Drivers with and without Obesity Respond Differently to a Multi-Component Health Intervention in Heavy Goods Vehicle Drivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Measurements
2.3. Physical Activity and Sitting Time
2.4. The Structured Health Intervention for Truckers (SHIFT)
2.5. Data Analyses
3. Results
3.1. Physical Activity
3.2. Cardiometabolic and Lifestyle Outcomes
3.3. Extended Follow-Up
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Caddick, N.; Varela-Mato, V.; Nimmo, M.A.; Clemes, S.; Yates, T.; King, J.A. Understanding the health of lorry drivers in context: A critical discourse analysis. Health 2017, 21, 38–56. [Google Scholar] [CrossRef] [Green Version]
- Road Haulage Association. A Report on the Driver Shortage. 2021. Available online: https://www.rha.uk.net/LinkClick.aspx?fileticket=ICI0C-FWmVo%3D&portalid=0×tamp=1627564639720 (accessed on 30 July 2021).
- Gilson, N.D.; Pavey, T.G.; Vandelanotte, C.; Duncan, M.J.; Gomersall, S.R.; Trost, S.G.; Brown, W.J. Chronic disease risks and use of a smartphone application during a physical activity and dietary intervention in Australian truck drivers. Aust. N. Z. J. Public Health 2016, 40, 91–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela-Mato, V.; O’Shea, O.; King, J.A.; Yates, T.; Stensel, D.J.; Biddle, S.J.; Nimmo, M.A.; Clemes, S.A. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health. BMJ Open 2017, 7, e013162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, R.; Wipfli, B.; Thompson, S.V.; Elliot, D.L.; Anger, W.K.; Bodner, T.; Hammer, L.B.; Perrin, N.A. Weight control intervention for truck drivers: The SHIFT Randomized controlled trial, United States. Am. J. Public Health 2016, 106, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Thiese, M.S.; Moffitt, G.; Hanowski, R.J.; Kales, S.N.; Porter, R.J.; Hegmann, K.T. Commercial driver medical 519 examinations: Prevalence of obesity, comorbidities, and certification outcomes. J. Occup. Environ. Med. 2015, 57, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulos, Y.; Lemke, M.K.; Hege, A.; Sönmez, S.; Sang, H.; Oberlin, D.J.; Wideman, L. Work and chronic disease: Comparison of cardiometabolic risk markers between truck drivers and the general US population. J. Occup. Environ. Med. 2016, 58, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Sherry, A.P.; Clemes, S.A.; Chen, Y.L.; Edwardson, C.; Gray, L.J.; Guest, A.; King, J.; Rowlands, A.V.; Ruettger, K.; Sayyah, M.; et al. Sleep duration and sleep efficiency in UK long-distance heavy goods vehicle drivers. Occup. Environ. Med. 2022, 79, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.E.; Govada, M.; Steffen, T.K.; Thorne, C.P.; Varvarigou, V.; Kales, S.N.; Burks, S.V. Obesity is associated with the future risk of heavy truck crashes among newly recruited commercial drivers. Accident Anal. Prev. 2012, 49, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulos, Y.; Sönmez, S.; Shattell, M.M.; Belzer, M. Worksite-induced morbidities among truck drivers in the United States. AAOHN J. 2010, 58, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Crizzle, A.M.; Bigelow, P.; Adams, D.; Gooderham, S.; Myers, A.M.; Thiffault, P. Health and wellness of long-haul truck and bus drivers: A systematic literature review and directions for future research. J. Transp. Health 2017, 7, 90–109. [Google Scholar] [CrossRef]
- Office for National Statistics. Trend in Life Expectancy at Birth and at Age 65 by Socio-Economic Position Based on the National Statistics Socio-Economic Classification, England and Wales: 1982–1986 to 2007–2011. Available online: https://www.gov.uk/government/statistics/trend-in-life-expectancy-at-birth-and-at-age-65-by-socioeconomic-position-based-on-ns-sec-1982-86-to-2007-11 (accessed on 21 October 2015).
- Thiese, M.S.; Hanowski, R.J.; Moffitt, G.; Kales, S.N.; Porter, R.J.; Ronna, B.; Hartenbaum, N.; Hegmann, K.T. A retrospective analysis of cardiometabolic health in a large cohort of truck drivers compared to the American working population. Am. J. Ind. Med. 2018, 61, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Clemes, S.A.; Varela-Mato, V.; Munir, F.; Edwardson, C.L.; Chen, Y.-L.; Hamer, M.; Gray, L.J.; Jaicim, N.B.; Richardson, G.; Johnson, V.; et al. Cluster randomised controlled trial to investigate the effectiveness and cost-effectiveness of a Structured Health Intervention for Truckers (The SHIFT Study): Study Protocol. BMJ Open 2019, 9, e030175. [Google Scholar]
- Clemes, S.A.; Varela-Mato, V.; Bodicoat, D.H.; Brookes, C.L.; Chen, Y.-L.; Edwardson, C.L.; Gray, L.J.; Guest, A.J.; Johnson, V.; Munir, F.; et al. The effectiveness of the Structured Health Intervention for Truckers (SHIFT): A cluster randomised controlled trial (RCT). BMC Med. 2022, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, O.; Magnavita, N.; Garbarino, S. Sleep quality, obstructive sleep apnea, and psychological distress in truck drivers: A cross-sectional study. Soc. Psych. Psych. Epid. 2018, 53, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Ohlendorf, D.; Troebs, P.; Lenk, A.; Wanke, E.; Natrup, J.; Groneberg, D. Postural sway, working years and BMI in healthy truck drivers: An observational study. BMJ Open. 2017, 1, e013281. [Google Scholar] [CrossRef] [Green Version]
- Health Survey for England, 2019: Data Tables. NHS Digital. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2019/health-survey-for-england-2019-data-tables (accessed on 29 July 2021).
