Root Vegetables—Composition, Health Effects, and Contaminants
Abstract
:1. Introduction
2. Morphological Structure of Root Vegetables
3. Composition and Antioxidant Potential of Root Vegetables
3.1. Carrot
3.2. Celery
3.3. Parsley
3.4. Beetroot
3.5. Radish
3.6. Turnip
3.7. Horseradish
Vegetable | Folin–Ciocalteu | DPPH | ABTS | Literature |
---|---|---|---|---|
Carrot, root | 412.2 mg GAE/100 g d.w. | 42.5 µmol TE/100 g d.w. | ~6 µmol TE/ g d.w. | [49,74] |
Beetroot | 313.8 mg GAE/100 g d.w. | 568.4 ± 7.6 mg TE/100 g d.w. | 35.49 µmol TE/g d.w. | [57,75] |
Celery, root | 5.2 mg GAE/100g d.w. | 105.79 µmol TE/100 g d.w. | 1.14 µmol TE/g d.w. | [39] |
Parsley, leaf | 7.51 mg GAE/100 g d.w. | 16.13% | 33.85 µmol TE/g d.w. | [76] |
Radish, root | 341.45 mg GAE/100 g d.w. | 1.36 mmol TE/100 g d.w. | n.d. | [77] |
Horseradish, root | ~1050 mg GAE/100 g d.w. | ~7.5 µmol TE/g d.w. | ~5.8 µmol TE/g d.w. | [78] |
Turnip, root | 241.27 mg GAE/100 g d.w. | 47.5% | n.d. | [67] |
4. Influence of Root Vegetables on Health
4.1. Carrot
4.2. Celery
4.3. Parsley
Vegetable | Type of Study | Form of Vegetable/Compound Tested | Effect | Source |
---|---|---|---|---|
Carrot | In vitro | Carrot powder | Fermentation of polyphenols Antioxidant activity and ability to inhibit α-galactosidase shown by polyphenols Regulation of gut microbiota diversity | [79] |
Carrot | In vivo/rats | Carrot root and pomace preparations | Higher stool weight Lipid profile improvement Lower fecal pH Reduction in β-galactosidase activity | [80] |
Carrot | In vivo/rats | Fermented carrot juice | Regulation of glucose level Regulation of insulin sensitivity Increased short-chain fatty acids in the small intestine Increased microbiota abundance | [105] |
Carrot | In vivo/rats | Carrot seed extract | Increased level of thyroxine Decreased spatial memory and passive avoidance memory | [106] |
Carrot | In vivo/hamster | Carrot and carambola juice | Lower fecal pH Reduced β-galactosidase activity | [81] |
Carrot | In vivo/women | Carrot seed | Female sexual function index (FSFI) questionnaire improved (mainly higher desire, higher satisfaction, and lower pain involving sexual intercourse) | [82] |
Carrot | In vivo/people/ meta-analysis | Various carrot products | Decreased risk of prostate cancer associated with intake of carrots Carrot intake might be inversely associated with prostate cancer risk | [7] |
Carrot | In vivo/people/meta-analysis | Various carrot products | Dietary carrot intake associated with decreased risk of breast cancer Studies conducted using various methodologies | [86] |
Parsley | In vivo/mice | Polyphenolic fraction of parsley | Decreased depressive behavior (decreased immobility time) Decreased anxiolytic behavior (tendency for discovery in the center and illuminated areas) | [107] |
Parsley | In vivo/rats | Polyphenolic fraction of parsley | Antithrombotic effects Reduced venous thrombus formation by 98.2% | [108] |
Parsley | In vivo/rats | Parsley leaf extract | Morphology improvement in pregnant diabetic rats Fetuses’ metabolic changes caused by mothers’ diabetes decreased | [109] |
Parsley | In vivo/rats | Parsley seed extract | Total cholesterol, triglycerides, LDL cholesterol, and vLDL cholesterol decreased Cholesterol HDL increased | [110] |
Parsley | In vivo/rats | Parsley leaf | Parsley did not cause any significant reduction in uric acid levels in serum of normal rats, but significantly reduced uric acid levels in serum of hyperuricemic rats in time-dependent manner | [111] |
Celery | In vitro/LNCaP cells | Celery extract | Apoptosis induction Anticancer activity on the human prostatic carcinoma cell line LNCaP Time- and dose-dependent inhibition of cell viability by the extract | [112] |
Celery | In vivo/mice | Fermented celery juice | Increased relative abundance of beneficial bacteria in gut microbiota Increased ratio of Firmicutes/Bacteroidetes Decreased relative abundance of harmful bacteria (Alloprevotella and Helicobacter) | [113] |
Celery | In vivo/mice | Celery extract | Improved both spatial and non-spatial memories Reduced lipid peroxidation of brain Increased glutathione peroxidase activity | [114] |
Celery | In vivo/rats | Celery extract | Decreased infarct volume Improved neuronal density in cortex and hippocampus | [115] |
Celery | In vivo/women | Celery seed | Female sexual function index (FSFI) questionnaire improved (mainly higher desire, higher arousal, and lower pain involving sexual intercourse) | [116] |
Celery | In vivo/people | Celery leaf extract | Decrease in pre-prandial plasma glucose levels among patients with diabetes No significant increase in plasma insulin levels | [117] |
Celery | In vivo/people | Celery seed extract | Systolic blood pressure decreased by 11 mmHg on average Diastolic pressure decreased by 8 mmHg on average | [118] |
Celery | In vivo/people | Celery, root | Six of eleven patients with history of allergic reactions to celery showed allergic response to cooked celery Celery remained allergenic even after extended thermal treatment (76.07 min/100 °C) Celery spice was allergenic for patients with allergy to raw celery | [119] |
4.4. Beetroot
4.5. Radish
4.6. Turnip
4.7. Horseradish
5. Contaminants
5.1. Nitrate and Nitrite
5.2. Heavy Metals
5.3. Pesticides
5.4. Polycyclic Aromatic Hydrocarbons
5.5. Microplastics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Melbye, E.L.; Hausken-Sutter, S.E.; Lien, N.; Bjelland, M. Adolescent Vegetable Consumption: The Role of Socioemotional Family Characteristics. Public Health Nutr. 2021, 24, 5710–5719. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.G.; Rhee, Y.; Honrath, K.; Blodgett Salafia, E.H.; Terbizan, D. Nutrition Education Effective in Increasing Fruit and Vegetable Consumption among Overweight and Obese Adults. Appetite 2016, 100, 94–101. [Google Scholar] [CrossRef] [PubMed]
- del Pozo-Rubio, R.; Moya-Martínez, P.; Escribano-Sotos, F.; Amo Saus, M.E. Costs of Health Services Associated with Fruit and Vegetable Consumption Habits. Nutr. Hosp. 2018, 35, 920–927. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Victoria-Campos, C.I.; Ornelas-Paz, J.d.J. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties. Subcell. Biochem. 2016, 79, 415–454. [Google Scholar] [CrossRef] [PubMed]
- FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 21 June 2022).
