Effects of Health Service Utilization and Informal Social Support on Depression, Anxiety, and Stress among the Internal Migrant Elderly following Children in Weifang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Research Subjects
2.2. Measurements
2.2.1. Depression, Anxiety and Stress
2.2.2. Social Demographic Characteristics
2.2.3. Health Service Utilization
2.2.4. Informal Social Support
2.2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Health Service Utilization
3.3. Informal Social Support
3.4. The Association between Demographic Characteristics, Health Service Utilization, Informal Social Support and Depression
3.5. Association between Demographic Characteristics Health Service Utilization, Informal Social Support and Anxiety
3.6. Association between Demographic Characteristics, Health Service Utilization, Informal Social Support and Stress
4. Discussion
4.1. The Level of Depression, Anxiety and Stress among the IMEFC in Weifang, Shandong Province
4.2. Association between Demographic Characteristics and Depression, Anxiety and Stress
4.3. Association between Health Service Utilization and Depression, Anxiety and Stress
4.4. Association between Informal Social Support and Depression, Anxiety and Stress
4.5. Implications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Man, W.; Wang, S.; Yang, H. Exploring the spatial-temporal distribution and evolution of population aging and social-economic indicators in China. BMC Public Health 2021, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics. Available online: http://www.stats.gov.cn/xxgk/jd/sjjd2020/202201/t20220118_1826609.html (accessed on 14 October 2022).
- United Nations. World Population Ageing; Department of Economic and Social Affairs, UN: New York, NY, USA, 2019. [Google Scholar]
- The Main Data of the Seventh National Censes. Available online: http://www.stats.gov.cn/tjsj/zxfb/202105/t20210510_1817176.html (accessed on 1 July 2022).
- NHC. China Migrant Population Development Report. 2018. Available online: http://www.nhc.gov.cn/wjw/xwdt/201812/a32a43b225a740c4bff8f2168b0e9688.shtml (accessed on 1 July 2022).
- Kong, F.L.; Kong, M.; Li, C.; Li, S.X.; Lv, J. Advances in research related to migrant elderly at home and abroad. Chin. J. Gerontol. 2020, 40, 2443. [Google Scholar]
- Bhugra, D. Migration and mental health. Acta Psychiatr. Scand. 2004, 109, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Familiar, I.; Borges, G.; Orozco, R.; Medina-Mora, M.-E. Mexican migration experiences to the US and risk for anxiety and depressive symptoms. J. Affect. Disord. 2011, 130, 83–91. [Google Scholar] [CrossRef]
- Yang, M.; Dijst, M.; Faber, J.; Helbich, M. Using structural equation modeling to examine pathways between perceived residential green space and mental health among internal migrants in China. Environ. Res. 2020, 183, 109121. [Google Scholar] [CrossRef]
- Tang, D.; Wang, J. Basic Public Health Service Utilization by Internal Older Adult Migrants in China. Int. J. Environ. Res. Public Health 2021, 18, 270. [Google Scholar] [CrossRef]
- Xi, S.; Song, Y.; Li, X.; Li, M.; Lu, Z.; Yang, Y.; Wang, Y. Local-Migrant Gaps in Healthcare Utilization Between Older Migrants and Local Residents in China. J. Am. Geriatr. Soc. 2020, 68, 1560–1567. [Google Scholar]
- Long, C.; Tang, S.; Wang, R.; Ji, L.; Wang, Y.; Wu, T.; Li, Z.; Feng, Z. The migrating mediators and the interaction associated with the use of essential public health services: A cross-sectional study in Chinese older migrants. BMC Geriatr. 2020, 20, 475. [Google Scholar]
