Arterial Stiffness Response to Acute Combined Training with Different Volumes in Coronary Artery Disease and Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Intervention Sessions
2.4. Central and Peripheral Arterial Stiffness Indices
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mozos, I.; Malainer, C.; Horbańczuk, J.; Gug, C.; Stoian, D.; Luca, C.T.; Atanasov, A.G. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front. Immunol. 2017, 8, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, A.; Montezano, A.C.; Touyz, R.M. Vascular biology of ageing-Implications in hypertension. J. Mol. Cell. Cardiol. 2015, 83, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Iwamoto, A.; Kajikawa, M.; Matsumoto, T.; Oda, N.; et al. Endothelial Dysfunction, Increased Arterial Stiffness, and Cardiovascular Risk Prediction in Patients with Coronary Artery Disease: FMD-J (Flow-Mediated Dilation Japan) Study A. J. Am. Heart Assoc. 2018, 7, e008588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feola, M.; Testa, M.; Ferreri, C.; Rosso, G.; Rossi, A.; Ruocco, G. The Analysis of Arterial Stiffness in Heart Failure Patients in Comparison with Healthy Subjects and Patients with Cardiovascular Risk Factors. J. Clin. Med. 2019, 8, 1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitzman, D.W.; Herrington, D.M.; Brubaker, P.H.; Moore, J.B.; Eggebeen, J.; Haykowsky, M.J. Carotid arterial stiffness and its relationship to exercise intolerance in older patients with heart failure and preserved ejection fraction. Hypertension 2013, 61, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [Green Version]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [Green Version]
- Fahs, C.A.; Heffernan, K.S.; Fernhall, B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med. Sci. Sports Exerc. 2009, 41, 773–779. [Google Scholar] [CrossRef]
- Yoon, E.S.; Jung, S.J.; Cheun, S.K.; Oh, Y.S.; Kim, S.H.; Jae, S.Y. Effects of acute resistance exercise on arterial stiffness in young men. Korean Circ. J. 2010, 40, 16–22. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Collier, S.R.; Kelly, E.E.; Jae, S.Y.; Fernhall, B. Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int. J. Sports Med. 2007, 28, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.Y.; Lai, W.K. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion. Biomed. Res. Int. 2015, 2015, 343916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsley, J.D.; Mayo, X.; Tai, Y.L.; Fennell, C. Arterial Stiffness and Autonomic Modulation after Free-Weight Resistance Exercises in Resistance Trained Individuals. J. Strength Cond. Res. 2016, 30, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, B.A.; Berry, K.L.; Cameron, J.D.; Jennings, G.L.; Dart, A.M. Arterial compliance increases after moderate-intensity cycling. Am. J. Physiol. 1997, 273 Pt 2, H2186–H2191. [Google Scholar] [CrossRef]
- Lane, A.D.; Ranadive, S.M.; Yan, H.; Kappus, R.M.; Cook, M.D.; Sun, P.; Woods, J.A.; Wilund, K.; Fernhall, B. Effect of sex on wasted left ventricular effort following maximal exercise. Int. J. Sports Med. 2013, 34, 770–776. [Google Scholar] [CrossRef]
- Yan, H.; Ranadive, S.M.; Heffernan, K.S.; Lane, A.D.; Kappus, R.M.; Cook, M.D.; Wu, P.T.; Sun, P.; Harvey, I.S.; Woods, J.A.; et al. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H60–H68. [Google Scholar] [CrossRef]
- Sugawara, J.; Komine, H.; Miyazawa, T.; Imai, T.; Ogoh, S. Influence of single bout of aerobic exercise on aortic pulse pressure. Eur. J. Appl. Physiol. 2015, 115, 739–746. [Google Scholar] [CrossRef]
- Kobayashi, R.; Hatakeyama, H.; Hashimoto, Y.; Okamoto, T. Acute effects of different aerobic exercise duration on pulse wave velocity in healthy young men. J. Sports Med. Phys. Fit. 2017, 57, 1695–1701. [Google Scholar] [CrossRef]