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności, 2nd ed.; PZWL: Warsaw, Poland, 2017; p. 475. [Google Scholar]
- Xu, X.; Cheng, Y.; Li, S.; Zhu, Y.; Xu, X.; Zheng, X.; Mao, Q.; Xie, L. Dietary Carrot Consumption and the Risk of Prostate Cancer. Eur. J. Nutr. 2014, 53, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus Conventional Beetroot. Bioactive Compounds and Antioxidant Properties. LWT 2019, 116, 108552. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Olympios, C.M.; Passam, H.C. The Effect of Nitrogen Fertilization on Plant Growth and the Nitrate Content of Leaves and Roots of Parsley in the Mediterranean Region. Sci. Hortic. 2008, 118, 255–259. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelo, F.M.; Caldas, E.D. Arsenic, Lead, Mercury and Cadmium: Toxicity, Levels in Breast Milk and the Risks for Breastfed Infants. Environ. Res. 2016, 151, 671–688. [Google Scholar] [CrossRef] [PubMed]
- El-Saeid, M.H.; Selim, M.T. Multiresidue Analysis of 86 Pesticides Using Gas Chromatography Mass Spectrometry: II-Nonleafy Vegetables. J. Chem. 2013, 2013, 727149. [Google Scholar] [CrossRef]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic Pollution in Vegetable Farmlands of Suburb Wuhan, Central China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.W.; Salam, A. Polycyclic Aromatic Hydrocarbons (Pahs) in Vegetables and Fruits Produced in Saudi Arabia. Bull. Environ. Contam. Toxicol. 2012, 88, 543–547. [Google Scholar] [CrossRef]
- Ekart, K.; Hmelak Gorenjal, A.; Madorran, E.; Lapajne, S.; Langerholc, T. Study on the Influence of Food Processing on Nitrate Levels in Vegetables. EFSA Support. Publ. 2017, 10, 514E. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food Sources of Nitrates and Nitrites: The Physiologic Context for Potential Health Benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshafie, S.; El-Helw, G.O.; Fayoud, A.M.; Elrashedy, A.A.; Gbreel, M.I.; Alfayoumi, S.S.; Mohamed, I.M.; Abdelwadoud, G.T.; Isa, A.S.; Ragab, K.M.; et al. Efficacy of Dietary Nitrate-Rich Beetroot Juice Supplementation in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2021, 42, 32–40. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [Green Version]
- Maynard, D.N.; Barker, A. v.; Minotti, P.L.; Peck, N.H. Nitrate Accumulation in Vegetables. Adv. Agron. 1976, 28, 71–118. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 27 August 2022).
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Szweykowska, A.; Szweykowski, J. Botanika Morfologia; PWN: Warsaw, Poland, 2013; Volume 1. [Google Scholar]
- Dobrzański, A.J. Ochrona Plantacji Chrzanu Przed Chwastami-Aktualne Możliwości Wyboru Herbicydów i Spodziewane Zmiany. Ochr. Roślin 2014, 10, 28–32. [Google Scholar]
- Malinowski, E. Anatomia Roślin: Podręcznik Dla Studentów Szkół Wyższych, 10th ed.; PWN: Warsaw, Poland, 1987. [Google Scholar]
- Bolton, A.; Klimek-Chodacka, M.; Martin-Millar, E.; Grzebelus, D.; Simon, P.W. Genome-Assisted Improvement Strategies for Climate-Resilient Carrots. In Genomic Designing of Climate-Smart Vegetable Crops; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 309–343. [Google Scholar] [CrossRef]
- Boadi, N.O.; Badu, M.; Kortei, N.K.; Saah, S.A.; Annor, B.; Mensah, M.B.; Okyere, H.; Fiebor, A. Nutritional Composition and Antioxidant Properties of Three Varieties of Carrot (Daucus carota). Sci. Afr. 2021, 12, e00801. [Google Scholar] [CrossRef]
- Fraser, P.D.; Bramley, P.M. The Biosynthesis and Nutritional Uses of Carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef] [PubMed]
- González-Peña, M.A.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Carotenoids from Mamey (Pouteria Sapota) and Carrot (Daucus carota) Increase the Oxidative Stress Resistance of Caenorhabditis Elegans. Biochem. Biophys. Rep. 2021, 26, 100989. [Google Scholar] [CrossRef] [PubMed]
- Hammaz, F.; Charles, F.; Kopec, R.E.; Halimi, C.; Fgaier, S.; Aarrouf, J.; Urban, L.; Borel, P. Temperature and Storage Time Increase Provitamin A Carotenoid Concentrations and Bioaccessibility in Post-Harvest Carrots. Food Chem. 2021, 338, 128004. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Chen, C.H.; Lee, M.H. Comparison of the Characteristics, Functional Properties, and in Vitro Hypoglycemic Effects of Various Carrot Insoluble Fiber-Rich Fractions. LWT—Food Sci. Technol. 2004, 37, 155–160. [Google Scholar] [CrossRef]
- Aubert, C.; Bruaut, M.; Chalot, G. Spatial Distribution of Sugars, Organic Acids, Vitamin C, Carotenoids, Tocopherols, 6-Methoxymellein, Polyacetylenic Compounds, Polyphenols and Terpenes in Two Orange Nantes Type Carrots (Daucus carota L.). J. Food Compos. Anal. 2022, 108, 104421. [Google Scholar] [CrossRef]
- Meinke, M.C.; Friedrich, A.; Tscherch, K.; Haag, S.F.; Darvin, M.E.; Vollert, H.; Groth, N.; Lademann, J.; Rohn, S. Influence of Dietary Carotenoids on Radical Scavenging Capacity of the Skin and Skin Lipids. Eur. J. Pharm. Biopharm. 2013, 84, 365–373. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W. The Effect of Various Nitrogen Fertilization and Foliar Nutrition Regimes on the Concentrations of Sugars, Carotenoids and Phenolic Compounds in Carrot (Daucus carota L.). Sci. Hortic. 2009, 120, 315–324. [Google Scholar] [CrossRef]
- Fernando Reyes, L.; Emilio Villarreal, J.; Cisneros-Zevallos, L. The Increase in Antioxidant Capacity after Wounding Depends on the Type of Fruit or Vegetable Tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The Oxalate Content of Fruit and Vegetable Juices, Nectars and Drinks. J. Food Compost. Anal. 2016, 45, 108–112. [Google Scholar] [CrossRef]
- Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 27 August 2022).
- de Melo Nunes, R.; Girão, V.C.C.; Rocha, F.A.C. Beans, Cilantro and Parsley; 3 Unadvertised Though Relevant Calcium Food Sources. J. Clin. Rheumatol. 2017, 23, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. J. Food Sci. 2010, 75, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Radziejewska-Kubzdela, E.; Czapski, J.; Czaczyk, K.; Biegańska-Marecik, R. The Effect of Pre-Treatment and Modified Atmosphere Packaging on Contents of Phenolic Compounds and Sensory and Microbiological Quality of Shredded Celeriac. J. Sci. Food Agric. 2014, 94, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Song, D.; Zhuang, L.; Liu, G.; Liang, L.; Zhang, J.; Liu, X.; Li, Y.; Xu, X. Isolation and Identification of Polyphenol Monomers from Celery Leaves and Their Structure-Antioxidant Activity Relationship. Process Biochem. 2022, 121, 69–77. [Google Scholar] [CrossRef]
- Central Statistical Office of Poland. Available online: https://stat.gov.pl/wyszukiwarka/?query=tag:uprawy (accessed on 26 October 2022).
