Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Assessments
2.2.1. Manovacuometry
- -
- Women: y= −0.49 (age) + 110.4; estimated standard error = 9.1;
- -
- Men: y= −0.80 (age) + 155.3; estimated standard error = 17.3.
- -
- Women: y= −0.61 (age) + 115.6; estimated standard error = 11.2;
- -
- Men: y= −0.81 (age) + 165.3; estimated standard error = 15.6.
2.2.2. Spirometry
2.2.3. Six-Minute Walk Test (6 MWT)
2.2.4. Timed up And Go Test (TUGT)
- -
- A total of 10 s or less: fully independent;
- -
- A total of 10 to 19 s: independent for most activities;
- -
- A total of 20 to 29 s: lack of balance and low functional capacity, presenting a moderate risk of falling;
- -
- A total of 30 s or more: Fully dependent for many activities of daily living and at high risk of falling.
2.2.5. Dynamometry
2.2.6. Post-COVID-19 Functional Status (PCFS)
2.2.7. Modified Medical Research Council (mMRC)
2.2.8. COPD Assessment Test (CAT)
2.3. Statistical Analysis and Sample Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipsitch, M.; Swerdlow, D.L.; Finelli, L. Defining the Epidemiology of Covid-19-Studies Needed. N. Engl. J. Med. 2020, 382, 1194–1196. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in china: A report of 1014 cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef] [Green Version]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.D.; Mesquita, R.; Furlanetto, K.C.; Borges, D.L.; Forgiarini Junior, L.A.; Maldaner, V.; Souza, Y.D.; Cipriano Júnior, G.; Carvalho, C.; Nogueira, I.C.; et al. Avaliação e intervenção para a reabilitação cardiopulmonar de pacientes recuperados da COVID-19. ASSOBRAFIR Ciência 2020, 11 (Suppl. S1), 183. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. Jama 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Vieira, L.M.; Emery, E.; Andriolo, A. COVID-19: Laboratory diagnosis for clinicians. An updating article. Sao Paulo Med. J. 2020, 138, 259–266. [Google Scholar] [CrossRef]
- Van Aerde, N.; Van den Berghe, G.; Wilmer, A.; Gosselink, R.; Hermans, G.; COVID-19 Consortium. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020, 46, 2083–2085. [Google Scholar] [CrossRef]
- Simpson, R.; Robinson, L. Rehabilitation after critical illness in people with COVID-19 infection. Am. J. Phys. Med. Rehabil. 2020, 99, 470–474. [Google Scholar] [CrossRef]
- Gautam, A.P.; Arena, R.; Dixit, S.; Borghi-Silva, A. Pulmonary rehabilitation in COVID-19 pandemic era: The need for a revised approach. Respirology 2020, 25, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Caruso, P.; Albuquerque, A.L.; Santana, P.V.; Cardenas, L.Z.; Ferreira, J.G.; Prina, E.; Trevizan, P.F.; Pereira, M.C.; Iamonti, V.; Pletsch, R.; et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J. Bras. Pneumol. 2015, 41, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Neder, J.A.; Andreoni, S.; Lerario, M.C.; Nery, L.E. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz. J. Med. Biol. Res. 1999, 32, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.G.; Kanner, R.E. Spirometry. Clin. Rev. Allergy Immunol. 2009, 37, 137–152. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. ATS/ERS Task Force: Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozato, C.; Ferreira, B.F.C.; Dalavina, J.P.; Molinare, C.V.; Alves, V.L.d.S. Reabilitação cardiopulmonar em pacientes pós-COVID-19: Série de casos. Rev. Bras. Ter. Intensiv. 2021, 33, 167–171. [Google Scholar]
- Morales-Blanhir, J.E.; Palafox Vidal, C.D.; Rosas Romero Md García Castro, M.M.; Londoño Villegas, A.; Zamboni, M. Teste de caminhada de seis minutos: Uma ferramenta valiosa na avaliação do comprometimento pulmonar. J. Bras. Pneumol. 2011, 37, 110–117. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117, Erratum in Am. J. Respir. Crit. Care Med. 2016, 193, 1185. [Google Scholar]
