Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Estimation of Potential NPP
2.4. Estimation of the NPP Affected by Human Activities
2.5. Slope Trend Analysis
2.6. Correlation Analysis
3. Results
3.1. Spatial Pattern of the NPPact
3.2. NPPact Interannual Variability
3.3. Spatial Variations of NPPact
3.4. Spatial Pattern of NPPhum
3.5. NPPhum Interannual Variability
3.6. Spatial Variations of NPPhum
4. Discussion
4.1. Impact of Climatic Factors on NPPact
4.2. Impact of GDP on NPPhum
4.3. Impact of Population Density on NPPhum
5. Conclusions
- (1)
- During the period 2000–2019, the NPP in the Nanjing metropolitan area showed a slow upward trend in general, and the NPP in the south of the Nanjing metropolitan area was higher than that in the north;
- (2)
- The NPP was influenced by both temperature and precipitation, and the impact of precipitation on NPP was greater than that of temperature. The increase in temperature and precipitation has led to an increasing trend of regional NPP;
- (3)
- Land use change significantly affected the regional NPP. The transformation of land use from low-NPP type to high-NPP type led to an increase in NPP, while the land use change from high-NPP type to low-NPP type was the main cause of regional NPP decline;
- (4)
- In the past 20 years, the NPP affected by human activities (NPPhum) showed an upward trend, and human activities had a negative effect on NPP, which caused the actual NPP to be smaller than the potential NPP;
- (5)
- The NPPhum was influenced by both GDP and population density, and the impact of population density on NPP was greater than that of GDP. GDP was mainly positively related to NPP, while population density was mainly negatively correlated with NPP.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Chen, S.; Guo, B.; Zhang, R.; Zang, W.; Wei, C.; Wu, H.; Yang, X.; Zhen, X.; Li, X.; Zhang, D.; et al. Quantitatively determine the dominant driving factors of the spatial—Temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Sun, R.; Xiao, Z.Q.; Zhang, Q.; Liu, G.; Cui, T.X.; Wang, J.M. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data. Remote Sens. 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Oliva, G.; Paredes, P.; Ferrante, D.; Cepeda, C.; Rabinovich, J. Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia. J. Appl. Ecol. 2019, 56, 1575–1584. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Zhang, Q.; Li, Y. Spatial patterns of vegetation carbon sinks and sources dataset in Central Asia. Data Brief 2020, 32, 106200. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Gan, J.B.; Park, C. Discrepancies between Global Forest Net Primary Productivity Estimates Derived from MODIS and Forest Inventory Data and Underlying Factors. Remote Sens. 2021, 13, 1441. [Google Scholar] [CrossRef]
- Sun, R.; Wang, J.M.; Xiao, Z.Q.; Zhu, A.R.; Wang, M.J.; Yu, T. Estimation of Global Net Primary Productivity from 1981 to 2018 with Remote Sensing Data. In Proceedings of the International Geoscience and Remote Sensing Symposium Electr Network, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4331–4334. [Google Scholar]
- Li, C.H.; Zhou, M.; Dou, T.B.; Zhu, T.B.; Yin, H.H.; Liu, L.H. Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity. Ecol. Indic. 2021, 132, 108282. [Google Scholar] [CrossRef]
- Li, S.S.; Lu, S.H.; Liu, Y.P.; Gao, Y.H.; Ao, Y.H. Variations and trends of terrestrial NPP and its relation to climate change in the 10 CMIP5 models. J. Earth Syst. Sci. 2015, 124, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Yang, Y.; Fan, D.; Guan, H.; Zhang, T.; Long, D.; Zhou, Y.; Bai, D. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 2015, 204, 22–36. [Google Scholar] [CrossRef]
- Yuan, Q.Z.; Wu, S.H.; Zhao, D.S.; Dai, E.F.; Chen, L.; Zhang, L. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. J. Geogr. Sci. 2014, 24, 3–17. [Google Scholar] [CrossRef]