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia dla populacji Polski i ich Zastosowanie; PZH: Warsaw, Poland, 2020. [Google Scholar]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sȩczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyz, J. Effect of Fortification with Parsley (Petroselinum crispum Mill.) Leaves on the Nutraceutical and Nutritional Quality of Wheat Pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- El-Zaeddi, H.; Calín-Sánchez, Á.; Nowicka, P.; Martínez-Tomé, J.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Preharvest Treatments with Malic, Oxalic, and Acetylsalicylic Acids Affect the Phenolic Composition and Antioxidant Capacity of Coriander, Dill and Parsley. Food Chem. 2017, 226, 179–186. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.S.; Chávez, D.W.H.; Paiva, P.R.F.; Gamallo, O.D.; Castro, R.N.; Sawaya, A.C.H.F.; Sampaio, G.R.; Torres, E.A.F.d.S.; Saldanha, T. Parsley (Petroselinum crispum Mill.): A Source of Bioactive Compounds as a Domestic Strategy to Minimize Cholesterol Oxidation during the Thermal Preparation of Omelets. Food Res. Int. 2022, 156, 111199. [Google Scholar] [CrossRef]
- Ferreira, F.S.; de Oliveira, V.S.; Chávez, D.W.H.; Chaves, D.S.; Riger, C.J.; Sawaya, A.C.H.F.; Guizellini, G.M.; Sampaio, G.R.; Torres, E.A.F.d.S.; Saldanha, T. Bioactive Compounds of Parsley (Petroselinum crispum), Chives (Allium Schoenoprasum L.) and Their Mixture (Brazilian Cheiro-Verde) as Promising Antioxidant and Anti-Cholesterol Oxidation Agents in a Food System. Food Res. Int. 2022, 151, 110864. [Google Scholar] [CrossRef] [PubMed]
- Kosewski, G.; Górna, I.; Bolesławska, I.; Kowalówka, M.; Więckowska, B.; Główka, A.K.; Morawska, A.; Jakubowski, K.; Dobrzyńska, M.; Miszczuk, P.; et al. Comparison of Antioxidative Properties of Raw Vegetables and Thermally Processed Ones Using the Conventional and Sous-Vide Methods. Food Chem. 2018, 240, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska-Rojek, J.; Rutkowska, M.; Brzezicha, J.; Konieczka, P.; Prokopowicz, M.; Grembecka, M. Mineral Composition of Dietary Supplements—Analytical and Chemometric Approach. Nutrients 2022, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Kusznierewicz, B.; Mróz, M.; Koss-Mikołajczyk, I.; Namieśnik, J. Comparative Evaluation of Different Methods for Determining Phytochemicals and Antioxidant Activity in Products Containing Betalains—Verification of Beetroot Samples. Food Chem. 2021, 362, 130132. [Google Scholar] [CrossRef]
- Sawicki, T.; Martinez-Villaluenga, C.; Frias, J.; Wiczkowski, W.; Peñas, E.; Bączek, N.; Zieliński, H. The Effect of Processing and in Vitro Digestion on the Betalain Profile and ACE Inhibition Activity of Red Beetroot Products. J. Funct. Foods 2019, 55, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant. J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional Characteristics of Commercial Beetroot Products and Beetroot Juice Prepared from Seven Beetroot Varieties Grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Sentkowska, A.; Pyrzyńska, K. Determination of Selenium Species in Beetroot Juices. Heliyon 2020, 6, e04194. [Google Scholar] [CrossRef]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red Beet (Beta vulgaris) and Amaranth (Amaranthus sp.) Microgreens: Effect of Storage and in Vitro Gastrointestinal Digestion on the Untargeted Metabolomic Profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The Effects of Boiling and Fermentation on Betalain Profiles and Antioxidant Capacities of Red Beetroot Products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J.; Keutgen, A.J. Effect of Genetic Conditions, Foliar Fertilisation with Magnesium and Storage on the Content of Nitrates (V) and (III) in the Storage Roots in Carrot. Ochr. Środowiska I Zasobów Nat. 2014, 25, 7–11. [Google Scholar] [CrossRef]
- Nitrate in Vegetables—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 689, 1–79. [CrossRef]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and Phytochemical Characterization of Radish (Raphanus sativus): A Systematic Review. Trends Food Sci. Technol. 2021, 113, 205–218. [Google Scholar] [CrossRef]
- Prieto, M.A.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular Structure, Breakdown, Genetic, Bioavailability, Properties and Healthy and Adverse Effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors (Raphanus sativus L.). J. Agric. Food Chem. 2020, 68, 14463–14470. [Google Scholar] [CrossRef]
- Beevi, S.S.; Narasu, M.L.; Gowda, B.B. Polyphenolics Profile, Antioxidant and Radical Scavenging Activity of Leaves and Stem of Raphanus sativus L. Plant Foods Hum. Nutr. 2010, 65, 8–17. [Google Scholar] [CrossRef]
- Podsedek, A. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. LWT—Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Zhuang, H.; Lou, Q.; Liu, H.; Han, H.; Wang, Q.; Tang, Z.; Ma, Y.; Wang, H. Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis. Int. J. Mol. Sci. 2019, 20, 4387. [Google Scholar] [CrossRef] [Green Version]
- Nor, N.D.M.; Lignou, S.; Bell, L.; Houston-Price, C.; Harvey, K.; Methven, L. The Relationship between Glucosinolates and the Sensory Characteristics of Steamed-Pureed Turnip (Brassica rapa Subsp. Rapa L.). Foods 2020, 9, 1719. [Google Scholar] [CrossRef]
- Felker, P.; Bunch, R.; Leung, A.M. Concentrations of Thiocyanate and Goitrin in Human Plasma, Their Precursor Concentrations in Brassica Vegetables, and Associated Potential Risk for Hypothyroidism. Nutr. Rev. 2016, 74, 248. [Google Scholar] [CrossRef]
- Xian, L.; Kushad, M.M. Correlation of Glucosinolate Content to Myrosinase Activity in Horseradish (Armoracia rusticana). J. Agric. Food Chem. 2004, 52, 6950–6955. [Google Scholar] [CrossRef]
- Javaid, A.; Ashfaq, U.A.; Zafar, Z.; Akmal, A.; Taj, S.; Khalid, H. Phytochemical Analysis and Antidiabetic Potential of Armoracia rusticana: Pharmacological and Computational Approach. Comb. Chem. High Throughput Screen 2020, 24, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Manuguerra, S.; Caccamo, L.; Mancuso, M.; Arena, R.; Rappazzo, A.C.; Genovese, L.; Santulli, A.; Messina, C.M.; Maricchiolo, G. The Antioxidant Power of Horseradish, Armoracia rusticana, Underlies Antimicrobial and Antiradical Effects, Exerted in Vitro. Nat. Prod. Res. 2018, 34, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.A.; Grigoriadou, K.; Schunko, C. Horseradish: A Neglected and Underutilized Plant Species for Improving Human Health. Horticulturae 2021, 7, 167. [Google Scholar] [CrossRef]
