Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity
Abstract
:1. Introduction
2. Description of the Study Area
3. Mathematical Model and Simulation
4. Result and Discussion
4.1. Spatial Information of Liujiagou Formation
4.2. Regional Heterogeneity Characteristics of the Formation Distribution
4.3. Vertical Heterogeneity Characteristics of LFm: Taking the MC-1 Well as the Example
4.4. Regional Volumetric and Dynamic Storage Capacity of the Study Area
4.5. Deep Groundwater Flow Patterns Revealed in Cross-Sections Induced by Mine Water Injection
4.6. Long Term Evolution of the Groundwater Flow Field
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.H.; Verhoef, A.; Van Loon, A.F.; Sulis, M.; et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res. 2021, 57, e2020W–e29500W. [Google Scholar] [CrossRef]
- Ju, Q.; Hu, Y.; Chen, K.; Liu, Q. Hydrogeochemical Processes and Connection of Multi-Layer Groundwater System in Sunan Mining Area, Eastern China. Int. J. Environ. Res. Public Health 2022, 19, 12392. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, Z.; Sun, Y.; Sui, W.; Li, X.; Zhao, X.; Liu, Q. Minewater deep transfer and storage. J. Clean Prod. 2022, 332, 129848. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Y.; Xu, Z.; Li, X. Hydrogeological feasibility of mine water deep geological storage in Baotashan coarse sandstone: A case study in Ordos Basin. Deep. Undergr. Sci. Eng. 2022; Early View. [Google Scholar] [CrossRef]
- Huang, X.; Jin, M.; Ma, B.; Liang, X.; Cao, M.; Zhang, J.; Zhang, Z.; Su, J. Identifying nitrate sources and transformation in groundwater in a large subtropical basin under a framework of groundwater flow systems. J. Hydrol. 2022, 610, 127943. [Google Scholar] [CrossRef]
- Gómez-Moncada, R.A.; Mora, A.; Jaramillo, M.; Parra, M.; Martínez, A.; Mayorga, H.; Sandoval-Muñoz, J.; Cuy-Cipamocha, A.; Suárez, D.; Sandoval-Ruiz, J.; et al. Implications of groundwater flow on preservation of heavy and extra-heavy oil accumulations in Southern Llanos Basin, Colombia. J. S. Am. Earth Sci. 2022, 119, 104013. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, X.; Lancia, M.; Yao, Y.; Zheng, C. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau. J. Hydrol. Reg. Stud. 2021, 36, 100871. [Google Scholar] [CrossRef]
- Hamed, Y.; Ahmadi, R.; Demdoum, A.; Bouri, S.; Gargouri, I.; Ben Dhia, H.; Al-Gamal, S.; Laouar, R.; Choura, A. Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia. J. Afr. Earth Sci. 2014, 100, 418–436. [Google Scholar] [CrossRef]
- Cao, G.; Han, D.; Currell, M.J.; Zheng, C. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations. J. Asian Earth Sci. 2016, 127, 119–136. [Google Scholar] [CrossRef]
- Tóth, J. A theory of groundwater motion in small drainage basins in central Alberta, Canada. J. Geophys. Res. 1962, 67, 4375–4388. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Zhang, Z.; Wan, L.; Wang, X.; Li, H. An analytical study on three-dimensional versus two-dimensional water table-induced flow patterns in a Tóthian basin. Hydrol. Process. 2017, 31, 4006–4018. [Google Scholar] [CrossRef]
- An, R.; Jiang, X.; Wang, J.; Wan, L.; Wang, X.; Li, H. A theoretical analysis of basin-scale groundwater temperature distribution. Hydrogeol. J. 2015, 23, 397–404. [Google Scholar] [CrossRef]
- Yuan, R.; Zhang, Y.; Long, X. Deep groundwater circulation in a syncline in Rucheng County, China. J. Hydrol. 2022, 610, 127824. [Google Scholar] [CrossRef]
- Tóth, Á.; Kovács, S.; Kovács, J.; Mádl-Szőnyi, J. Springs regarded as hydraulic features and interpreted in the context of basin-scale groundwater flow. J. Hydrol. 2022, 610, 127907. [Google Scholar] [CrossRef]
- Jellicoe, K.; Mcintosh, J.; Ferguson, G. Changes in deep groundwater flow patterns related to oil and gas. Groundwater 2021, 60, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Zhang, K.; Karasaki, K.; Marui, A.; Uehara, H.; Nishikawa, N. Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int. J. Greenh. Gas. Con. 2009, 3, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Zehner, B.; Kolditz, O.; Attinger, S. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. J. Hydrol. 2016, 532, 90–101. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: A review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Kang, M.; Ayars, J.E.; Jackson, R.B. Deep groundwater quality in the southwestern United States. Environ. Res. Lett. 2019, 14, 34004. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.; Li, W.; Li, T.; Zhang, X.; Wang, Y.; Chen, Y. Relevance Between Hydrochemical and Hydrodynamic Data in a Deep Karstified Limestone Aquifer: A Mining Area Case Study. Mine Water Environ. 2018, 37, 393–404. [Google Scholar] [CrossRef]