- Jahelnabi, A.E.; Wu, W.C.; Boloorani, A.D.; Salem, H.M.; Nazeer, M.; Fadoul, S.M.; Khan, M.S. Assessment the Influence of Climate and Human Activities in Vegetation Degradation using GIS and Remote Sensing Techniques. Contemp. Probl. Ecol. 2020, 13, 685–693. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, X.S.; Zhang, J.; Li, C.Y.; Zhang, Y.P.; Li, X.L. Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020. Sustainability 2022, 14, 8790. [Google Scholar] [CrossRef]
- Zhang, R.P.; Guo, J.; Yin, G. Response of net primary productivity to grassland phenological changes in Xinjiang, China. PeerJ 2021, 9, e10650. [Google Scholar] [CrossRef]
- Wang, R.J.; Feng, Q.S.; Jin, Z.R.; Liang, T.A. The Restoration Potential of the Grasslands on the Tibetan Plateau. Remote Sens. 2022, 14, 80. [Google Scholar] [CrossRef]
- Bao, G.; Tuya, A.; Bayarsaikhan, S.; Dorjsuren, A.; Mandakh, U.; Bao, Y.H.; Li, C.L.; Vanchindorj, B. Variations and climate constraints of terrestrial net primary productivity over Mongolia. Quat. Int. 2020, 537, 112–125. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, L.; Ji, J.J.; He, Y. Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model. J. Geophys. Res. Atmos. 2007, 112, D02S90. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.F.; Tian, H.Q.; Dangal, S.R.S.; Ouyang, Z.Y.; Lu, C.Q.; Yang, J.; Tao, B.; Ren, W.; Banger, K.; Yang, Q.C.; et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 2015, 25, 1027–1044. [Google Scholar] [CrossRef]
- Xie, C.H.; Wu, S.X.; Zhuang, Q.W.; Zhang, Z.H.; Hou, G.Y.; Luo, G.P.; Hu, Z.Y. Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sens. 2022, 14, 1092. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Yu, D.Y.; Shi, P.J.; Han, G.Y.; Zhu, W.Q.; Du, S.Q.; Xun, B. Forest ecosystem restoration due to a national conservation plan in China. Ecol. Eng. 2011, 37, 1387–1397. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Bai, T.T.; Xu, D.; Kang, J.; Shi, J.; Fang, H.; Nie, C.; Zhang, Z.J.; Yan, P.W.; Wang, D.N. Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kokyar Project Area from 2000 to 2021. Sustainability 2022, 14, 7668. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Q.; Liu, M.; Li, M.; Qu, L.A.; Deng, S.; Chen, D. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China. Sustainability 2017, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Zhang, L.B.; Liu, W.L.; Qi, Y.; Wo, X. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. J. Geogr. Sci. 2014, 24, 303–312. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, C.F.; Zhang, Y.X.; Xu, Y. Long-Term Spatiotemporal Variation of Net Primary Productivity and Its Correlation with the Urbanization: A Case Study in Hubei Province, China. Front. Environ. Sci. 2022, 9, 808401. [Google Scholar] [CrossRef]
- Freeman, J.; Robinson, E.; Beckman, N.G.; Bird, D.; Baggio, J.A.; Anderies, J.M. The global ecology of human population density and interpreting changes in paleo-population density. J. Archaeol. Sci. 2020, 120, 105168. [Google Scholar] [CrossRef]
- Chen, B.X.; Zhang, X.Z.; Tao, J.; Wu, J.S.; Wang, J.S.; Shi, P.L.; Zhang, Y.J.; Yu, C.Q. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Wu, S.H.; Zhou, S.L.; Chen, D.X.; Wei, Z.Q.; Dai, L.; Li, X.G. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Sci. Total Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation Productivity Dynamics in Response to Climate Change and Human Activities under Different Topography and Land Cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Wu, N.; Liu, A.; Ye, R.; Yu, D.; Du, W.; Chaolumeng, Q.; Liu, G.; Yu, S. Quantitative analysis of relative impacts of climate change and human activities on Xilingol grassland in recent 40 years. Glob. Ecol. Conserv. 2021, 32, e01884. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Lieth, H. Modeling the Primary Productivity of the World. In Primary Productivity of the Biosphere; Lieth, H., Whittaker, R.H., Eds.; Springer: New York, NY, USA, 1975; pp. 237–264. [Google Scholar]