- Wang, Q. Health of the Elderly Migration Population in China: Benefit from Individual and Local Socioeconomic Status? Int. J. Environ. Res. Public Health 2017, 14, 370. [Google Scholar] [CrossRef]
- Wen, M.; Fan, J.; Jin, L.; Wang, G. Neighborhood effects on health among migrants and natives in Shanghai, China. Health Place 2010, 16, 452–460. [Google Scholar] [CrossRef]
- Yu, X.N.; Liu, C.W. Study on the anxiety and depression status of elderly people moving with the family and the effect of psychological intervention on them. Imaging Res. Med. Appl. 2018, 2, 218–220. [Google Scholar]
- Li, Y. Why elderly people who move with the family become vulnerable to mental disorders. Friends Older Comrades 2020, 12, 42–43. [Google Scholar]
- Luo, W. Research on the mental health problems of elderly people who move with the family. Mod. Health Care 2016, 4, 136. [Google Scholar]
- Liu, Q.; Chen, S. An analysis of mental health status and its influencing factors among elderly migrant workers: A case study of Shenzhen. Zhong Zhou J. 2015, 73–77. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Ma, S.; Jiang, M.; Li, L. The effect of migration on social capital and depression among older adults in China. Soc. Psychiatry Psychiatr. Epidemiol. 2017, 52, 1513–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.J.; Ni, Y.Y.; Li, Q.J.; Zhou, X.D. Analysis of the current situation of depression and influencing factors among mobile elderly people in Hangzhou. China Public Health 2016, 32, 1144–1148. [Google Scholar]
- Taylor, S.E. Social Support: A Review; Oxford University Press: New York, NY, USA, 2011; pp. 189–214. [Google Scholar]
- Lu, S.; Wu, Y.; Mao, Z.; Liang, X. Association of Formal and Informal Social Support with Health-Related Quality of Life Among Chinese Rural Elders. Int. J. Environ. Res. Public Health 2020, 17, 1351. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Bian, F.; Zhang, L.; Cao, Y. The Impact of Social Support on the Health of the Rural Elderly in China. Int. J. Environ. Res. Public Health 2020, 17, 2004. [Google Scholar] [CrossRef] [Green Version]
- du Plooy, D.R.; Lyons, A.; Kashima, E.S. The Effect of Social Support on Psychological Flourishing and Distress Among Migrants in Australia. J Immigr. Minor. Health 2019, 21, 278–289. [Google Scholar] [CrossRef]
- Wang, W. Social Network Correlates of Mental Health among Rural-to-Urban Migrants in China. Int. J. Environ. Res. Public Health 2021, 18, 10902. [Google Scholar]
- Liang, D.; Teng, M.; Xu, D. Impact of perceived social support on depression in Chinese rural-to-urban migrants: The mediating effects of loneliness and resilience. J. Community Psychol. 2019, 47, 1603–1613. [Google Scholar] [PubMed]
- Park, J.; Roh, S. Daily spiritual experiences, social support, and depression among elderly Korean immigrants. Aging Ment. Health 2013, 17, 102–108. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, L.; Song, Y.; Wang, X. Research on the relationship between coping style, social support and subjective well-being of the elderly in Urban Community. Nurs. Res. 2019, 33, 766–769. [Google Scholar]
- Lin, Y.; Chu, C.; Chen, Q.; Xiao, J.; Wan, C. Factors influencing utilization of primary health care by elderly internal migrants in China: The role of social contacts. BMC Public Health 2020, 20, 1054. [Google Scholar] [CrossRef]
- Ruan, Y.H.; Zhu, D.M.; Lu, J. Social adaptation and adaptation pressure among the “drifting elderly” in China: A qualitative study in Shanghai. Int. J. Health Plan. Manag. 2019, 34, E1149–E1165. [Google Scholar]