- Miyachi, M.; Kawano, H.; Sugawara, J.; Takahashi, K.; Hayashi, K.; Yamazaki, K.; Tabata, I.; Tanaka, H. Unfavorable effects of resistance training on central arterial compliance: A randomized intervention study. Circulation 2004, 110, 2858–2863. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Min, S.; Sakamaki-Sunaga, M. Arterial compliance and stiffness following low-intensity resistance exercise. Eur. J. Appl. Physiol. 2014, 114, 235–241. [Google Scholar] [CrossRef]
- DeVan, A.E.; Anton, M.M.; Cook, J.N.; Neidre, D.B.; Cortez-Cooper, M.Y.; Tanaka, H. Acute effects of resistance exercise on arterial compliance. J. Appl. Physiol. 2005, 98, 2287–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; ACSM: Indianapolis, IN, USA, 2017. [Google Scholar]
- Gary, R.A.; Cress, M.E.; Higgins, M.K.; Smith, A.L.; Dunbar, S.B. A combined aerobic and resistance exercise program improves physical functional performance in patients with heart failure: A pilot study. J. Cardiovasc. Nurs. 2012, 27, 418–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dor-Haim, H.; Barak, S.; Horowitz, M.; Yaakobi, E.; Katzburg, S.; Swissa, M.; Lotan, C. Improvement in cardiac dysfunction with a novel circuit training method combining simultaneous aerobic-resistance exercises. A randomized trial. PLoS ONE 2018, 13, e0188551. [Google Scholar]
- Wilkinson, S.B.; Phillips, S.M.; Atherton, P.J.; Patel, R.; Yarasheski, K.E.; Tarnopolsky, M.A.; Rennie, M.J. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 2008, 586, 3701–3717. [Google Scholar] [CrossRef]
- Pierce, D.R.; Doma, K.; Raiff, H.; Golledge, J.; Leicht, A.S. Influence of Exercise Mode on Post-exercise Arterial Stiffness and Pressure Wave Measures in Healthy Adult Males. Front. Physiol. 2018, 9, 1468. [Google Scholar] [CrossRef] [Green Version]
- Mutter, A.F.; Cooke, A.B.; Saleh, O.; Gomez, Y.H.; Daskalopoulou, S.S. A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments. Hypertens. Res. 2017, 40, 146–172. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Jae, S.Y.; Fernhall, B. Racial differences in arterial stiffness after exercise in young men. Am. J. Hypertens. 2007, 20, 840–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunsawat, K.; Ranadive, S.M.; Lane-Cordova, A.D.; Yan, H.; Kappus, R.M.; Fernhall, B.; Baynard, T. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals. Physiol. Rep. 2017, 5, e13226. [Google Scholar] [CrossRef] [PubMed]
- Casillas, J.M.; Gudjoncik, A.; Gremeaux, V.; Aulagne, J.; Besson, D.; Laroche, D. Assessment tools for personalizing training intensity during cardiac rehabilitation: Literature review and practical proposals. Ann. Phys. Rehabil. Med. 2017, 60, 43–49. [Google Scholar] [CrossRef]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Franklin, B.A.; Thompson, P.D.; Garber, C.E.; Whitfield, G.P.; Magal, M.; Pescatello, L.S. Updating ACSM’s Recommendations for Exercise Preparticipation Health Screening. Med. Sci. Sports Exerc. 2015, 47, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access. J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keteyian, S.J.; Hibner, B.A.; Bronsteen, K.; Kerrigan, D.; Aldred, H.A.; Reasons, L.M.; Saval, M.A.; Brawner, C.A.; Schairer, J.R.; Thompson, T.M.; et al. Greater improvement in cardiorespiratory fitness using higher-intensity interval training in the standard cardiac rehabilitation setting. J. Cardiopulm. Rehabil. Prev. 2014, 34, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, J.; Hill, A. The velocity of the pulse wave in man. Proc. R. Soc. Lond. Ser. B Contain. Pap. A Biol. Character 1922, 93, 298–306. [Google Scholar]
- Heffernan, K.S.; Jae, S.Y.; Echols, G.H.; Lepine, N.R.; Fernhall, B. Arterial stiffness and wave reflection following exercise in resistance-trained men. Med. Sci. Sports Exerc. 2007, 39, 842–848. [Google Scholar] [CrossRef]
- Melo, X.; Fernhall, B.; Santos, D.A.; Pinto, R.; Pimenta, N.M.; Sardinha, L.B.; Santa-Clara, H. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults. Appl. Physiol. Nutr. Metab. 2016, 41, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S. High performance training and racing. In The Heart Rate Monitor Book; Edwards, S., Ed.; Feet Fleet Press: Sacramento, CA, USA, 1993; pp. 113–123. [Google Scholar]
