Nutrients 2018, 10, 1086. [Google Scholar] [CrossRef] [Green Version]
- Heyward, V.H.; Stolarczyk, L.M. Applied Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Nicholson, J.C.; McDuffie, J.R.; Bonat, S.H.; Russell, D.L.; Boyce, K.A.; McCann, S.; Michael, M.; Sebring, N.G.; Reynolds, J.C.; Yanovski, J.A. Estimation of Body Fatness by Air Displacement Plethysmography in African American and White Children. Pediatric Res. 2001, 50, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.S.; Ogden, C.L.; Kit, B.K. Interrelationships between BMI, skinfold thicknesses, percent body fat, and cardiovascular disease risk factors among U.S. children and adolescents. BMC Pediatrics 2015, 15, 188. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Earthman, C.P.; Pichard, C.; Coss-Bu, J.A. Body composition during growth in children: Limitations perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Devakumar, D.; Grijalva-Eternod, C.S.; Roberts, S.; Chaube, S.S.; Saville, N.M.; Manandhar, D.S.; Costello, A.; Osrin, D.; Wells, J.C. Body composition in Nepalese children using isotope dilution: The production of ethnic-specific calibration equations and an exploration of methodological issues. Peer J. 2015, 3, e785. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.S.; Ward, L.C.; Halim, J.; Gow, M.L.; Ho, M.; Briody, J.N.; Leung, K.; Cowell, C.T.; Garnett, S.P. Bioelectrical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: Comparison with dual-energy X-ray absorptiometry. BMC Pediatrics 2014, 14, 249. [Google Scholar] [CrossRef]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D. ASkinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Hoffman, D.J.; Tora-Ramos, T.; Sawaya, A.L.; Roberts, S.B.; Rondo, P. Estimating total body fat using skinfold prediction in Brazilian children. Ann. Hum. Biol. 2012, 39, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, V.P.; Lamabadusuriya, S.P.; Cleghorn, G.J.; Davies, P.S. Assessment of body composition in Sri Lankan children: Validation of a bioelectrical impedance prediction equation. Eur. J. Clin. Nutr. 2008, 62, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Dezenberg, C.V.; Nagy, T.R.; Gower, B.A.; Johnson, R.; Goran, M.I. Predicting body composition from anthropometry in pre-adolescent children. Int. J. Obes. 1999, 23, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; DeLang, J.P.; Volaufova, J.; Harsha, D.W.; Champagne, C. Prediction of body fat in 12-y-old African American and White children: Evaluation of methods. Am. J. Clin. Nutr. 2002, 76, 980–990. [Google Scholar] [CrossRef] [Green Version]
- Mazariegos, M.; Valdez, C.; Kraaij, S.; Van Setten, C.; Liurink, C.; Breuer, K.; Haskell, M.; Mendoza, I.; Solomons, N.W.; Deurenberg, P. A comparison of body fat estimates using anthropometry and bioelectrical impedance analysis with distinct prediction equations in elderly persons in the Republic of Guatemala. Nutrition 1996, 12, 168–175. [Google Scholar] [CrossRef]
- Chambers, A.J.; Parise, E.; McCrory, J.L.; Cham, R. A comparison of prediction equations for the estimation of body fat percentage in non-obese and obese older Caucasian adults in the United States. J. Nutr. Health Aging 2014, 18, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, M.; Rocandio, A.M.; Ansotegui, L.; Herrera, H.; Salces, I.; Rebato, E. Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students. Br. J. Nutr. 2004, 92, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Chahar, P.S. Assessment of Body Fat Percentage by Different Methods: A Comparative Study. Eur. J. Sports Exerc. Sci. 2014, 3, 1–6. [Google Scholar]