- Phillips, D.R.; Siu, O.L.; Yeh, A.G.O.; Cheng, K.H.C. Informal social support and older persons’ psychological well-being in Hong Kong. J. Cross. Cult. Gerontol. 2008, 23, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wang, X.; Liu, Y.; Bu, T. The Impact of Informal Social Support on Older Health: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 2444. [Google Scholar]
- Wu, X.; Treiman, D.J. The household registration system and social stratification in China: 1955–1996. Demography 2004, 41, 363–384. [Google Scholar]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Verma, S.; Mishra, A. Depression, anxiety, and stress and socio-demographic correlates among general Indian public during COVID-19. Int. J. Soc. Psychiatry 2020, 66, 756–762. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav. Immun. 2020, 87, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, F.; Wang, W.T.; Li, L.N.; Wang, X.Y.; Lv, S.B. Study on the moderating role of years of migration between stress and depression and anxiety in new urban older adults. Chin. Fam. Med. 2017, 20, 210–213. [Google Scholar]
- Chan, K. Post-Mao China: A Two-Class Urban Society in the Making. Int. J. Urban Reg. Res. 1996, 20, 134–150. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Yu, Y.Y. Medical Statistics, 4th ed.; People’s Health Publishing House: Beijing, China, 2014; pp. 36–37. [Google Scholar]
- Dai, B.; Li, W.; Xiong, M.; Li, Y.Z.; Zhang, H. Current status of depression among urban elderly in Sichuan Province. Chin. J. Gerontol. 2018, 38, 1490–1492. [Google Scholar]
- Jiao, N.; Chen, L.; Rao, P.; Shi, T.; Zhao, D.; Tang, B. Analysis of anxiety and depression status and influencing factors of elderly hypertensive patients in rural Guizhou. China Health Care Manag. 2020, 37, 446–449. [Google Scholar]
- Qian, Y.; Chu, J.; Ge, D.; Zhang, L.; Sun, L.; Zhou, C. Gender difference in utilization willingness of institutional care among the single seniors: Evidence from rural Shandong, China. Int. J. Equity Health 2017, 16, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Li, S.; Kong, F. Association between Sense of Belonging and Loneliness among the Migrant Elderly Following Children in Jinan, Shandong Province, China: The Moderating Effect of Migration Pattern. Int. J. Environ. Res. Public Health 2022, 19, 4396. [Google Scholar] [CrossRef]
- Rao, S.; Chen, B.; Zhou, Z.; Shen, W.; Cai, J.; Shi, S. A study on anxiety and depression among elderly in community. Shanghai J. Psychiatry 2002, 77–79. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, C.R.; Ma, X.L.; Liu, X.X.; Pan, F.M. Analysis of anxiety and depression status and influencing factors of empty-nesters in community. Ann. Hui. Med. 2019, 40, 947–950. [Google Scholar]
- Liu, N.; Odgerel, C.-O.; Ibayashi, K.; Fujino, Y.; Matsuda, S. The Self-rated Health Status of Foreign People in Japan: Does Their Employment Status Matter? J. UOEH 2020, 42, 267–274. [Google Scholar]
- Disney, L. The Impact of Employment on Immigrant Mental Health: Results from a National Survey. Soc. Work 2021, 66, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, S.J.; Lumme-Sandt, K. Transnational connections of later-life migrants. J Aging Stud. 2013, 27, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Kong, F.; Li, S. Effects of Living Conditions, Subjective Integration, and Social Networks on Health-Related Quality of Life among the Migrant Elderly Following Children in Jinan, China. Healthcare 2021, 9, 414. [Google Scholar] [PubMed]