- Gonçalves, E.M.; Pinheiro, J.; Abreu, M.; Brandão, T.R.S.; Silva, C.L.M. Carrot (Daucus carota L.) Peroxidase Inactivation, Phenolic Content and Physical Changes Kinetics Due to Blanching. J. Food Eng. 2010, 97, 574–581. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, L. Total Phenolic Contents and Antioxidant Properties of Commonly Consumed Vegetables Grown in Colorado. LWT—Food Sci. Technol. 2006, 39, 1155–1162. [Google Scholar] [CrossRef]
- Tomé, A.C.; da Silva, F.A. Alginate Based Encapsulation as a Tool for the Protection of Bioactive Compounds from Aromatic Herbs. Food Hydrocoll. Health 2022, 2, 100051. [Google Scholar] [CrossRef]
- Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; di Scala, K. Chemical Characterization and Antioxidant Capacity of Red Radish (Raphanus sativus L.) Leaves and Roots. J. Funct. Foods 2015, 16, 256–264. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Devahastin, S.; Liu, Y. Influence of Low-Temperature Ball Milling Time on Physicochemical Properties, Flavor, Bioactive Compounds Contents and Antioxidant Activity of Horseradish Powder. Adv. Powder Technol. 2020, 31, 914–921. [Google Scholar] [CrossRef]
- Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Xie, M.; Yu, Q. Removal of Bound Polyphenols and Its Effect on Antioxidant and Prebiotics Properties of Carrot Dietary Fiber. Food Hydrocoll. 2019, 93, 284–292. [Google Scholar] [CrossRef]
- Żary-Sikorska, E.; Fotschki, B.; Fotschki, J.; Wiczkowski, W.; Juśkiewicz, J. Preparations from Purple Carrots Containing Anthocyanins Improved Intestine Microbial Activity, Serum Lipid Profile and Antioxidant Status in Rats. J. Funct. Foods 2019, 60, 103442. [Google Scholar] [CrossRef]
- Chau, C.F.; Chien, P.J.; Chen, C.H. Influence of Insoluble Fiber Fractions from Carambola and Carrot on Intestinal Enzymes and Fecal Bacterial Enzymes in Hamsters. Nutr. Res. 2005, 25, 947–957. [Google Scholar] [CrossRef]
- Sadeghi, S.; Bahrami, R.; Raisi, F.; Rampisheh, Z.; Ghobadi, A.; Akhtari, E. Evaluation of the Effect of Carrot Seed (Daucus carota) in Women of Fertile Age with Hypoactive Sexual Desire Disorder: A Randomized Double-Blind Clinical Trial. Complement. Ther. Med. 2020, 54, 102543. [Google Scholar] [CrossRef] [PubMed]
- Brevik, A.; Andersen, L.F.; Karlsen, A.; Trygg, K.U.; Blomhoff, R.; Drevon, C.A. Six Carotenoids in Plasma Used to Assess Recommended Intake of Fruits and Vegetables in a Controlled Feeding Study. Eur. J. Clin. Nutr. 2004, 58, 1166–1173. [Google Scholar] [CrossRef]
- Hajizadeh-Sharafabad, F.; Zahabi, E.S.; Malekahmadi, M.; Zarrin, R.; Alizadeh, M. Carotenoids Supplementation and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 8161–8177. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, Y.; Ye, S.; Li, S.; Xie, B.; Meng, H.; Wang, S.; Xia, D. Association of Dietary Carrot Intake with Bladder Cancer Risk in a Prospective Cohort of 99,650 Individuals With 12.5 Years of Follow-Up. Front. Nutr. 2021, 8, 669630. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shao, F.; Zhang, F.; Miao, Q. Association between Dietary Carrot Intake and Breast Cancer: A Meta-Analysis. Medicine 2018, 97, 12164. [Google Scholar] [CrossRef] [PubMed]
- Jorge, V.G.; Ángel, J.R.L.; Adrián, T.S.; Francisco, A.C.; Anuar, S.G.; Samuel, E.S.; Ángel, S.O.; Emmanuel, H.N. Vasorelaxant Activity of Extracts Obtained from Apium graveolens: Possible Source for Vasorelaxant Molecules Isolation with Potential Antihypertensive Effect. Asian Pac. J. Trop. Biomed. 2013, 3, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhang, Y.; Yang, C. Protective Effect of 3-n-Butylphthalide against Hypertensive Nephropathy in Spontaneously Hypertensive Rats. Mol. Med. Rep. 2015, 11, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadam, M.H.; Imenshahidi, M.; Mohajeri, S.A. Antihypertensive Effect of Celery Seed on Rat Blood Pressure in Chronic Administration. J. Med. Food 2013, 16, 558–563. [Google Scholar] [CrossRef]
- Dianat, M.; Veisi, A.; Ahangarpour, A.; Moghaddam, H.F. The Effect of Hydro-Alcoholic Celery (Apiumgraveolens) Leaf Extract on Cardiovascular Parameters and Lipid Profile in Animal Model of Hypertension Induced by Fructose. Avicenna J. Phytomed. 2015, 5, 203–209. [Google Scholar] [PubMed]
- Kim, H.J.; Lee, W.; Yun, J.M. Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytother. Res. 2014, 28, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Al-Sa’aidi, J.A.A.; Alrodhan, M.N.A.; Ismael, A.K. Antioxidant Activity of N-Butanol Extract of Celery (Apium graveolens) Seed in Streptozotocin-Induced Diabetic Male Rats. Res. Pharm. Biotech. 2012, 4, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.A.; Lee, H.J.; Bae, H.G.; Yang, S.O.; Lee, H.J.; Kim, M.J. Metabolite Analysis and Anti-Obesity Effects of Celery Seed in 3T3-L1 Adipocytes. Food Sci. Biotechnol. 2021, 30, 277–286. [Google Scholar] [CrossRef]
- Aboody, M.S. al Cytotoxic, Antioxidant, and Antimicrobial Activities of Celery (Apium graveolens L.). Bioinformation 2021, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Lüttkopf, D.; Ballmer-Weber, B.K.; Wüthrich, B.; Vieths, S. Celery Allergens in Patients with Positive Double-Blind Placebo-Controlled Food Challenge. J. Allergy Clin. Immunol. 2000, 106, 390–399. [Google Scholar] [CrossRef]
- Bauermeister, K.; Ballmer-Weber, B.K.; Bublin, M.; Fritsche, P.; Hanschmann, K.M.O.; Hoffmann-Sommergruber, K.; Lidholm, J.; Oberhuber, C.; Randow, S.; Holzhauser, T.; et al. Assessment of Component-Resolved in Vitro Diagnosis of Celeriac Allergy. J. Allergy Clin. Immunol. 2009, 124, 1273–1281. [Google Scholar] [CrossRef]
- Pałgan, K.; Götz-Zbikowska, M.; Tykwińska, M.; Napiórkowska, K.; Bartuzi, Z. Celery--Cause of Severe Anaphylactic Shock. Postępy Hig. Med. Dośw. 2012, 66, 132–134. [Google Scholar] [CrossRef]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the Nutritional and Functional Characteristics of Traditional Italian Legumes: The Potential of Sourdough Fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Hou, M.; Han, W. Anti-Fatigue Activity of Parsley (Petroselinum crispum) Flavonoids via Regulation of Oxidative Stress and Gut Microbiota in Mice. J. Funct. Foods 2022, 89, 104963. [Google Scholar] [CrossRef]
- Liberal, Â.; Fernandes, Â.; Polyzos, N.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars. Molecules 2020, 25, 5606. [Google Scholar] [CrossRef] [PubMed]