- Guo, B.; Zang, W.Q.; Yang, F.; Han, B.M.; Chen, S.T.; Liu, Y.; Yang, X.; He, T.L.; Chen, X.; Liu, C.T.; et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid. Land 2020, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.L.; Jiang, H.; Chen, Y.; Cai, Z.J. Spatial-temporal patterns of net primary production in Anji (China) between 1984 and 2014. Ecol. Indic. 2020, 110, 105954. [Google Scholar] [CrossRef]
- Heng, L. Empirical Analysis of the Effects of Population Concentration and Urban Agglomeration on Economic Growth. J. Henan Univ. 2019, 59, 43–52. [Google Scholar]
- Lu, D.; Xu, X.; Tian, H.; Moran, E.; Zhao, M.; Running, S. The effects of urbanization on net primary productivity in southeastern China. Environ. Manag. 2010, 46, 404–410. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Zhu, B.; Zhao, T.; Wang, Y. Impact of urbanization on air quality in the Yangtze River Delta during the COVID-19 lockdown in China. J. Clean. Prod. 2021, 296, 126561. [Google Scholar] [CrossRef]
Type | Description | R | p |
---|---|---|---|
4 | high positive correlation with high significance level | R ≥ 0.8 | p < 0.01 |
3 | high positive correlation with moderate significance level | R ≥ 0.8 | 0.01 ≤ p < 0.05 |
2 | moderate positive correlation with high significance level | 0.3 ≤ R < 0.8 | p < 0.01 |
1 | moderate positive correlation with moderate significance level | 0.3 ≤ R < 0.8 | 0.01 ≤ p < 0.05 |
0 | weak correlation | −0.3 < R < 0.3 | |
−1 | moderate negative correlation with moderate significance level | −0.8 < R ≤ −0.3 | 0.01 ≤ p < 0.05 |
−2 | moderate negative correlation with high significance level | −0.8 < R ≤ −0.3 | p < 0.01 |
−3 | high negative correlation with moderate significance level | R ≤ −0.8 | 0.01 ≤ p < 0.05 |
−4 | high negative correlation with high significance level | R ≤ −0.8 | p < 0.01 |
Null Hypothesis | Chi-Square | Probability | Interpretation |
---|---|---|---|
temperature does not Granger cause NPPact | 17.446 | 0.002 | temperature Granger cause NPPact |
NPPact does not Granger cause temperature | 3.488 | 0.480 | NPPact does not Granger cause temperature |
precipitation does not Granger cause NPPact | 17.893 | 0.001 | precipitation Granger cause NPPact |
NPPact does not Granger cause precipitation | 17.424 | 0.002 | NPPact Granger cause precipitation |
R between NPPact and Temperature | Proportion | R between NPPact and Precipitation | Proportion |
---|---|---|---|
R ≤ −0.8 | 0 | R ≤ −0.8 | 0 |
−0.8 < R ≤ −0.3 | 1.97% | −0.8 < R ≤ −0.3 | 1.79% |
−0.3 < R < 0.3 | 82.01% | −0.3 < R < 0.3 | 37.78% |
0.3 ≤ R < 0.8 | 16.02% | 0.3 ≤ R < 0.8 | 60.43% |
R ≥ 0.8 | 0 | R ≥ 0.8 | 0.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, L.; Liu, X.; Zhu, Z. Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China. Int. J. Environ. Res. Public Health 2022, 19, 14798. https://doi.org/10.3390/ijerph192214798
Chen S, Yang L, Liu X, Zhu Z. Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China. International Journal of Environmental Research and Public Health. 2022; 19(22):14798. https://doi.org/10.3390/ijerph192214798
Chicago/Turabian StyleChen, Shulin, Li Yang, Xiaotong Liu, and Zhenghao Zhu. 2022. "Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China" International Journal of Environmental Research and Public Health 19, no. 22: 14798. https://doi.org/10.3390/ijerph192214798
APA StyleChen, S., Yang, L., Liu, X., & Zhu, Z. (2022). Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China. International Journal of Environmental Research and Public Health, 19(22), 14798. https://doi.org/10.3390/ijerph192214798