- Tesmer, M.; Möller, P.; Wieland, S.; Jahnke, C.; Voigt, H.; Pekdeger, A. Deep reaching fluid flow in the North East German Basin: Origin and processes of groundwater salinisation. Hydrogeol. J. 2007, 15, 1291–1306. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Hou, X.; Li, J.; Ren, X.; Lin, M.; Zhang, M.; Wang, Y.; Tian, Y. Effects of multi-factors on the spatiotemporal variations of deep confined groundwater in coal mining regions, North China. Sci. Total. Environ. 2022, 823, 153741. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, K.; Li, C.; Wang, Y. Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin. Int. J. Greenh Gas. Con. 2016, 52, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ping, S.; Yuan, Y.; Sun, Z.; Tian, H.; Yang, Z. Effects of the mechanical response of low-permeability sandstone reservoirs on CO2 geological storage based on laboratory experiments and numerical simulations. Sci Total Environ 2021, 796, 149066. [Google Scholar] [CrossRef]
- Yan, W.; Crandall, D.; Bruner, K.; Ning, W.; Gill, M.; Xiaochun, L.; Bromhal, G. Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos basin, China for CO2 Aquifer Storage. Energy Procedia 2013, 37, 5055–5062. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhao, R.; Dong, S.; Wang, W.; Sun, H.; Mao, D. Scanning for water hazard threats with sequential water releasing tests in underground coal mines. J. Hydrol. 2020, 590, 125350. [Google Scholar] [CrossRef]
- Neuman, S.P.; Witherspoon, P.A. Finite Element Method of Analyzing Steady Seepage with a Free Surface. Water Resour. Res. 1970, 6, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Hemker, K.; Bakker, M. Analytic elements for flow in layered, anisotropic aquifers. In Developments in Water Science; Hassanizadeh, S.M., Schotting, R.J., Gray, W.G., Pinder, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 47, pp. 753–754. [Google Scholar]
- Galsa, A.; Tóth, Á.; Szijártó, M.; Pedretti, D.; Mádl-Szőnyi, J. Interaction of basin-scale topography- and salinity-driven groundwater flow in synthetic and real hydrogeological systems. J. Hydrol. 2022, 609, 127695. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Shan, Y.; Xiong, J. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China. Geosci. Front. 2012, 3, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; He, D.; Bao, H.; Lu, R.; Gui, B. Upper Palaeozoic gas accumulations of the Yimeng Uplift, Ordos Basin. Petrol. Explor. Dev. 2011, 38, 30–39. [Google Scholar] [CrossRef]
- Marques, F.; Dias, P.; Carvalho, J.; Represas, P.; Spicer, B.; Araújo, V.; Matos, J.X.; Morais, I.; Albardeiro, L.; Sousa, P.; et al. 3D Constrained Gravity Inversion and TEM, Seismic Reflection and Drill-Hole Analysis for New Target Generation in the Neves–Corvo VMS Mine Region, Iberian Pyrite Belt. Nat. Resour. Res. 2022, 31, 2321–2346. [Google Scholar] [CrossRef]
- Dürrast, H.; Ngansom, W. Integrated geophysical and geochemical investigations on the high-salinity geothermal waters of the Khlong Thom Hot Spring tourist attraction in Krabi, southern Thailand. Geosci. J. 2022, 26, 621–635. [Google Scholar] [CrossRef]
- He, Z. The Applicaiton of Gravity and Magnetic Data Processing and Interpretation in Regional Tectonic Analysis of Ordos Basin. Master’s Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Dubey, C.P.; Tiwari, V.M. Computation of the gravity field and its gradient: Some applications. Comput. Geosci. 2016, 88, 83–96. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Yang, G.; Wu, L.; Xiao, A.; Zhou, Y.; Sun, L.; Zhang, C.; Yang, S.; Chen, H. The late Paleoproterozoic to Mesoproterozoic rift system in the Ordos Basin and its tectonic implications: Insight from analyses of Bouguer gravity anomalies. Precambrian Res. 2021, 352, 105964. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, C.; Zeng, X.; Tan, S.; Lu, C. Ore-controlling structures of sandstone-hosted uranium deposit in the southwestern Ordos Basin: Revealed from seismic and gravity data. Ore. Geol. Rev. 2022, 140, 104590. [Google Scholar] [CrossRef]