- Maodaa, S.N.; Allam, A.A.; Ajarem, J.; Abdel-Maksoud, M.A.; Al-Basher, G.I.; Wang, Z.Y. Effect of Parsley (Petroselinum crispum, Apiaceae) Juice against Cadmium Neurotoxicity in Albino Mice (Mus Musculus). Behav. Brain Funct. 2016, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Gadi, D.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Legssyer, A.; Legrand, C.; Lafeve, F.F.; Mekhfi, H. Parsley Extract Inhibits in Vitro and Ex Vivo Platelet Aggregation and Prolongs Bleeding Time in Rats. J. Ethnopharmacol. 2009, 125, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Nirumand, M.C.; Hajialyani, M.; Rahimi, R.; Farzaei, M.H.; Zingue, S.; Nabavi, S.M.; Bishayee, A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018, 19, 765. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.E.; Young, J.F.; Daneshvar, B.; Lauridsen, S.T.; Knuthsen, P.; Sandström, B.; Dragsted, L.O. Effect of Parsley (Petroselinum crispum) Intake on Urinary Apigenin Excretion, Blood Antioxidant Enzymes and Biomarkers for Oxidative Stress in Human Subjects. , Br. J. Nutr. 1999, 81, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Zeng, F.; Wu, L.; Wan, X.; Chen, Y.; Zhang, J.; Liu, B. Fermented Carrot Juice Attenuates Type 2 Diabetes by Mediating Gut Microbiota in Rats. Food Funct. 2019, 10, 2935–2946. [Google Scholar] [CrossRef] [PubMed]
- Jafarinejad Bajestani, M.; Hadjdzadeh, M.-A.-R.; Yousefi, M.; Hosseini, M.; Yousefvand, S. The Effects of Seed Extract of Carrot on Memory, Nerve Conduction Velocity, and Serum Thyroxin in Rats. Adv. Biomed. Res. 2022, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Kamaly, O.M.a.; Jawhari, F.Z.; Imtara, H.; Grafov, A.; Bousta, D. The Potential of Parsley Polyphenols and Their Antioxidant Capacity to Help in the Treatment of Depression and Anxiety: An In Vivo Subacute Study. Molecules 2021, 26, 2009. [Google Scholar] [CrossRef] [PubMed]
- Frattani, F.S.; Assafim, M.; Casanova, L.M.; de Souza, J.E.; Chaves, D.S. de A.; Costa, S.S.; Zingali, R.B. Oral Treatment with a Chemically Characterized Parsley (Petroselinum crispum Var. Neapolitanum Danert) Aqueous Extract Reduces Thrombi Formation in Rats. J. Tradit. Complement. Med. 2020, 11, 287–291. [Google Scholar] [CrossRef]
- Rabou, M.A.A.; Eid, F.A. Possible Protective Role of Parsley Extract on the Diabetic Pregnant Rats and Their Fetuses. Pak. J. Biol. Sci. 2017, 20, 552–562. [Google Scholar] [CrossRef]
- el Rabey, H.A.; Al-Seeni, M.N.; Al-Ghamdi, H.B. Comparison between the Hypolipidemic Activity of Parsley and Carob in Hypercholesterolemic Male Rats. Biomed. Res. Int. 2017, 2017, 3098745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidari, F.; Keshavarz, S.A.; Shahi, M.M.; Mahboob, S.A.; Rashidi, M.R. Effects of Parsley (Petroselinum crispum) and Its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Activity In Oxonate-Induced Hyperuricemic Rats. Iran. J. Pharm. Res. 2011, 10, 811–819. [Google Scholar] [PubMed]
- Köken, T.; Koca, B.; Özkurt, M.; Erkasap, N.; Kuş, G.; Karalar, M. Apium graveolens Extract Inhibits Cell Proliferation and Expression of Vascular Endothelial Growth Factor and Induces Apoptosis in the Human Prostatic Carcinoma Cell Line LNCaP. J. Med. Food 2016, 19, 1166–1171. [Google Scholar] [CrossRef]
- Zhao, D.; Cao, J.; Jin, H.; Shan, Y.; Fang, J.; Liu, F. Beneficial Impacts of Fermented Celery (Apium graveolens L.) Juice on Obesity Prevention and Gut Microbiota Modulation in High-Fat Diet Fed Mice. Food Funct. 2021, 12, 9151–9164. [Google Scholar] [CrossRef] [PubMed]
- Boonruamkaew, P.; Sukketsiri, W.; Panichayupakaranant, P.; Kaewnam, W.; Tanasawet, S.; Tipmanee, V.; Hutamekalin, P.; Chonpathompikunlert, P. Apium graveolens Extract Influences Mood and Cognition in Healthy Mice. J. Nat. Med. 2017, 71, 492–505. [Google Scholar] [CrossRef]
- Jittiwat, J.; Chonpathompikunlert, P.; Sukketsiri, W. Neuroprotective Effects of Apium graveolens against Focal Cerebral Ischemia Occur Partly via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Pathways. J. Sci. Food Agric. 2021, 101, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Hessami, K.; Rahnavard, T.; Hosseinkhani, A.; Azima, S.; Sayadi, M.; Faraji, A.; Emamghoreishi, M.; Vafaei, H.; Hessami, A.; Foroughinia, L.; et al. Treatment of Women’s Sexual Dysfunction Using Apium graveolens L. Fruit (Celery Seed): A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Ethnopharmacol. 2021, 264, 113400. [Google Scholar] [CrossRef] [PubMed]
- Yusni, Y.; Zufry, H.; Meutia, F.; Sucipto, K.W. The Effects of Celery Leaf (Apium graveolens L.) Treatment on Blood Glucose and Insulin Levels in Elderly Pre-Diabetics. Saudi Med. J. 2018, 39, 154–160. [Google Scholar] [CrossRef]
- Shayani Rad, M.; Moohebati, M.; Mohajeri, S.A. Effect of Celery (Apium graveolens) Seed Extract on Hypertension: A Randomized, Triple-Blind, Placebo-Controlled, Cross-over, Clinical Trial. Phytother. Res. 2022, 36, 2889–2907. [Google Scholar] [CrossRef]
- Ballmer-Weber, B.K.; Hoffmann, A.; Wüthrich, B.; Lüttkopf, D.; Pompei, C.; Wangorsch, A.; Kästner, M.; Vieths, S. Influence of Food Processing on the Allergenicity of Celery: DBPCFC with Celery Spice and Cooked Celery in Patients with Celery Allergy. Allergy 2002, 57, 228–235. [Google Scholar] [CrossRef]
- Scadding, G. Nitric Oxide in the Airways. Curr. Opin. Otolaryngol. Head Neck Surg. 2007, 15, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Ritz, T.; Werchan, C.A.; Kroll, J.L.; Rosenfield, D. Beetroot Juice Supplementation for the Prevention of Cold Symptoms Associated with Stress: A Proof-of-Concept Study. Physiol. Behav. 2019, 202, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Fernández, A.; Castillo, D.; Raya-González, J.; Domínguez, R.; Bailey, S.J. Beetroot Juice Supplementation Increases Concentric and Eccentric Muscle Power Output. Original Investigation. J. Sci. Med. Sport 2021, 24, 80–84. [Google Scholar] [CrossRef]
- Oskarsson, J.; McGawley, K. No Individual or Combined Effects of Caffeine and Beetroot-Juice Supplementation during Submaximal or Maximal Running. Appl. Physiol. Nutr. Metab. 2018, 43, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.C.; Hawley, J.A.; Desbrow, B.; Jones, A.M.; Blackwell, J.R.; Ross, M.L.; Zemski, A.J.; Burke, L.M. Single and Combined Effects of Beetroot Juice and Caffeine Supplementation on Cycling Time Trial Performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Capper, T.E.; Houghton, D.; Stewart, C.J.; Blain, A.P.; McMahon, N.; Siervo, M.; West, D.J.; Stevenson, E.J. Whole Beetroot Consumption Reduces Systolic Blood Pressure and Modulates Diversity and Composition of the Gut Microbiota in Older Participants. NFS J. 2020, 21, 28–37. [Google Scholar] [CrossRef]