- Soares, M.R.; Pereira, C.A. Teste de caminhada de seis minutos: Valores de referência para adultos saudáveis no Brasil. J. Bras. Pneumol. 2011, 37, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, R.; Holanda, G. Correlação entre os testes da caminhada, marcha estacionária e TUG em hipertensas idosas. Braz. J. Phys. Ther. 2009, 13, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhang, W.; Yang, Y.; Zhang, J.; Li, Y.; Chen, Y. Respiratory rehabilitation in elderly patientswith COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 2020, 39, 101166. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, H.A.; Stahelin, H.B.; Monsch, A.U.; Iversen, M.D.; Weyh, A.; von Dechend, M.; Akos, R.; Conzelmann, M.; Dick, W.; Theiler, R. Identifying a cut-off point for normal mobility: A comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 2003, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.F.; Hervé, B.B.; Lukrafka, J.L.; Monteiro, M.B. Handgrip strength and its relation to isokinetic dynamometry in COPD. Fisioter. Em Mov. 2020, 33, e003356. [Google Scholar] [CrossRef]
- Massy-Westropp, N.; Rankin, W.; Ahern, M.; Krishnan, J.; Hearn, T.C. Measuring grip strength in normal adults: Reference ranges and a comparison of electronic and hydraulic instruments. J. Hand Surg. 2004, 29, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Boon, G.J.; Barco, S.; Endres, M.; Geelhoed, J.J.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.H.; Kline Leidy, N. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.W.; Tabberer, M.; Chen, W.H. Creating scenarios of the impact of CODP and their relationship to copd assessment test (CAT™) scores. BMC Pulm. Med. 2011, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Camelier, A.A.; Bastos, M.L.S.; Neves, M.C.C.; Aleluia, I.M.; Duarte, L.C. Descrição do Comportamento da Qualidade de Vida em Pacientes Ambulatoriais com Doença Pulmonar Obstrutiva Crônica (DPOC) em um Ano de Seguimento; Escola Bahiana de Medicina e Saúde Pública: Salvador, Brazil, 2019. [Google Scholar]
- Florian, J.; Rubin, A.; Mattiello, R.; Fontoura, F.F.; de Jesus Peixoto Camargo, J.; Teixeira, P.J.Z. Impact of pulmonary rehabilitation on quality of life and functional capacity in patients on waiting lists for lung transplantation. J. Bras. Pneumol. 2013, 39, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, E.R.; Chiappa, G.R.; Lima, C.O.; Viecili, P.R.; Stein, R.; Ribeiro, J.P. Addition of inspiratory muscle training to aerobic training improves cardiorespiratory responses to exercise in patients with heart failure and inspiratory muscle weakness. Am. Heart J. 2009, 158, 768.e1–768.e7. [Google Scholar] [CrossRef]
- Ferreira, J.B.; Plentz, R.D.; Stein, C.; Casali, K.R.; Arena, R.; Lago, P.D. Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: A randomized controlled trial. Int. J. Cardiol. 2013, 166, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.G.; Amaral, C.; Monteiro, M.B.; Nascimento, D.M.; Boschetti, J.R. Efeitos do treinamento muscular inspiratório nos pacientes em hemodiálise. J. Bras. Nefrol. 2011, 33, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.L.; Bastos Filho, P.S.; Moura Md Sousa, T.S.; Lemos, A.; Pedrosa, M.A. Efeitos de um programa de exercícios em grupo sobre a força de preensão manual em idosas com baixa massa óssea. Arq. Bras. Endocrinol. Metabol. 2012, 56, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Zanchet, R.C.; Viegas, C.A.; Lima, T. A eficácia da reabilitação pulmonar na capacidade de exercício, força da musculatura inspiratória e qualidade de vida de portadores de doença pulmonar obstrutiva crônica. J. Bras. Pneumol. 2005, 31, 118–124. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, A.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef] [PubMed]