- Gan, M.; Nguyen, M.C.; Zhang, L.; Wei, N.; Li, J.; Lei, H.; Wang, Y.; Li, X.; Stauffer, P.H. Impact of reservoir parameters and wellbore permeability uncertainties on CO2 and brine leakage potential at the Shenhua CO2 Storage Site, China. Int. J. Greenh. Gas. Con. 2021, 111, 103443. [Google Scholar] [CrossRef]
- Alves, T.M. 3D Seismic examples of differential compaction in mass-transport deposits and their effect on post-failure strata. Mar. Geol. 2010, 271, 212–224. [Google Scholar] [CrossRef]
- Ito, T.; Ohbuchi, A.; Nakajima, T.; Xue, Z. Identifying the source of natural gamma-rays in shallow-marine siliciclastic strata and their significance for shale evaluation: A case study of the CO2 storage aquifer at the Nagaoka site, Japan. J. Nat. Gas. Sci. Eng. 2017, 46, 782–792. [Google Scholar] [CrossRef]
- Chu, D.; Tong, J.; Bottjer, D.J.; Song, H.; Song, H.; Benton, M.J.; Tian, L.; Guo, W. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 474, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Furtak-Cole, E.; Telyakovskiy, A.S.; Cooper, C.A. A series solution for horizontal infiltration in an initially dry aquifer. Adv. Water Resour. 2018, 116, 145–152. [Google Scholar] [CrossRef]
- Shandilya, R.N.; Bresciani, E.; Runkel, A.C.; Higgins, R.; Lee, S.; Kang, P.K. Influence of inter-aquifer leakage on well-injection capacity: Theory and aquifer-scale mapping for artificial recharge. J. Environ. Manag. 2022, 322, 116035. [Google Scholar] [CrossRef]
- Jafari Raad, S.M.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Brown, M.R.M.; Ge, S.; Screaton, E. A Simple Relation to Constrain Groundwater Models Using Surface Deformation. Groundwater 2022, 60, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Goderniaux, P.; Davy, P.; Bresciani, E.; de Dreuzy, J.; Le Borgne, T. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resour. Res. 2013, 49, 2274–2286. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, P.; Huang, X.; Zhang, B.; Xu, Z.; Li, Y.; Li, J.; Wang, L.; Sun, Y.; Meng, X.; et al. Groundwater sources, flow patterns, and hydrochemistry of the Central Yinchuan Plain, China. Hydrogeol. J. 2021, 29, 591–606. [Google Scholar] [CrossRef]
- Pan, G.; Li, X.; Zhang, J.; Liu, Y.; Liang, H. Groundwater-flow-system characterization with hydrogeochemistry: A case in the lakes discharge area of the Ordos Plateau, China. Hydrogeol. J. 2019, 27, 669–683. [Google Scholar] [CrossRef]
- Mádl-Szőnyi, J.; Simon, S. Involvement of preliminary regional fluid pressure evaluation into the reconnaissance geothermal exploration—Example of an overpressured and gravity-driven basin. Geothermics 2016, 60, 156–174. [Google Scholar] [CrossRef]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70, 250–264. [Google Scholar] [CrossRef]
- Jiang, X.; Wan, L.; Wang, X.; Wang, D.; Wang, H.; Wang, J.; Zhang, H.; Zhang, Z.; Zhao, K. A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeol. J. 2018, 26, 1657–1668. [Google Scholar] [CrossRef]
- Tóth, Á.; Havril, T.; Simon, S.; Galsa, A.; Monteiro Santos, F.A.; Müller, I.; Mádl-Szőnyi, J. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. J. Hydrol. 2016, 539, 330–344. [Google Scholar] [CrossRef]
- Jiang, X.; Wan, L.; Ge, S.; Cao, G.; Hou, G.; Hu, F.; Wang, X.; Li, H.; Liang, S. A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resour. Res. 2012, 48, W12502. [Google Scholar] [CrossRef]
- Tóth, Á.; Galsa, A.; Mádl-Szőnyi, J. Significance of basin asymmetry and regional groundwater flow conditions in preliminary geothermal potential assessment—Implications on extensional geothermal plays. Global. Planet Chang. 2020, 195, 103344. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resour. Res. 2015, 51, 6602–6621. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Li, X.; Ma, J.; Liu, L.; Gao, M.; Bai, Z. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin. Appl. Geochem. 2018, 98, 82–93. [Google Scholar] [CrossRef]
- Guo, Q.; Su, N.; Yang, Y.; Li, J.; Wang, X. Using hydrological simulation to identify contribution of coal mining to runoff change in the Kuye River Basin, China. Water Resour. 2017, 44, 586–594. [Google Scholar] [CrossRef]
- Cardenas, M.B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophys. Res. Lett. 2007, 34, L05403. [Google Scholar] [CrossRef]
- Schaller, M.F.; Fan, Y. River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. J. Geophys. Res. Atmos. 2009, 114, D04103. [Google Scholar] [CrossRef]