- Janz, K.F.; Nielsen, D.H.; Cassady, S.L.; Cook, J.S. Cross validation of the Slaughter skinfold equations for children and adolescents. Med. Sci. Sports Exerc. 1993, 25, 1070–1076. [Google Scholar] [CrossRef]
- Moeng-Mahlangu, L.T.; Monyeki, M.A.; Reilly, J.J.; Mchiza, Z.J.; Moleah, T.; Loechl, C.U.; Kruger, H.S. Level of agreement between objectively determined body composition and perceived body image in 6- to 8-year-old South African children: The Body Composition–Isotope Technique study. PLoS ONE 2020, 15, e0237399. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J.L.; Whittemore, A.S.; Thompson, W.D.; Evans, A.S. Methods in Observational Epidemiology; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Sullivan, K.M.; Dean, A.G.; Mir, R. OpenEpi: A new collaborative effort in epidemiologic computing. Epidemiol. Monit. 2004, 25, 3, 7, 9. [Google Scholar]
- Stewart, A.D.; Marfell-Jones, M.J.; De Ridder, J.H. International Standards for Anthropometric Assessment; ISAK: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Onis, M.D.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.W.; Liao, Y.; Lu, H.; Hsiao, P.-L.; Chen, Y.-Y.; Chi, C.-C.; Hsieh, K.-C. Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PLoS ONE 2017, 12, e0171568. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Byrne, N.M.; Ma, G.; Nasreddine, L.; Trinidad, T.P.; Kijboonchoo, K.; Ismail, M.N.; Kagawa, M.; Poh, B.K.; Hills, A.P. Validation of bioelectrical impedance analysis for total body water assessment against the deuterium dilution technique in Asian children. Eur. J. Clin. Nutr. 2011, 65, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.O.; Yunue Ruelas, Y.F.; López-Alcaraz, F.; del Toro-Equihua, M.; Sánchez-Ramírez, C.A. Correlation between percentage of body fat measured by the Slaughter equation and bio impedance analysis technique in Mexican school children. Nutr. Hosp. 2014, 29, 88–93. [Google Scholar]
- Eyre, E.L.J.; Duncan, M.J.; Neville, A. South Asian children have increased fat in comparison to white children at the same Body Mass Index. Children 2017, 4, 102. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, S.H.; Krishnaveni, G.V.; Lubree, H.G.; Wills, A.K.; Guntupalli, A.M.; Veena, S.R.; Bhat, D.S.; Kishore, R.; Fall, C.H.; Yajnik, C.S.; et al. Prediction of body-fat percentage from skinfold and bio-impedance measurements in Indian school children. Eur. J. Clin. Nutr. 2011, 65, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Aquirre, C.A.; Salazar, G.D.C.; Lopez de Romaña, D.V.; Kain, J.A.; Corvalán, C.L.; Uauy, R.E. Evaluation of simple body composition methods: Assessment of validity in pre-pubertal Chilean children. Eur. J. Clin. Nutr. 2015, 69, 269–273. [Google Scholar] [CrossRef]
- De Ridder, C.M.; Thijssen, J.H.; Bruning, P.F.; van den Brande, J.L.; Zonderland, M.L.; Erich, W.B. Body fat mass, body fat distribution, and pubertal development: A longitudinal study of physical and hormonal sexual maturation of girls. J. Clin. Endocrinol. Metab. 1992, 75, 442–446. [Google Scholar]
- Malina, R.M.; Huang, Y.C.; Brown, K.H. Subcutaneous adipose tissue distribution in adolescent girls of four ethnic groups. Int. J. Obes. Relat. Metab. Disord. 1995, 19, 793–797. [Google Scholar] [PubMed]
- Otte, M.L.; Shrum, L.K.; Barns, K.D.; McDowell, K.W.; Gegg, C.R.; Napoli, R.D.; Johnson, R.J.; Barnes, J.T.; Wagganer, J.D. Bioelectrical impedance analysis versus skinfold calipers body fat percentage measurement in American football players. Inter. J. Exerc. Sci. Conf. Proc. 2017, 11, 25. [Google Scholar]
- Lubis, L.; Yiin, N.N.Z.; Luftimas, D.E. Differentiation of body fat composition between skinfold caliper and bioelectrical impedance analysis methods among professors. Bali Anat. J. 2018, 142, 12–16. [Google Scholar] [CrossRef]