- Amirpoor, A.; Zavar, R.; Amerizadeh, A.; Asgary, S.; Moradi, S.; Farzaei, M.H.; Masoumi, G.; Sadeghi, M. Effect of Beetroot Consumption on Serum Lipid Profile: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2022, 47, 100887. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kabir, A.; Azizi, F.; Ghasemi, A. The Nitrate-Independent Blood Pressure-Lowering Effect of Beetroot Juice: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.H.; Sim, A.; Burns, S.F. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3674. [Google Scholar] [CrossRef]
- Lara, J.; Ashor, A.W.; Oggioni, C.; Ahluwalia, A.; Mathers, J.C.; Siervo, M. Effects of Inorganic Nitrate and Beetroot Supplementation on Endothelial Function: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2016, 55, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Petrie, M.; Rejeski, W.J.; Basu, S.; Laurienti, P.J.; Marsh, A.P.; Norris, J.L.; Kim-Shapiro, D.B.; Burdette, J.H. Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain. J. Gerontol. A. Biol. Sci. Med. Sci. 2017, 72, 1284–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baenas, N.; Piegholdt, S.; Schloesser, A.; Moreno, D.A.; García-Viguera, C.; Rimbach, G.; Wagner, A.E. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila Melanogaster. Int. J. Mol. Sci. 2016, 17, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, H.; Kobayashi-Hattori, K.; Tenmyo, C.; Kamei, T.; Uda, Y.; Sugita-Konishi, Y.; Oishi, Y.; Takita, T. Effect of Japanese Radish (Raphanus sativus) Sprout (Kaiware-Daikon) on Carbohydrate and Lipid Metabolisms in Normal and Streptozotocin-Induced Diabetic Rats. Phytother. Res. 2006, 20, 274–278. [Google Scholar] [CrossRef]
- Shukla, S.; Chatterji, S.; Mehta, S.; Rai, P.K.; Singh, R.K.; Yadav, D.K.; Watal, G. Antidiabetic Effect of Raphanus sativus Root Juice. Pharm. Biol. 2011, 49, 32–37. [Google Scholar] [CrossRef]
- Fahey, J.W.; Talalay, P. Antioxidant Functions of Sulforaphane: A Potent Inducer of Phase II Detoxication Enzymes. Food Chem. Toxicol. 1999, 37, 973–979. [Google Scholar] [CrossRef]
- Sharma, M.; Sinha, S. Radish Juice to Overcome Jaundice. Int. J. Surg. 2022, 100, 106377. [Google Scholar] [CrossRef]
- Chu, B.; Chen, C.; Li, J.; Chen, X.; Li, Y.; Tang, W.; Jin, L.; Zhang, Y. Effects of Tibetan Turnip (Brassica rapa L.) on Promoting Hypoxia-Tolerance in Healthy Humans. J. Ethnopharmacol. 2017, 195, 246–254. [Google Scholar] [CrossRef]
- Merinas-Amo, T.; Lozano-Baena, M.D.; Obregón-Cano, S.; Alonso-Moraga, Á.; de Haro-Bailón, A. Role of Glucosinolates in the Nutraceutical Potential of Selected Cultivars of Brassica rapa. Foods 2021, 10, 2720. [Google Scholar] [CrossRef]
- Agneta, R.; Möllers, C.; Rivelli, A.R. Horseradish (Armoracia rusticana), a Neglected Medical and Condiment Species with a Relevant Glucosinolate Profile: A Review. Genet. Resour. Crop Evol. 2013, 60, 1923–1943. [Google Scholar] [CrossRef]
- Munday, R.; Munday, C.M. Selective Induction of Phase II Enzymes in the Urinary Bladder of Rats by Allyl Isothiocyanate, a Compound Derived from Brassica Vegetables. Nutr. Cancer 2002, 44, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Herz, C.; Tran, H.T.T.; Márton, M.R.; Maul, R.; Baldermann, S.; Schreiner, M.; Lamy, E. Evaluation of an Aqueous Extract from Horseradish Root (Armoracia rusticana Radix) against Lipopolysaccharide-Induced Cellular Inflammation Reaction. Evid. Based. Complement. Alternat. Med. 2017, 2017, 1950692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bałasińska, B.; Nicolle, C.; Gueux, E.; Majewska, A.; Demigne, C.; Mazur, A. Dietary Horseradish Reduces Plasma Cholesterol in Mice. Nutr. Res. 2005, 25, 937–945. [Google Scholar] [CrossRef]
- Choi, S.J.; Park, C.K.; Shin, D.H. Protective Effects of Radish Extract Against Neurotoxicity in Mice and PC12 Cells. J. Med. Food 2020, 23, 523–534. [Google Scholar] [CrossRef]
- Kumar, A. Influence of Radish Consumption on Urinary Calcium Oxalate Excretion. Nepal Med. Coll. J. 2004, 6, 41–44. [Google Scholar]
- Evans, M.; Paterson, E.; Barnes, D.M. An Open Label Pilot Study to Evaluate the Efficacy of Spanish Black Radish on the Induction of Phase I and Phase II Enzymes in Healthy Male Subjects. BMC Complement. Altern. Med. 2014, 14, 475. [Google Scholar] [CrossRef] [Green Version]
- Gafrikova, M.; Galova, E.; Sevcovicova, A.; Imreova, P.; Mucaji, P.; Miadokova, E. Extract from Armoracia rusticana and Its Flavonoid Components Protect Human Lymphocytes against Oxidative Damage Induced by Hydrogen Peroxide. Molecules 2014, 19, 3160. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, N.T.; Belza, A.; Jensen, M.G.; Ritz, C.; Bitz, C.; Hels, O.; Frandsen, E.; Mela, D.J.; Astrup, A. Acute Effects of Mustard, Horseradish, Black Pepper and Ginger on Energy Expenditure, Appetite, Ad Libitum Energy Intake and Energy Balance in Human Subjects. Br. J. Nutr. 2013, 109, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Shahnawaz, M.D.; Sarkar, B.; Pal, S.; Dutta, S. Retention Dynamics of Multi-Metal Contaminants from Pond Ash Slurry onto Fine Grained Soil. J. Indian Chem. Soc. 2021, 98, 100229. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.-W.; Chang, H.-Q.; Li, Z.; Xue, J.-M. Uptake and Translocation of Organic Pollutants in Plants: A Review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the Soil-Groundwater Environment: Aging, Migration, and Co-Transport of Contaminants—A Critical Review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef] [PubMed]
- González García, M.; Fernández-López, C.; Polesel, F.; Trapp, S. Predicting the Uptake of Emerging Organic Contaminants in Vegetables Irrigated with Treated Wastewater—Implications for Food Safety Assessment. Environ. Res. 2019, 172, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Amr, A.; Hadidi, N. Effect of Cultivar and Harvest Date on Nitrate (NO3) and Nitrite (NO2) Content of Selected Vegetables Grown Under Open Field and Greenhouse Conditions in Jordan. J. Food Compos. Anal. 2001, 14, 59–67. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Gościnna, K.; Chmielewski, J. Environmental and Technological Carrot Safety Conditions. Part II. Changes in Nitrites Contents Determined by the Environment and Processing. Ochr. Środowiska I Zasobów Nat. 2017, 28, 12–15. [Google Scholar] [CrossRef] [Green Version]
- EFSA Confirms Safe Levels for Nitrites and Nitrates Added to Food. Available online: https://www.efsa.europa.eu/en/press/news/170615 (accessed on 28 August 2022).