- Luo, M.S.; Chui, E.W.T.; Li, L.W. The Longitudinal Associations between Physical Health and Mental Health among Older Adults. Aging Ment. Health 2020, 24, 1990–1998. [Google Scholar] [CrossRef]
- Research on the Influencing Factors of the Social Integration of the Elderly with Migration. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201501&filename=1015554849.nh (accessed on 1 July 2022).
- Shao, S.; Wang, M.; Jin, G.; Zhao, Y.; Lu, X.; Du, J. Analysis of health service utilization of migrants in Beijing using Anderson health service utilization model. BMC Health Serv. Res. 2018, 18, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, L. Promote the trailing the old social integration. China RenKouBao 2021. [Google Scholar] [CrossRef]
- Lin, X.; Bryant, C.; Boldero, J.; Dow, B. Older Chinese Immigrants’ Relationships with Their Children: A Literature Review from a Solidarity–Conflict Perspective. Gerontologist 2015, 55, 990–1005. [Google Scholar]
- Liu, Y.; Feng, X.; Wan, C.; Tan, J.-F.; Yu, Y.-L. Guangdong Dongguan trailing old man subjective well-being analysis. Chin. Health Educ. 2020, 4, 230–233. [Google Scholar]
- Li, M. A new study on urban adaptability of the elderly accompanied by migration. Urban J. 2017, 38, 1–8. [Google Scholar]
- Dong, X.; Li, M.; Hua, Y. The Association Between Filial Discrepancy and Depressive Symptoms: Findings from a Community-Dwelling Chinese Aging Population. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72 (Suppl. S1), S63–S68. [Google Scholar] [CrossRef]
- Liu, J.; Mao, W.; Guo, M.; Xu, L.; Chi, I.; Dong, X. Loss of friends and psychological well-being of older Chinese immigrants. Aging Ment. Health 2021, 25, 323–331. [Google Scholar] [PubMed]
- Dong, X.; Zhang, M.; Simon, M.A. The expectation and perceived receipt of filial piety among Chinese older adults in the Greater Chicago area. J. Aging Health 2014, 26, 1225–1247. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Depression | Anxiety | Stress | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N (%) | No n (%) | Yes n (%) | p | No n (%) | Yes n (%) | p | No n (%) | Yes n (%) | p | |
Observations | 613 (100) | 571 (93.1) | 42 (6.9) | 566 (92.3) | 47 (7.7) | 592 (96.6) | 21 (3.4) | |||
Mean ± SD | 2.46 ± 4.434 | 2.12 ± 3.655 | 3.19 ± 4.726 | |||||||
Gender | ||||||||||
Male | 165 (26.9) | 147 (25.7) | 18 (42.9) | 0.016 a | 153 (27.0) | 12 (25.5) | 0.866 a | 161 (27.2) | 4 (19.0) | 0.616 b |
Female | 448 (73.1) | 424 (74.3) | 24 (57.1) | 413 (73.0) | 35 (74.5) | 431 (72.8) | 17 (81.0) | |||
Age | ||||||||||
60–65 | 342 (55.8) | 325 (56.9) | 17 (40.5) | 0.038 a | 319 (56.4) | 23 (48.9) | 0.325 a | 327 (55.2) | 15 (71.4) | 0.181 a |
66– | 271 (44.2) | 246 (43.1) | 25 (59.5) | 247 (43.6) | 24 (51.1) | 265 (44.8) | 6 (28.6) | |||
Marital status | ||||||||||
Married | 539 (87.9.) | 505 (88.4) | 34 (81.0) | 0.215 a | 503 (88.9) | 36 (76.6) | 0.013 a | 522 (88.2) | 17 (81.0) | 0.305 b |
Single | 74 (12.1) | 66 (11.6) | 8 (19.0) | 63 (11.1) | 11 (23.4) | 70 (11.8) | 4 (19.0) | |||
Education level | ||||||||||
Below upper-secondary | 504 (82.2) | 472 (82.7) | 32 (76.2) | 0.536 a | 464 (82.0) | 40 (85.1) | 0.855 a | 490 (82.8) | 14 (66.7) | 0.162 a |
upper secondary | 91 (14.8) | 83 (14.5) | 8 (19.0) | 85 (15.0) | 6 (12.8) | 85 (14.4) | 6 (28.6) | |||
tertiary education | 18 (2.9) | 16 (2.8) | 2 (4.8) | 17 (3.0) | 1 (2.1) | 17 (2.9) | 1 (4.8) | |||
Monthly income | ||||||||||
CNY 0–100 | 210 (34.3) | 194 (34.0) | 16 (38.1) | 0.579 b | 190 (33.6) | 20 (42.6) | 0.549 a | 203 (34.3) | 7 (33.3) | 0.860 b |
CNY 101–1000 | 234 (38.2) | 216 (37.8) | 18 (42.9) | 216 (38.2) | 18 (38.3) | 225 (38.0) | 9 (42.9) | |||