- Pollock, M.L.; Franklin, B.A.; Balady, G.J.; Chaitman, B.L.; Fleg, J.L.; Fletcher, B.; Limacher, M.; Piña, I.L.; Stein, R.A.; Williams, M.; et al. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: Benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 2000, 101, 828–833. [Google Scholar]
- Ghadieh, A.S.; Saab, B. Evidence for exercise training in the management of hypertension in adults. Can. Fam. Physician 2015, 61, 233–239. [Google Scholar]
- Taaffe, D.R.; Galvão, D.A.; Sharman, J.E.; Coombes, J.S. Reduced central blood pressure in older adults following progressive resistance training. J. Hum. Hypertens. 2007, 21, 96–98. [Google Scholar] [CrossRef]
- Beck, D.T.; Martin, J.S.; Casey, D.P.; Braith, R.W. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am. J. Hypertens. 2013, 26, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A. Effects of resistance training on central blood pressure and wave reflection in obese adults with prehypertension. J. Hum. Hypertens. 2014, 28, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, K.S.; Yoon, E.S.; Sharman, J.E.; Davies, J.E.; Shih, Y.T.; Chen, C.H.; Fernhall, B.; Jae, S.Y. Resistance exercise training reduces arterial reservoir pressure in older adults with prehypertension and hypertension. Hypertens. Res. 2013, 36, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, K.H.; Alastruey, J.; Stan, G.B. Arterial reservoir-excess pressure and ventricular work. Med. Biol. Eng. Comput. 2012, 50, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, L.; Xu, L.; Sun, X.; Liu, W.; Zhou, S.; van de Vosse, F.; Greenwald, S.E. Effects of exercise modalities on central hemodynamics, arterial stiffness and cardiac function in cardiovascular disease: Systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2018, 13, e0200829. [Google Scholar] [CrossRef]
- Li, Y.; Hanssen, H.; Cordes, M.; Rossmeissl, A.; Endes, S.; Schmidt-Trucksäss, A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: A review. Eur. J. Sport Sci. 2015, 15, 443–457. [Google Scholar] [CrossRef]
- Montero, D.; Vinet, A.; Roberts, C.K. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int. J. Cardiol. 2015, 178, 69–76. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Angelis, A.; Tsitsinakis, G.; Spetsioti, S.; Nasis, I.; Tsiachris, D.; Rapakoulias, P.; Pitsavos, C.; Koulouris, N.G.; Vogiatzis, I.; et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int. J. Cardiol. 2015, 179, 269–274. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Naka, K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc. Dis. 2019, 8, 2048004019843047. [Google Scholar] [CrossRef]
- Alem, M.M. Endothelial Dysfunction in Chronic Heart Failure: Assessment, Findings, Significance, and Potential Therapeutic Targets. Int. J. Mol. Sci. 2019, 20, 3198. [Google Scholar] [CrossRef] [Green Version]
- Hambrecht, R.; Fiehn, E.; Weigl, C.; Gielen, S.; Hamann, C.; Kaiser, R.; Yu, J.; Adams, V.; Niebauer, J.; Schuler, G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998, 98, 2709–2715. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J.; Hopman, M.T.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, C.; Green, D.; Collis, J.; Dembo, L.; O’Driscoll, G. Effect of aerobic and resistance exercise on central hemodynamic responses in severe chronic heart failure. J. Appl. Physiol. 2002, 93, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doonan, R.J.; Mutter, A.; Egiziano, G.; Gomez, Y.H.; Daskalopoulou, S.S. Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertens. Res. 2013, 36, 226–231. [Google Scholar] [CrossRef] [PubMed]
CAD | HF | |
---|---|---|
Age (years) | 73.2 ± 10.0 | 63.4 ± 6.1 |
Weight (kg) | 73.8 ± 9.2 | 81.1 ± 17.0 |
Height (m2) | 1.7 ± 0.1 | 1.7 ± 0.1 |
BMI (kg/m2) | 26.6 ± 3.1 | 27.7 ± 4.4 |
Brachial SBP at rest (mmHg) | 119.3 ± 10.9 | 123.2 ± 7.6 |
Brachial DBP at rest (mmHg) | 67.8 ± 8.1 | 69.7 ± 6.3 |
Hypertension (%) | 60 | 50 |
Hyperlipidemia (%) | 80 | 80 |