- Mortensen, A.; Aguilar, F.; Crebelli, R.; di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; et al. Re-Evaluation of Sodium Nitrate (E 251) and Potassium Nitrate (E 252) as Food Additives. EFSA J. 2017, 15, 4787. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Schopfer, B.; Mitrenga, S.; Boulaaba, A.; Roolfs, K.; Plötz, M.; Becker, A. Red Beet and Swiss Chard Juice Extract as Natural Nitrate Sources for the Production of Alternatively-Cured Emulsion-Type Sausages. Meat Sci. 2022, 188, 108780. [Google Scholar] [CrossRef]
- Kiani, A.; Sharafi, K.; Omer, A.K.; Matin, B.K.; Davoodi, R.; Mansouri, B.; Sharafi, H.; Soleimani, H.; Massahi, T.; Ahmadi, E. Accumulation and Human Health Risk Assessment of Nitrate in Vegetables Irrigated with Different Irrigation Water Sources—Transfer Evaluation of Nitrate from Soil to Vegetables. Environ. Res. 2022, 205, 112527. [Google Scholar] [CrossRef] [PubMed]
- Salehzadeh, H.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Ponnet, K. The Nitrate Content of Fresh and Cooked Vegetables and Their Health-Related Risks. PLoS ONE 2020, 15, e0227551. [Google Scholar] [CrossRef]
- Wang, D.H.; Xu, H.; Zheng, Y.H.; Gu, D.S.; Zhu, Y.J.; Ren, Y.; Wang, S.C.; Yang, L.; Xu, L.W. Environmental Exposure to Lead and Cadmium and Hearing Loss in Chinese Adults: A Case-Control Study. PLoS ONE 2020, 15, e0233165. [Google Scholar] [CrossRef]
- Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives and Contaminants. Cadmium. World Health Organization, Geneva, 2011. p. 149. Available online: https://apps.who.int/iris/handle/10665/44515 (accessed on 21 January 2022).
- Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives and Contaminants. Lead. World Health Organization, Geneva, 2011. p. 162. Available online: https://apps.who.int/iris/handle/10665/44515 (accessed on 21 November 2022).
- Commission Regulation (EC) No 629/2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants foodstuffs. Off. J. Eur. Union 2008, 173, 6–9.
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Mwegoha, W.J.S.; Kihampa, C. Heavy Metal Contamination in Agricultural Soils and Water in Dar Es Salaam City, Tanzania. Afr. J. Environ. Sci. Technol. 2011, 4, 763–769. [Google Scholar] [CrossRef]
- Sharma, A.; Nagpal, A.K. Contamination of Vegetables with Heavy Metals across the Globe: Hampering Food Security Goal. J. Food Sci. Technol. 2020, 57, 391. [Google Scholar] [CrossRef] [PubMed]
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of Metals from Soil to Vegetables and Possible Health Risk Assessment. Springerplus 2013, 2, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, E.u.; Yang, X. e.; He, Z.l.; Mahmood, Q. Assessing Potential Dietary Toxicity of Heavy Metals in Selected Vegetables and Food Crops. J. Zhejiang Univ. Sci. B 2007, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szpyrka, E.; Kurdziel, A.; Rupar, J.; Słowik-Borowiec, M. Pesticide Residues in Fruit and Vegetable Crops From The Central and Eastern Region of Poland. Rocz. Państw. Zakł. Hig. 2015, 66, 107–113. [Google Scholar] [PubMed]
- Keikotlhaile, B.M.; Spanoghe, P.; Steurbaut, W. Effects of Food Processing on Pesticide Residues in Fruits and Vegetables: A Meta-Analysis Approach. Food Chem. Toxicol. 2010, 48, 1–6. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Klimkowicz-Pawlas, A. Soil Organic Matter Composition as a Factor Affecting the Accumulation of Polycyclic Aromatic Hydrocarbons. J. Soils Sediments 2019, 19, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in Agricultural Soils: Sources, Effects, and Their Fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from Food Packaging: An Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Yusuf, A.; Sodiq, A.; Giwa, A.; Eke, J.; Pikuda, O.; Eniola, J.O.; Ajiwokewu, B.; Sambudi, N.S.; Bilad, M.R. Updated Review on Microplastics in Water, Their Occurrence, Detection, Measurement, Environmental Pollution, and the Need for Regulatory Standards. Environ. Pollut. 2022, 292, 118421. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D. An Overview of Microplastic and Nanoplastic Pollution in Agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Abbasi, S.; Pourmahmood, H.; Oleszczuk, P.; Ritsema, C.; Turner, A. Microplastics in Agricultural Soils from a Semi-Arid Region and Their Transport by Wind Erosion. Environ. Res. 2022, 212, 113213. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Galafassi, S.; Savino, I.; Massarelli, C.; Ancona, V.; Volta, P.; Uricchio, V.F. Microplastics Pollution in the Terrestrial Environments: Poorly Known Diffuse Sources and Implications for Plants. Sci. Total Environ. 2022, 805, 150431. [Google Scholar] [CrossRef] [PubMed]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Huerta Lwanga, E. Low Density-Microplastics Detected in Sheep Faeces and Soil: A Case Study from the Intensive Vegetable Farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef] [PubMed]
- da Silva Paes, E.; Gloaguen, T.V.; da Conceição Silva, H.D.A.; Duarte, T.S.; de Almeida, M.D.C.; Costa, OD.A.V.; Bomfim, M.R.; Santos, J.A.G. Widespread Microplastic Pollution in Mangrove Soils of Todos Os Santos Bay, Northern Brazil. Environ. Res. 2022, 210, 112952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Liu, Y.F. The Distribution of Microplastics in Soil Aggregate Fractions in Southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Shi, Q.; Liu, Y.; Lei, H.; Chen, Y. Microplastics in Arid Soils: Impact of Different Cropping Systems (Altay, Xinjiang). Environ. Pollut. 2022, 303, 119162. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.J.; Herth, S. Plant Nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and human safety: The impact of microplastic. Crit. Rev. Food Sci. Nutr. 2022. [CrossRef] [PubMed]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics Accumulate on Pores in Seed Capsule and Delay Germination and Root Growth of the Terrestrial Vascular Plant Lepidium Sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of Microplastics by Carrots in Presence of As (III): Combined Toxic Effects. J. Hazard. Mater. 2021, 411, 125055. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhang, W.; Jiang, M.; Li, S.; Liang, G.; Bu, Q.; Xu, L.; Zhu, H.; Lu, A. Species-Dependent Response of Food Crops to Polystyrene Nanoplastics and Microplastics. Sci. Total Environ. 2021, 796, 148750. [Google Scholar] [CrossRef] [PubMed]