CNY 1001–2000 | 67 (10.9) | 65 (11.4) | 2 (4.8) | 63 (11.1) | 4 (8.5) | 66 (11.1) | 1 (4.8) | |||
CNY ≥ 2001 | 102 (16.6) | 96 (16.8) | 6 (14.3) | 97 (17.1) | 5 (10.6) | 98 (16.6) | 4 (19.0) | |||
Employment | ||||||||||
Employed | 53 (8.6) | 46 (8.0) | 7 (16.7) | 0.040 a | 48 (8.5) | 5 (10.6) | 0.861 a | 48 (8.1) | 5 (23.8) | 0.018 a |
Retired and having income | 126 (20.6) | 114 (20.0) | 12 (28.6) | 116 (20.5) | 10 (21.3) | 120 (20.3) | 6 (28.6) | |||
Unemployed and having no income | 434 (70.8) | 411 (72.0) | 23 (54.8) | 402 (71.0) | 32 (68.1) | 424 (71.6) | 10 (47.6) | |||
Hukou | ||||||||||
Rural | 525 (85.6) | 488 (85.5) | 37 (88.1) | 0.639 a | 483 (85.3) | 42 (89.4) | 0.449 a | 508 (85.8) | 17 (81.0) | 0.533 b |
Urban | 88 (14.4) | 83 (14.5) | 5 (11.9) | 83 (14.7) | 5 (10.6) | 84 (14.2) | 4 (19.0) | |||
Migration reason | ||||||||||
Taking care of grandchildren | 533 (86.9) | 500 (87.6) | 33 (78.6) | 0.028 b | 496 (87.6) | 37 (78.7) | 0.01 a | 518 (87.5) | 15 (71.4) | 0.016 b |
Curing a disease or rehabilitation | 18 (2.9) | 14 (2.4) | 4 (9.5) | 13 (2.3) | 5 (10.6) | 15 (2.5) | 3 (14.3) | |||
Others | 62 (10.1) | 57 (10.0) | 5 (11.9) | 57 (10.1 | 5 (10.6) | 59 (10.0) | 3 (14.3) | |||
Migration range | ||||||||||
Trans-county | 430 (70.1) | 404 (70.8) | 26 (61.9) | 0.285 b | 407 (71.9) | 23 (48.9) | 0.002 b | 417 (70.4) | 13 (61.9) | 0.503 b |
Trans-city | 130 (21.2) | 117 (20.5) | 13 (31.0) | 110 (19.4) | 20 (42.6) | 125 (21.1) | 5 (23.8) | |||
Trans-province | 53 (8.6) | 50 (8.8) | 3 (7.1) | 49 (8.7) | 4 (8.5) | 50 (8.4) | 3 (14.3) | |||
Hesitant to migrate | ||||||||||
Very hesitant | 56 (9.1) | 50 (8.8) | 6 (14.3) | 0.443 b | 51 (9.0) | 5 (10.6) | 0.294 a | 51 (8.6) | 5 (23.8) | 0.019 b |
A little hesitant | 45 (7.3) | 42 (7.4) | 3 (7.1) | 39 (6.9) | 6 (12.8) | 42 (7.1) | 3 (14.3) | |||
Not at all hesitant | 512 (83.5) | 479 (83.9) | 33 (78.6) | 476 (84.1) | 36 (76.6) | 499 (84.3) | 13 (61.9) | |||
Chronic diseases | ||||||||||
No | 351 (57.3) | 337 (59.0) | 14 (33.3) | 0.001 a | 334 (59.0) | 17 (36.2) | 0.002 a | 345 (58.3) | 6 (28.6) | 0.007 a |
Yes | 262 (42.7) | 234 (41.0) | 28 (66.7) | 232 (41.0) | 30 (63.8) | 247 (41.7) | 15 (71.4) | |||
Health Status | ||||||||||
Good | 455 (74.2) | 436 (95.8) | 135 (85.4) | <0.001 a | 436 (77.0) | 19 (40.4) | <0.001 a | 447 (75.5) | 8 (38.1) | <0.001 a |
Moderate or poor | 158 (25.8) | 19 (4.2) | 42 (25.8) | 130 (23.0) | 28 (59.6) | 145 (24.5) | 13 (61.9) | |||
Outpatient service experience | ||||||||||
No | 445 (72.6) | 420 (73.6) | 25 (59.5) | 0.049 a | 421 (74.4) | 24 (51.1) | 0.001 a | 435 (73.5) | 10 (47.6) | 0.013 a |
Yes | 168 (27.4) | 151 (26.4) | 17 (40.5) | 145 (25.6) | 23 (48.9) | 157 (26.5) | 11 (52.4) | |||
Inpatient service experience | ||||||||||
No | 509 (83.0) | 488 (85.5) | 21 (50.0) | <0.001 a | 487 (86.0) | 22 (46.8) | <0.001 a | 497 (84.0) | 12 (57.1) | 0.001 a |
Yes | 104 (17.0) | 83 (14.5) | 21 (50.0) | 79 (14.0) | 25 (53.2) | 95 (16.0) | 9 (12.9) | |||
Going to hospital alone | ||||||||||
No | 331 (54.0) | 315 (55.2) | 16 (38.1) | 0.039 a | 315 (55.7) | 16 (34.0) | 0.004 a | 326 (55.1) | 5 (23.8) | 0.005 a |
Yes | 282 (46.0) | 256 (44.8) | 26 (61.9) | 251 (44.3) | 31 (66.0) | 266 (44.9) | 16 (76.2) | |||
Buying medicine alone | ||||||||||
No | 275 (44.9) | 261 (45.7) | 14 (33.3) | 0.148 a | 259 (45.8) | 16 (34.0) | 0.129 a | 269 (45.4) | 6 (28.6) | 0.810 a |
Yes | 338 (55.1) | 310 (54.3) | 28 (66.7) | 307 (54.2) | 31 (66.0) | 323 (54.6) | 15 (71.4) | |||
Financial stress on medical costs | ||||||||||