Overweight/obesity (%) | 20 | 10 |
>1-year Ex-smoker (%) | 0 | 10 |
>1-year Ex-depression (%) | 20 | 40 |
Beta-blocker (%) | 100 | 100 |
ACEi/ARB (%) | 80 | 100 |
Statin (%) | 80 | 100 |
Antiplatelet (%) | 100 | 50 |
Diuretics (%) | 60 | 60 |
CCB (%) | 40 | 10 |
LVEF (%) | >50 | 30.6 ± 5.9 |
CAD | HF | |||
---|---|---|---|---|
CET | CRT | CET | CRT | |
Heart rate rest (bpm) | 63 ± 7 | 67 ± 8 | 67 ± 8 | 65 ± 6 |
Peak heart rate (bpm) | 119 ± 6 | 117 ± 8 † | 111 ± 8 | 109 ± 5 † |
TRIMP | 96.1 ± 12.6 | 82.4 ± 8.0 | 96.3 ± 12.7 | 91.3 ± 12.1 |
RPE | 8 ± 1 | 8 ± 1 | 8 ± 1 | 8 ± 1 |
Heart rate recovery 5 min (bpm) | 94 ± 20 * | 99 ± 16 *† | 99 ± 21 * | 97 ± 14 *† |
Heart rate recovery 15 min (bpm) | 88 ± 18 * | 91 ± 12 *† | 92 ± 16 * | 89 ± 12 *† |
Variables | Time Point | Mean ± SD CAD | Mean ± SD HF | Main Effect of the Protocol for CAD | Main Effect of Time for CAD | Main Effect of the Protocol for HF | Main Effect of Time for HF |
---|---|---|---|---|---|---|---|
bSBP | Rest | 119.30 ± 10.67 | 123.15 ± 7.57 | 0.05 (p = 0.95) | 4.39 (p = 0.03) * | 0.72 (p = 0.50) | 8.25 (p < 0.01) * |
5 min post | 118.55 ± 9.83 | 121.75 ± 11.14 | |||||
15 min post | 115.70 ± 10.33 | 120.10 ± 8.36 | |||||
bDBP | Rest | 69.75 ± 8.07 | 74.70 ± 6.34 | 0.37 (p = 0.70) | 3.68 (p = 0.05) * | 0.39 (p = 0.68) | 11.06 (p < 0.01) * |
5 min post | 67.70 ± 5.45 | 71.00 ± 8.54 | |||||
15 min post | 66.80 ± 8.13 | 69.30 ± 6.27 | |||||
MAP | Rest | 86.82 ± 8.38 | 93.46 ± 5.93 | 0.38 (p = 0.69) | 6.06 (p = 0.01) * | 0.58 (p = 0.57) | 8.39 (p < 0.01) * |
5 min post | 84.00 ± 6.23 | 90.18 ± 8.92 | |||||
15 min post | 83.10 ± 8.15 | 86.21 ± 6.13 | |||||
bPP | Rest | 54.15 ± 7.31 | 58.25 ± 3.67 | 0.14 (p = 0.87) | 6.24 (p = 0.01) * | 1.35 (p = 0.29) | 7.25 (p = 0.01) * |
5 min post | 51.15 ± 7.49 | 56.45 ± 5.05 | |||||
15 min post | 50.15 ± 8.47 | 52.30 ± 6.39 | |||||
aSBP | Rest | 114.30 ± 13.88 | 129.25 ± 7.70 | 0.11 (p = 0.90) | 4.69 (p = 0.02) * | 0.47 (p = 0.64) | 7.35 (p = 0.01) * |
5 min post | 112.25 ± 11.55 | 121.95 ± 10.68 | |||||
15 min post | 109.55 ± 13.02 | 118.95 ± 7.93 | |||||
aDBP | Rest | 69.80 ± 8.08 | 74.75 ± 6.43 | 0.39 (p = 0.68) | 3.57 (p = 0.05) * | 0.41 (p = 0.67) | 11.21 (p < 0.01) * |
5 min post | 67.70 ± 5.45 | 70.00 ± 8.54 | |||||
15 min post | 66.90 ± 8.41 | 69.30 ± 6.27 | |||||
aPP | Rest | 50.60 ± 9.38 | 57.55 ± 5.03 | 0.03 (p = 0.97) | 4.69 (p = 0.02) * | 1.15 (p = 0.34) | 4.97 (p = 0.02) * |
5 min post | 47.15 ± 9.60 | 55.50 ± 4.42 | |||||
15 min post | 46.40 ± 9.7 | 51.90 ± 6.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, V.; Massuça, L.M.; Angarten, V.; Melo, X.; Pinto, R.; Fernhall, B.; Santa-Clara, H. Arterial Stiffness Response to Acute Combined Training with Different Volumes in Coronary Artery Disease and Heart Failure Patients. Int. J. Environ. Res. Public Health 2022, 19, 14994. https://doi.org/10.3390/ijerph192214994
Santos V, Massuça LM, Angarten V, Melo X, Pinto R, Fernhall B, Santa-Clara H. Arterial Stiffness Response to Acute Combined Training with Different Volumes in Coronary Artery Disease and Heart Failure Patients. International Journal of Environmental Research and Public Health. 2022; 19(22):14994. https://doi.org/10.3390/ijerph192214994
Chicago/Turabian StyleSantos, Vanessa, Luís Miguel Massuça, Vitor Angarten, Xavier Melo, Rita Pinto, Bo Fernhall, and Helena Santa-Clara. 2022. "Arterial Stiffness Response to Acute Combined Training with Different Volumes in Coronary Artery Disease and Heart Failure Patients" International Journal of Environmental Research and Public Health 19, no. 22: 14994. https://doi.org/10.3390/ijerph192214994
APA StyleSantos, V., Massuça, L. M., Angarten, V., Melo, X., Pinto, R., Fernhall, B., & Santa-Clara, H. (2022). Arterial Stiffness Response to Acute Combined Training with Different Volumes in Coronary Artery Disease and Heart Failure Patients. International Journal of Environmental Research and Public Health, 19(22), 14994. https://doi.org/10.3390/ijerph192214994