- Hastuti, J.; Rahmawati, N.T.; Suriyanto, R.A.; Wibowo, T.; Nurani, N.; Anindita, A.; Julia, M. Comparison of several prediction equations using skinfold thickness for estimating percentage body fat in 12-15-year-old Indonesian children. Pak. J. Nutr. 2019, 18, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Nakadomo, F.; Tanaka, K.; Kim, H.K.; Maeda, K. Accuracy of body composition prediction equations by bioelectrical impedance method and skinfold thickness method-from the viewpoint of the longitudinal alterations in body composition of school children. Jpn. J. Phys. Fit. Sports Med. 1998, 47, 339–348. [Google Scholar]
- Durnin, J.V.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef]
- Cameron, N.; Griffiths, P.L.; Wright, M.M.; Blencowe, C.; Davis, N.C.; Pettifor, J.M.; Norris, S.A. Regression equations to estimate percentage body fat in African prepubertal children aged 9y. Am. J. Clin. Nutr. 2004, 80, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Zea, M.; Torun, B.; Martorell, R.; Stein, A.D. Anthropometric predictors of body at as measured by hydrostatic weighing in Guatemalan adults. Am. J. Clin. Nutr. 2006, 83, 795–802. [Google Scholar] [CrossRef]
First Author | Reference Method | Reference Method | N | Age (Years) | Ethnicity |
---|---|---|---|---|---|
Slaughter et al. [22] | %BF (boys) = 1.21 × T(T + SS) − 0.008 × (T + SS)2 − 3.2 (African boys) %BF (girls) = 1.33 × (T + SS) − 0.013 (T + SS)2 − 2.5 | Photo absorptiometry, D2O dilution, and hydrostatic weighing | 310 | 8–29 | Caucasian and African American |
Wickramasinghe et al. [24] | FM (boys) = 0.68 × A + 0.246 × T + 0.383 × SS − 1.61 − 3.45 FM (girls) = 0.680 × A + 0.246 × T + 0.383 × SS − 3.45 | D2O dilution | 188 | 5–15 | South Asia |
Dezenberg et al. [25] | FM (boys) = 0.342 × W + 0.256 × T − 6.501 FM (girls) = 0.342 × W + 0.256 × T − 5.501 | DXA | 202 | 4–10.9 | Caucasian and African American |
Total (n = 202) | Boys (n = 83) | Girls (n = 119) | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | p-Value for Sex Differences | |
Age (year) | 7.57 ± 0.85 | 7.62 ± 0.78 | 7.54 ± 0.90 | 0.54 |
Height (cm) | 120.20 ± 7.02 | 120.83 ± 6.25 | 119.76 ± 7.50 | 0.29 |
Weight (kg) | 22.73 ± 4.53 | 22.69 ± 4.15 | 22.76 ± 4.80 | 0.91 |
BMI (kg/m2) | 15.61 ± 1.99 | 15.43 ± 1.73 | 15.73 ± 2.15 | 0.29 |
BMI Z score | −0.17 ± 1.08 | −0.29 ± 1.08 | −0.09 ± 1.07 | 0.18 |
FM (%) BIA | 25.12 ± 6.42 | 22.45 ± 5.51 | 26.97 ± 6.68 | <0.001 |
FM (kg) BIA | 5.79 ± 2.36 | 5.18 ± 2.02 | 6.21 ± 2.49 | 0.002 |
FFM BIA | 16.80 ± 3.07 | 17.50 ± 2.79 | 16.31 ± 3.17 | 0.006 |
Triceps (mm) | 8.20 ± 3.12 | 7.21 ± 2.38 | 8.88 ± 3.38 | <0.001 |
Subscapular (mm) | 5.93 ± 2.96 | 5.27 ± 1.75 | 6.38 ± 3.51 | 0.01 |
TBW (BIA) (ℓ) | 12.81 ± 2.50 | 13.34 ± 2.25 | 12.44 ± 2.61 | 0.01 |
%BF using Slaughter equation | 12.8 ± 4.89 | 10.5 ± 3.64 | 14.2 ± 4.46 | 0.001 |
%BF using Wickramasinghe equation | 23.2 ± 7.03 | 17.0 ± 3.88 | 27.5 ± 5.33 | <0.001 |
%BF using Dezenberg equation | 17.8 ± 5.36 | 17.3 ± 4.69 | 18.2 ± 5.77 | 0.252 |
Age distribution (n (%)) | ||||
6 year | 55 (27.36) | 19 (22.9) | 36 (30.3) | 0.136 |
7 year | 69 (34.32) | 34 (41.0) | 35 (29.4) | |
8 year | 78 (38.80) | 30 (36.1) | 48 (40.3) | |
BMI categories (n (%)) | ||||
Underweight (below 18.5 kg/m2) | 30 (14.9) | 19 (22.9) | 11 (9.2) | <0.001 |
Normal weight (18.5 to 25 kg/m2) | 127 (62.9) | 57 (68.7) | 70 (58.8) | |
Overweight (larger than 25 and less than 30 kg/m2) | 31 (15.3) | 5 (6.0) | 26 (21.8) | |
Obesity (30 kg/m2 or higher) | 14 (6.9) | 2 (2.4) | 12 (10.1) |