No | 233 (38.0) | 227 (39.8) | 6 (14.3) | <0.001 a | 227 (40.1) | 6 (12.8) | <0.001 a | 232 (39.2) | 1 (4.8) | <0.001 b |
Moderate | 254 (41.4) | 238 (41.7) | 16 (38.1) | 238 (42.0) | 16 (34.0) | 250 (42.2) | 4 (19.0) | |||
Yes | 126 (20.6) | 106 (18.6) | 20 (47.6) | 101 (17.8) | 25 (53.2) | 110 (18.6)) | 16 (76.2) | |||
Relationship with neighbors | ||||||||||
Bad | 91 (14.8) | 80 (14.0) | 11 (26.2) | 0.001 a | 88 (15.5) | 3 (6.4) | 0.006 b | 87 (14.7) | 4 (19.0) | 0.077 b |
fairly bad | 86 (14.0) | 76 (13.3) | 10 (23.8) | 77 (13.6) | 9 (19.1) | 82 (13.9) | 4 (19.0) | |||
fairly good | 138 (22.5) | 125 (21.9) | 13 (31.0) | 119 (21.0) | 19 (40.4) | 130 (22.0) | 8 (38.1) | |||
Good | 298 (48.6) | 290 (50.8) | 8 (19.0) | 282 (49.8) | 16 (34.0) | 293 (49.5) | 5 (23.8) | |||
Relationship with friends | ||||||||||
Bad | 91 (14.8) | 81 (14.2) | 10 (23.8) | 0.002 a | 86 (15.2) | 5 (10.6) | 0.008 a | 87 (14.7) | 4 (19.0) | 0.180 b |
fairly bad | 93 (15.2) | 80 (14.0) | 13 (31.0) | 80 (14.1) | 13 (27.7) | 90 (15.2) | 3 (14.3) | |||
fairly good | 134 (21.9) | 125 (21.9) | 9 (21.4) | 119 (21.0) | 15 (31.9) | 126 (21.3) | 8 (38.1) | |||
Good | 295 (48.1) | 285 (49.9) | 10 (23.8) | 281 (49.6) | 14 (29.8) | 289 (48.8) | 6 (28.6) | |||
Couple support | ||||||||||
No | 100 (16.3) | 91 (15.9) | 9 (21.4) | 0.353 a | 86 (15.2) | 14 (29.8) | 0.009 a | 94 (15.9) | 6 (28.6) | 0.122 a |
Yes | 513 (83.7) | 480 (84.1) | 33 (78.6) | 480 (84.8) | 33 (70.2) | 498 (84.1) | 15 (71.4) | |||
Children support | ||||||||||
No | 36 (5.9) | 26 (4.6) | 10 (23.8) | <0.001 a | 26 (4.6) | 10 (21.3) | <0.001 a | 27 (4.6) | 9 (42.9) | <0.001 a |
Yes | 577 (94.1) | 545 (95.4) | 32 (76.2) | 540 (95.4) | 37 (78.7) | 565 (95.4) | 12 (57.1) | |||
Sibling support | ||||||||||
No | 297 (48.5) | 270 (47.3) | 27 (64.3) | 0.038 a | 266 (47.0) | 31 (66.0) | 0.012 a | 285 (48.1) | 12 (57.1) | 0.507 a |
Yes | 316 (51.5) | 301 (52.7) | 15 (35.7) | 300 (53.0) | 16 (34.0) | 307 (51.9) | 9 (42.9) | |||
Other members support | ||||||||||
No | 311 (50.7) | 282 (49.4) | 29 (69.0) | 0.014 a | 282 (49.8) | 29 (61.7) | 0.118 a | 299 (50.5) | 12 (57.1) | 0.55 a |
Yes | 302 (49.3) | 289 (51.6) | 13 (31.0) | 284 (50.2) | 18 (38.3) | 293 (49.5) | 9 (42.9) | |||
Economic support when in trouble | ||||||||||
No | 15 (2.4) | 11 (1.9) | 4 (19.0) | 0.015 b | 13 (2.3) | 2 (4.3) | 0.322 b | 11 (1.9) | 4 (19.0) | 0.001 b |
Yes | 598 (97.6) | 560 (98.1) | 38 (81.0) | 553 (97.7) | 45 (95.7) | 560 (98.1) | 38 (81.0) | |||
Comfort support when in trouble | ||||||||||
No | 6 (1.0) | 3 (0.5) | 3 (7.1) | 0.005 b | 5 (0.9) | 1 (2.1) | 0.382 b | 5 (0.8) | 1 (4.8) | 0.189 b |
Yes | 607 (99.0) | 568 (99.5) | 39 (92.9) | 561 (99.1) | 46 (97.9) | 587 (99.2) | 20 (95.2) |
Variables | Model 1 Socio-Demographic Variables | Model 2 Model 1+ Health Services Utilization | Model 3 Model 2 + Social Support | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Gender | ||||||
Male | 1.0 | 1.0 | 1.0 | |||
Female | 0.605 | 0.303, 1.207 | 0.576 | 0.270, 1.227 | 0.702 | 0.296, 1.665 |
Age | ||||||
60–65 | 1.0 | 1.0 | 1.0 | |||
66– | 1.960 | 0.957, 4.010 | 1.739 | 0.817, 3.702 | 1.720 | 0.746, 3.968 |
Employment | ||||||
Employed | 1.0 | 1.0 | 1.0 | |||
Retired and having income | 0.447 | 0.153, 1.304 | 0.457 | 0.144, 1.449 | 0.618 | 0.161, 2.365 |
Unemployed and having no income | 0.307 * | 0.113, 0.833 | 0.211 ** | 0.069, 0.645 | 0.262 * | 0.070, 0.979 |
Migration reason | ||||||
Taking care of grandchildren | 1.0 | 1.0 | 1.0 | |||
Curing a disease or rehabilitation | 3.425 * | 1.030, 11.392 | 2.312 | 0.611, 8.748 | 2.710 | 0.574, 12.805 |