- Robinson, N.I.; Love, A.J. Hidden channels of groundwater flow in Tóthian drainage basins. Adv. Water Resour. 2013, 62, 71–78. [Google Scholar] [CrossRef]
- Navarro De León, I.; Gárfias-Soliz, J.; Mahlknecht, J. Groundwater flow regime under natural conditions as inferred from past evidence and contemporary field observations in a semi-arid basin: Cuenca de la Independencia, Guanajuato, México. J. Arid. Environ. 2005, 63, 756–771. [Google Scholar] [CrossRef]
- Birkholzer, J.T.; Zhou, Q.; Tsang, C. Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas. Con. 2009, 3, 181–194. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, H.; Singh, V.P.; Yu, Y.; Shao, S. Investigating Hydrological Variability in the Wuding River Basin: Implications for Water Resources Management under the Water—Human-Coupled Environment. Water 2021, 13, 184. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.; Rutqvist, J. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas. Con. 2008, 2, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xu, S.G.; Kang, P.P.; Fu, Y.Z.; Wang, T.X. Impacts of Artificial Underground Reservoir on Groundwater Environment in the Reservoir and Downstream Area. Int. J. Environ. Res. Public Health 2019, 16, 1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassiat, C.; Gleeson, T.; Luijendijk, E. The location of old groundwater in hydrogeologic basins and layered aquifer systems. Geophys. Res. Lett. 2013, 40, 3042–3047. [Google Scholar] [CrossRef]
- Jin, W.; Steward, D.R. The transition of flow patterns through critical stagnation points in two-dimensional groundwater flow. Adv. Water Resour. 2007, 30, 16–28. [Google Scholar] [CrossRef]
- Pang, H.; Pan, B.; Garzanti, E.; Gao, H.; Zhao, X.; Chen, D. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance. Chem. Geol. 2018, 488, 76–86. [Google Scholar] [CrossRef]
- Bricker, S.H.; Barkwith, A.; MacDonald, A.M.; Hughes, A.G.; Smith, M. Effects of CO2 injection on shallow groundwater resources: A hypothetical case study in the Sherwood Sandstone aquifer, UK. Int. J. Greenh. Gas. Con. 2012, 11, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; van Dijke, M.I.J.; Geiger, S.; Ma, J.; Couples, G.D.; Li, X. Pore network extraction for fractured porous media. Adv. Water Resour. 2017, 107, 280–289. [Google Scholar] [CrossRef]
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transport. Porous. Med. 2019, 130, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Chu, Y.; Xu, Z.; Tartakovsky, A.M.; Fang, Y. Uncertainty quantification for the impact of injection rate fluctuation on the geomechanical response of geological carbon sequestration. Int. J. Greenh. Gas. Con. 2014, 20, 160–167. [Google Scholar] [CrossRef]
- Ge, S.; Saar, M.O. Review: Induced Seismicity During Geoenergy Development—A Hydromechanical Perspective. J. Geophys. Res. Solid Earth 2022, 127, e2021J–e23141J. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, L.; An, M.; Elsworth, D.; He, C. Frictional stability of Longmaxi shale gouges and its implication for deep seismic potential in the southeastern Sichuan Basin. Deep. Undergr. Sci. Eng. 2022, 1, 3–14. [Google Scholar] [CrossRef]
- Michael, K.; Varma, S.; Bekele, E.; Campi, M.; O’Brien, G. Basin-scale Impacts of Industrial-scale CO2 Injection on Petroleum and Groundwater Resources in the Gippsland Basin, Australia. Energy Procedia 2013, 37, 2570–2578. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Xu, Z.; Rudakov, D.; Sun, Y.; Li, X. Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity. Int. J. Environ. Res. Public Health 2022, 19, 15438. https://doi.org/10.3390/ijerph192315438
Chen G, Xu Z, Rudakov D, Sun Y, Li X. Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity. International Journal of Environmental Research and Public Health. 2022; 19(23):15438. https://doi.org/10.3390/ijerph192315438
Chicago/Turabian StyleChen, Ge, Zhimin Xu, Dmytro Rudakov, Yajun Sun, and Xin Li. 2022. "Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity" International Journal of Environmental Research and Public Health 19, no. 23: 15438. https://doi.org/10.3390/ijerph192315438
APA StyleChen, G., Xu, Z., Rudakov, D., Sun, Y., & Li, X. (2022). Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity. International Journal of Environmental Research and Public Health, 19(23), 15438. https://doi.org/10.3390/ijerph192315438