Paired Correlations | Paired Differences | |||||
---|---|---|---|---|---|---|
Mean ± SD | r ± SEE | p-Value | MD ± SD | t | p-Value for the Equation Differences | |
BIA | 25.12 ± 6.42 | 0.611 ± 5.10 | <0.001 | −12.35 ± 5.18 | −33.896 | <0.001 |
%BF from skinfolds (Slaughter et al. [22]) | 12.76 ± 4.89 | |||||
BIA | 25.12 ± 6.42 | 0.540 ± 5.42 | <0.001 | −1.92 ± 6.47 | −4.217 | <0.001 |
%BF from skinfolds (Wickramasinghe et al. [24]) | 23.19 ± 7.04 | |||||
BIA | 25.12 ± 6.42 | 0.474 ± 5.67 | <0.001 | −7.27 ± 6.11 | −16.910 | <0.001 |
%BF from skinfolds (Dezenberg et al. [25]) | 17.84 ± 5.36 |
Paired Correlations | Paired Differences | |||||
---|---|---|---|---|---|---|
Mean ± SD | r ± SEE | p-Value | Mean ± SD | t | p-Value for the Equations | |
Boys (n = 83) | ||||||
%BF BIA | 22.45 ± 5.51 | |||||
%BF from skinfolds (Slaughter et al. [22]) | 10.53 ± 3.64 | 0.484 ± 4.85 | <0.0001 | −11.92 ± 4.92 | −22.08 | <0.0001 |
%BF from skinfolds (Wickramasinghe et al. [24]) | 17.02 ± 3.88 | 0.387 ± 5.16 | <0.0001 | −5.43 ± 5.37 | −9.202 | <0.0001 |
%BF from skinfolds (Dezenberg et al. [25]) | 17.32 ± 4.69 | 0.397 ± 5.09 | <0.0001 | −5.13 ± 5.64 | −8.279 | <0.0001 |
Girls (n = 119) | ||||||
%BF BIA | 26.94 ± 6.38 | |||||
%BF from skinfolds (Slaughter et al. [22]) | 14.20 ± 4.46 | 0.58 ± 5.63 | <0.0001 | −12.65 ± 5.35 | −25.78 | <.0001 |
%BF from skinfolds (Wickramasinghe et al. [24]) | 27.50 ± 5.33 | 0.478 ± 5.63 | <0.0001 | 0.52 ± 6.05 | 0.947 | 0.345 |
%BF from skinfolds (Dezenberg et al. [25]) | 18.20 ± 5.77 | 0.516 ± 5.20 | <0.0001 | 8.77 ± 6.00 | −15.937 | <0.0001 |
Boys (n = 83) | Girls (119) | |||
---|---|---|---|---|
Mean ± Limit | Lower; Upper | Mean ± SD | Lower; Upper | |
BIA vs. %BF from skinfolds (Slaughter et al. [22]) | −11.92 ± 4.92 | −12.99; −10.85 | −12.65 ± 5.35 | −13.62; −11.68 |
BIA vs. %BF from skinfolds (Wickramasinghe et al. [24]) | −5.43 ± 5.37 | −6.60; −4.25 | 0.52 ± 6.05 | −0.57; 1.62 |
BIA vs. %BF from skinfolds (Dezenberg et al. [25]) | −5.13 ± 4.64 | −6.36; −3.89 | −8.77 ± 6.00 | −9.86; −7.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeng-Mahlangu, L.; Monyeki, M.A.; Reilly, J.J.; Kruger, H.S. Comparison of Several Prediction Equations Using Skinfold Thickness for Estimating Percentage Body Fat vs. Body Fat Percentage Determined by BIA in 6–8-Year-Old South African Children: The BC–IT Study. Int. J. Environ. Res. Public Health 2022, 19, 14531. https://doi.org/10.3390/ijerph192114531
Moeng-Mahlangu L, Monyeki MA, Reilly JJ, Kruger HS. Comparison of Several Prediction Equations Using Skinfold Thickness for Estimating Percentage Body Fat vs. Body Fat Percentage Determined by BIA in 6–8-Year-Old South African Children: The BC–IT Study. International Journal of Environmental Research and Public Health. 2022; 19(21):14531. https://doi.org/10.3390/ijerph192114531
Chicago/Turabian StyleMoeng-Mahlangu, Lynn, Makama A. Monyeki, John J. Reilly, and Herculina S. Kruger. 2022. "Comparison of Several Prediction Equations Using Skinfold Thickness for Estimating Percentage Body Fat vs. Body Fat Percentage Determined by BIA in 6–8-Year-Old South African Children: The BC–IT Study" International Journal of Environmental Research and Public Health 19, no. 21: 14531. https://doi.org/10.3390/ijerph192114531
APA StyleMoeng-Mahlangu, L., Monyeki, M. A., Reilly, J. J., & Kruger, H. S. (2022). Comparison of Several Prediction Equations Using Skinfold Thickness for Estimating Percentage Body Fat vs. Body Fat Percentage Determined by BIA in 6–8-Year-Old South African Children: The BC–IT Study. International Journal of Environmental Research and Public Health, 19(21), 14531. https://doi.org/10.3390/ijerph192114531