Others | 0.853 | 0.308, 2.634 | 0.679 | 0.223, 2.2065 | 2.419 | 0.200, 2.319 |
Chronic diseases | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.150 | 0.531, 2.2489 | 1.394 | 0.594, 3.273 | ||
Health Status | ||||||
Good | 1.0 | |||||
Moderate and poor | 1.773 | 0.810, 3.878 | 1.639 | 0.691, 3.888 | ||
Outpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 0.839 | 0.391, 1.800 | 0.650 | 0.277, 1.528 | ||
Inpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 3.496 ** | 1.566, 7.808 | 2.068 | 0.847, 5.049 | ||
Go to hospital alone | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.307 | 0.629, 2.712 | 1.361 | 0.591, 3.133 | ||
Pressure on medical costs | ||||||
No | 1.0 | 1.0 | ||||
Moderate | 1.668 | 0.591, 4.709 | 3.454 * | 1.010, 11.809 | ||
Yes | 3.942 ** | 1.266, 12.272 | 6.557 ** | 1.717, 25.044 | ||
Relationship with neighbors | ||||||
Bad | 1.0 | |||||
fairly bad | 0.963 | 0.233, 3.978 | ||||
fairly good | 0.807 | 0.184, 3.545 | ||||
Good | 0.250 | 0.047, 1.328 | ||||
Relationship with friends | ||||||
Bad | 1.0 | |||||
fairly bad | 1.798 | 0.410, 7.890 | ||||
fairly good | 1.081 | 0.208, 5.620 | ||||
Good | 1.465 | 0.275, 7.814 | ||||
Children support | ||||||
No | 1.0 | |||||
Yes | 0.257 * | 0.085, 0.780 | ||||
Sibling support | ||||||
No | 1.0 | |||||
Yes | 1.081 | 0.208, 5.620 | ||||
Other members support | ||||||
No | 1.0 | |||||
Yes | 0.595 | 0.235, 1.058 | ||||
Economic support when in trouble | ||||||
No | 1.0 | |||||
Yes | 0.495 | 0.068, 3.593 | ||||
Comfort support when in trouble | ||||||
No | 1.0 | |||||
Yes | 0.018 ** | 0.001, 0.245 |
Variables | Model 1 Socio-Demographic Variables | Model 2 Model 1+ Health Services Utilization | Model 3 Model 2 + Informal Social Support | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Marital status | ||||||
Married | 1.0 | 1.0 | 1.0 | |||
Single | 1.920 | 0.863, 4.269 | 1.538 | 0.647, 3.657 | 1.798 | 0.418, 7.724 |
Migration reason | ||||||
Taking care of grandchildren | 1.0 | 1.0 | 1.0 | |||
Curing a disease or rehabilitation | 3.837 * | 1.163, 12.657 | 3.098 | 0.817, 11.744 | 2.850 | 0.679, 11.957 |
Others | 0.973 | 0.349, 2.714 | 0.979 | 0.0320, 2.997 | 1.015 | 0.320, 3.218 |
Migration range | ||||||
Trans-county | 1.0 | 1.0 | 1.0 | |||
Trans-city | 3.004 ** | 1.576, 5.725 | 2.959 * | 1.457, 6.008 | 3.198 ** | 1.462, 6.999 |
Trans-province or country | 1.111 | 0.349, 3.541 | 1.150 | 0.298, 4.428 | 0.97 | 0.234, 4.032 |
Chronic diseases | ||||||
No | 1.0 | 1.0 | 1.0 | |||
Yes | 1.071 | 0.507, 2.262 | 0.915 | 0.413, 2.030 | ||
Health Status | ||||||
Good | 1.0 | 1.0 | ||||
Moderate or poor | 1.816 | 0.857, 3.849 | 2.179 | 0.971, 4.890 | ||
Outpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.277 | 0.620, 2.2631 | 1.207 | 0.556, 2.619 | ||
Inpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 3.584 ** | 1.709, 7.515 | 3.818 ** | 1.687, 8.644 | ||
Go to hospital alone | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.651 | 0.799, 3.413 | 1.121 | 0.510, 2.462 | ||
Financial stress on medical | ||||||
No | 1.0 | 1.0 | ||||
Moderate | 1.310 | 0.460, 3.728 | 1.600 | 0.537, 4.763 | ||
Yes | 3.014 * | 1.017, 8.929 | 3.726 * | 1.174, 11.819 | ||
Relationship with neighbors | ||||||
Bad | 1.0 | |||||
fairly bad | 2.017 | 0.329, 12.368 | ||||
fairly good | 4.458 | 0.697, 2.8.531 | ||||
Good | 5.318 | 0.762, 37.121 | ||||
Relationship with friends | ||||||
Bad | 1.0 | |||||
fairly bad | 2.876 | 0.565, 14.646 | ||||
fairly good | 2.469 | 0.416, 14.662 | ||||
Good | 0.710 | 0.108, 4.687 | ||||