- Tympa, L.E.; Katsara, K.; Moschou, P.N.; Kenanakis, G.; Papadakis, V.M. Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials 2021, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
Components | Carrot | Beetroot | Celery, Root | Parsley, Root | Radish | Turnip | Horseradish |
---|---|---|---|---|---|---|---|
Aqua (g/100 g) | 88.3 | 87.6 | 88.0 | 85.3 | 95.3 | 91.9 | 75.0 |
Energy (kcal/100 g) | 41.0 | 43.0 | 42.0 | 49.0 | 16.0 | 28.0 | 81.0 |
Proteins (g/100 g) | 0.93 | 1.61 | 1.5 | 2.6 | 0.68 | 0.9 | 4.5 |
Lipids (g/100 g) | 0.24 | 0.17 | 0.3 | 0.5 | 0.1 | 0.1 | 0.6 |
Carbohydrates (g/100 g) | 9.58 | 9.56 | 9.2 | 10.5 | 3.4 | 6.43 | 18.1 |
Dietary fiber, total (g/100 g) | 2.8 | 2.8 | 1.8 | 4.2 | 1.6 | 1.8 | 7.3 |
Calcium (mg/100) | 33.0 | 16.0 | 43.0 | 43.0 | 25.0 | 30.0 | 78.0 |
Iron (mg/100 g) | 0.3 | 0.8 | 0.7 | 1.1 | 0.34 | 0.3 | 1.2 |
Magnesium (mg/100 g) | 12.0 | 23.0 | 20.0 | 27.0 | 10.0 | 11.0 | 43.0 |
Phosphorus (mg/100 g) | 35.0 | 40.0 | 115.0 | 77.0 | 20.0 | 27.0 | 120.0 |
Potassium (mg/100 g) | 320.0 | 325.0 | 300.0 | 339.0 | 233.0 | 191.0 | 740.0 |
Sodium (mg/100 g) | 87.0 | 78.0 | 100.0 | 49.0 | 39.0 | 67.0 | 7.0 |
Zinc (mg/100 g) | 0.24 | 0.35 | 0.33 | 0.6 | 0.28 | 0.27 | 1.40 |
Copper (mg/100 g) | 0.06 | 0.075 | 0.07 | 0.14 | 0.05 | 0.085 | 0.23 |
Selenium (µg/100 g) | 0.1 | 0.7 | 0.7 | n.d. | 0.6 | 0.7 | n.d. |
Vitamin C (mg/100 g) | 5.9 | 4.9 | 8 | 45.0 | 14.8 | 21.0 | 114.0 |
Thiamin (mg/100 g) | 0.066 | 0.031 | 0.05 | 0.1 | 0.012 | 0.04 | 0.14 |
Riboflavin (mg/100 g) | 0.058 | 0.4 | 0.06 | 0.086 | 0.039 | 0.03 | 0.11 |
Niacin (mg/100 g) | 0.983 | 0.334 | 0.7 | 2.0 | 0.254 | 0.4 | 0.6 |
Pyridoxine (mg/100 g) | 0.138 | 0.067 | 0.165 | 0.23 | 0.071 | 0.09 | 0.18 |
Folate, total (µg/100 g) | 19.0 | 109.0 | 8.0 | 180.0 | 25.0 | 15.0 | 37.0 |
Botanical Family | Apiaceae | Amaranthaceae | Brassicaceae |
---|---|---|---|
Vegetable name | Carrot Parsley Celery | Beetroot | Radish Turnip Horseradish |
Vegetable | Type of Study | Form of Vegetable/Compound Tested | Effect | Source |
---|---|---|---|---|
Beetroot | In vivo/people/ meta-analysis | Beetroot juice | General systolic blood pressure was lower among people with beetroot juice supplementation Potential nitrate-independent effect of beetroot juice | [127] |
Beetroot | In vivo/people/ meta-analysis | Various beetroot products | Beetroot supplementation offered no significant improvement to peak or mean power output during HIIT (high-intensity interval training) or SIT (sprint interval training) | [128] |
Beetroot | In vivo/people/ meta-analysis | Beetroot | Beetroot consumption was associated with an improvement in vascular function Effect on endothelial function was significantly associated with the dose of inorganic nitrates | [129] |
Beetroot | In vivo/people | Beetroot juice | Ingestion of beetroot juice increased blood flow to the brain and enhanced exercise performance Older adults who exercised and consumed beetroot juice demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without beetroot juice | [130] |
Vegetable | Type of Study | Form of Vegetable/Compound Tested | Effect | Source |
---|---|---|---|---|
Radish | In vivo/mice In vitro/PC12 cells | Radish extract | Increased spontaneous alternation behaviors and step-through latency Reduced lipid peroxidation and Aβ aggregation in a biochemical study of mice brain tissues Attenuated H2O2-induced oxidative stress in cells | [143] |
Radish | In vivo/people | Radish, root | Increased calcium oxalate excretion in both women and men | [144] |
Radish | In vivo/men | Diet supplement with black radish extract | Increased activity of phase I and phase II liver enzymes after 4 weeks of supplementation | [145] |
Turnip | In vivo/people | Brassica rapa L.–turnip powder | Peak O2 pulse and peak VO2/kg significantly improved after 7-day turnip consumption during the Bruce treadmill test Antioxidant activity improved after 7 days of intervention | [137] |
Horseradish | In vitro/human lymphocytes | Horseradish root extract with kaempferol or quercetin added | Both extracts with kaempferol and quercetin decreased DNA damage caused by H2O2 | [146] |
Horseradish | In vivo/people | Horseradish, root | No thermogenesis effect noted Heart rate decreased Diastolic blood pressure increased No effect on appetite noted | [147] |
Horseradish | In vitro/ human peripheral blood mononuclear cells (PBMC) | Horseradish extract | Extract concentration-dependent inhibition of anti-inflammatory response to lipopolysaccharide (LPS) in terms of TNF-α release | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez, E.; Kadac-Czapska, K.; Dmochowska-Ślęzak, K.; Grembecka, M. Root Vegetables—Composition, Health Effects, and Contaminants. Int. J. Environ. Res. Public Health 2022, 19, 15531. https://doi.org/10.3390/ijerph192315531
Knez E, Kadac-Czapska K, Dmochowska-Ślęzak K, Grembecka M. Root Vegetables—Composition, Health Effects, and Contaminants. International Journal of Environmental Research and Public Health. 2022; 19(23):15531. https://doi.org/10.3390/ijerph192315531
Chicago/Turabian StyleKnez, Eliza, Kornelia Kadac-Czapska, Kamila Dmochowska-Ślęzak, and Małgorzata Grembecka. 2022. "Root Vegetables—Composition, Health Effects, and Contaminants" International Journal of Environmental Research and Public Health 19, no. 23: 15531. https://doi.org/10.3390/ijerph192315531
APA StyleKnez, E., Kadac-Czapska, K., Dmochowska-Ślęzak, K., & Grembecka, M. (2022). Root Vegetables—Composition, Health Effects, and Contaminants. International Journal of Environmental Research and Public Health, 19(23), 15531. https://doi.org/10.3390/ijerph192315531