- Rooney, S.; Webster, A.; Paul, L. Systematic Review of Changes and Recovery in Physical Function and Fitness After Severe Acute Respiratory Syndrome-Related Coronavirus Infection: Implications for COVID-19 Rehabilitation. Phys Ther. 2020, 100, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sport. Med. 2020, 54, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, B.; Spiegl, C.; Wiederin, C.; Schifferegger, E.; Schiefermeier-Mach, N. Post-COVID-19 Rehabilitation: Perception and Experience of Austrian Physiotherapists and Physiotherapy Students. Int. J. Environ. Res. Public Health 2021, 18, 8730. [Google Scholar] [CrossRef]
Variables | Frequency (%) |
---|---|
Age (years) § | 54.4 ± 14.6 |
Women * | 15/14 (51.7%) |
Weight (kg) § | 77.4 ± 14.7 |
Sessions § | 12.7 ± 2.7 |
Comorbidities | |
SAH * | 18/11 (62.1%) |
DM * | 9/20 (31%) |
Obesity * | 10/19 (34.5%) |
IHD * | 1/28 (3.4%) |
Hypercholesterolemia * | 3/26 (10.3%) |
Cardiac arrhythmia * | 1/28 (3.4%) |
COPD * | 1/28 (3.4%) |
Asthma * | 3/26 (10.3%) |
Variables | Evaluation Pre-Reab | Evaluation Post-Reab | p-Value |
---|---|---|---|
Vital Signs | |||
Heart rate (bpm) § | 91.7 ± 15.2 | 84.1 ± 12.9 | 0.005 * |
Respiratory rate (rpm) § | 21.1 ± 5.1 | 19.3 ± 4.7 | 0.045 * |
Oxygen saturation (%) § | 96.1 ± 2.6 | 96.2 ± 2.4 | 1.000 |
Blood Pressure | |||
Systolic (mmHg) § | 131.7 ± 15.3 | 128.6 ± 14.8 | 0.272 |
Diastolic (mmHg) § | 88.2 ± 10.7 | 85.2 ± 17.7 | 0.432 |
Borg § | 2.6 ± 2.1 | 0.8 ± 1.1 | 0.003 * |
Functional tests | |||
TUGT (s) § | 13.9 ± 9.1 | 10.4 ± 6.3 | 0.023 * |
6MWT (m) § | 326.3 ± 140.6 | 445.4 ± 151.1 | <0.001 * |
6MWT (%) ¥ | 59.7 ± 23.8 | 82.6 ± 28.2 | <0.001 * |
Manovacuometry | |||
MIP (cmH2O) § | 101.4 ± 46.3 | 115.8 ± 38.3 | 0.117 |
MIP (%) ¥ | 120.0 ± 49.7 | 138.5 ± 44.6 | 0.088 |
MEP (cmH2O) § | 85.8 ± 32.8 | 106.7 ± 36.8 | <0.001 * |
MEP (%) ¥ | 104.3 ± 37.1 | 129.8 ± 41.3 | <0.001 * |
Dynamometry | |||
Right (Kg) § | 28.6 ± 21.0 | 37.4 ± 19.6 | 0.011 * |
Left (Kg) § | 26.6 ± 20.3 | 35.4 ± 18.7 | 0.006 * |
Spirometry | |||
FVC (L) § | 2.9 ± 0.8 | 3.2 ± 0.8 | 0.004 * |
FVC (%) ¥ | 3.7 ± 0.9 | 3.8 ± 0.8 | 0.412 |
FEV1 (L) § | 2.5 ± 0.7 | 2.7 ± 0.7 | 0.001 * |
FEV1 (%) ¥ | 2.9 ± 0.7 | 3.0 ± 0.7 | 0.427 |
FEV1/FVC (%) ¥ | 80.1 ± 2.4 | 80.2 ± 2.3 | 0.770 |
Questionnaires | |||
mMRC § | 1.79 ± 1.0 | 0.68 ± 0.7 | <0.001 * |
CAT § | 15.4 ± 8.6 | 8.1 ± 7.3 | <0.001 * |
PCFS-A § | 2.1 ± 1.4 | 1.0 ± 1.2 | <0.001 * |
PCFS-B § | 2.0 ± 1.4 | 1.0 ± 1.1 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hockele, L.F.; Sachet Affonso, J.V.; Rossi, D.; Eibel, B. Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 14899. https://doi.org/10.3390/ijerph192214899
Hockele LF, Sachet Affonso JV, Rossi D, Eibel B. Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial. International Journal of Environmental Research and Public Health. 2022; 19(22):14899. https://doi.org/10.3390/ijerph192214899
Chicago/Turabian StyleHockele, Luana Fagherazzi, João Vitor Sachet Affonso, Danusa Rossi, and Bruna Eibel. 2022. "Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial" International Journal of Environmental Research and Public Health 19, no. 22: 14899. https://doi.org/10.3390/ijerph192214899
APA StyleHockele, L. F., Sachet Affonso, J. V., Rossi, D., & Eibel, B. (2022). Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial. International Journal of Environmental Research and Public Health, 19(22), 14899. https://doi.org/10.3390/ijerph192214899