Couple support | ||||||
No | 1.0 | |||||
Yes | 1.060 | 0.284, 3.959 | ||||
Children support | ||||||
No | 1.0 | |||||
Yes | 0.198 * | 0.066, 0.598 | ||||
Sibling support | ||||||
No | 1.0 | |||||
Yes | 0.607 | 0.274, 1.342 |
Variables | Model 1 Socio-Demographic Variables | Model 2 Model 1+ Health Services Utilization | Model 3 Model 2 + Informal Social Support | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Employment | ||||||
Employed | 1.0 | 1.0 | 1.0 | |||
Retired and having income | 0.375 | 0.103, 1.369 | 0.477 ** | 0.109, 2.077 | 1.061 | 0.154, 7.313 |
Unemployed | 0.175 ** | 0.053, 0.585 | 0.116 | 0.028, 0.475 | 0.224 | 0.034, 1.463 |
Migration reason | ||||||
Taking care of grandchildren | 1.0 | 1.0 | 1.0 | |||
Curing a disease or rehabilitation | 7.499 ** | 1.808, 31.110 | 6.192 | 1.133, 33.838 | 12.702 * | 1.681, 95.968 |
Others | 1.496 | 0.393, 6.696 | 1.219 * | 0.269, 5.512 | 2.582 | 0.380, 17.560 |
Hesitant to migrate | ||||||
Very hesitant | 1.0 | 1.0 | 1.0 | |||
A little hesitant | 0.787 | 0.167, 3.707 | 0.807 | 0.140, 4.637 | 0.897 | 0.086, 9.325 |
Not at all hesitant | 0.203 ** | 0.065, 0.634 | 0.275 * | 0.078, 0.975 | 0.370 | 0.066, 2.081 |
Chronic diseases | 0.754 | 0.177, 3.202 | ||||
No | 1.0 | 1.0 | ||||
Yes | 1.319 | 0.424, 4.107 | 1.189 | 0.294, 4.817 | ||
Health Status | ||||||
Good | 1.0 | 1.0 | ||||
Moderate and poor | 1.309 | 0.407, 4.207 | 2.275 | 0.518, 9.989 | ||
Outpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.268 | 0.437, 3.675 | 0.754 | 0.177, 3.202 | ||
Inpatient service experience | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.465 | 0.463, 4.639 | 1.089 | 0.305, 3.886 | ||
Go to hospital alone | ||||||
No | 1.0 | 1.0 | ||||
Yes | 2.334 | 0.700, 7.779 | 1.963 | 0.388, 9.920 | ||
Financial stress on medical | ||||||
No | 1.0 | 1.0 | ||||
Moderate | 2.171 | 0.217, 21.702 | 3.638 | 0.274, 48.292 | ||
Yes | 18.291 * | 1.944, 172.101 | 32.155 * | 2.321, 445.393 | ||
Children support | ||||||
No | 1.0 | |||||
Yes | 0.055 * | 0.010, 0.301 | ||||
Economic support when in trouble | ||||||
No | 1.0 | |||||
Yes | 0.012 * | 0.001, 0.136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Pang, M.; Wang, J.; Xu, J.; Kong, F. Effects of Health Service Utilization and Informal Social Support on Depression, Anxiety, and Stress among the Internal Migrant Elderly following Children in Weifang, China. Int. J. Environ. Res. Public Health 2022, 19, 14640. https://doi.org/10.3390/ijerph192214640
Li H, Pang M, Wang J, Xu J, Kong F. Effects of Health Service Utilization and Informal Social Support on Depression, Anxiety, and Stress among the Internal Migrant Elderly following Children in Weifang, China. International Journal of Environmental Research and Public Health. 2022; 19(22):14640. https://doi.org/10.3390/ijerph192214640
Chicago/Turabian StyleLi, Hexian, Mingli Pang, Jieru Wang, Jing Xu, and Fanlei Kong. 2022. "Effects of Health Service Utilization and Informal Social Support on Depression, Anxiety, and Stress among the Internal Migrant Elderly following Children in Weifang, China" International Journal of Environmental Research and Public Health 19, no. 22: 14640. https://doi.org/10.3390/ijerph192214640
APA StyleLi, H., Pang, M., Wang, J., Xu, J., & Kong, F. (2022). Effects of Health Service Utilization and Informal Social Support on Depression, Anxiety, and Stress among the Internal Migrant Elderly following Children in Weifang, China. International Journal of Environmental Research and Public Health, 19(22), 14640. https://doi.org/10.3390/ijerph192214640