- Azar, K.M.J.; Xiao, L.; Ma, J. Baseline obesity status modifies effectiveness of adapted diabetes prevention program lifestyle interventions for weight management in primary care. Biomed Res. Int. 2013, 2013, 191209. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.J.; Dunsiger, S.I.; Pekmezi, D.W.; Barbera, B.; Neighbors, C.J.; Marquez, B.; Marcus, B.H. Impact of baseline BMI upon the success of Latina participants enrolled in a 6-month physical activity intervention. J. Obes. 2011, 2011, 921916. [Google Scholar] [CrossRef] [Green Version]
- Hochbaum, G.M. Public Participation in Medical Screening Programs; A Socio-Psychological Study; U.S. Department of Health, Education, and Welfare: Washington, DC, USA, 1958.
- Rosenstock, I.M. What research in motivation suggests for public health. Am. J. Public Health 1960, 50, 295–302. [Google Scholar] [CrossRef]
- Rosenstock, I.M. The Health Belief Model and Preventive Health Behavior. Health Educ. Behav. 1977, 2, 354–386. [Google Scholar] [CrossRef]
- Cleghorn, C.L.; Harrison, R.A.; Ransley, J.K.; Wilkinson, S.; Thomas, J.; Cade, J.E. Can a dietary quality score derived from a short-form FFQ assess dietary quality in UK adult population surveys? Public Health Nutr. 2016, 19, 2915–2923. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Waist Circumference and Waist–Hip Ratio. In WHO Expert (Vol. 64, Issue 1). Available online: https://apps.who.int/iris/bitstream/handle/10665/44583/?sequence=1 (accessed on 11 December 2008).
- O’Brien, E.; Atkins, N.; Stergiou, G.; Karpettas, N.; Parati, G.; Asmar, R.; Imai, Y.; Wang, J.; Mengden, T.; Shennan, A. European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press. Monit. 2010, 15, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; Minhas, R.; Sheikh, A.; Brindle, P. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ 2008, 336, 1475–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruettger, K.; Varela-Mato, V.; Chen, Y.; Edwardson, C.; Guest, A.; Gilson, N.; Gray, L.; Paine, N.; Sherry, A.; Sayyah, M.; et al. Physical Activity, Sedentary Time and Cardiometabolic Health in Heavy Goods Vehicle Drivers: A Cross-Sectional Analysis. J. Occup. Environ. Med. 2022, 64, e217–e223. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.H.; Bodicoat, D.H.; Healy, G.N.; Bakrania, K.; Yates, T.; Owen, N.; Dunstan, D.W.; Edwardson, C.L. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol. Meas. 2016, 37, 1653. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Social foundations of thought and action: A social cognitive view. Acad. Manag. Rev. 1986, 12, 1. [Google Scholar] [CrossRef]
- Buman, M.P.; Winkler, E.A.H.; Kurka, J.M.; Hekler, E.B.; Baldwin, C.M.; Owen, N.; Ainsworth, B.E.; Healy, G.N.; Gardiner, P.A. Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am. J. Epidemiol. 2014, 179, 323–334. [Google Scholar] [CrossRef]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, 14570. [Google Scholar] [CrossRef] [Green Version]
- Guest, A.J.; Paine, N.J.; Chen, Y.-L.; Chalkley, A.; Munir, F.; Edwardson, C.L.; Gray, L.J.; Johnson, V.; Ruettger, K.; Sayyah, M.; et al. The structured health intervention for truckers (SHIFT) cluster randomised controlled trial: A mixed methods process evaluation. Int. J. Behav. Nutr. Phys. 2022, 19, 79. [Google Scholar] [CrossRef]
- Guest, A.J.; Chen, Y.L.; Pearson, N.; King, J.A.; Paine, N.J.; Clemes, S.A. Cardiometabolic risk factors and mental health status among truck drivers: A systematic review. BMJ Open 2020, 10, e038993. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Namazi, N.; Larijani, B.; Surkan, P.J.; Azadbakht, L. The association of neck circumference with risk of metabolic syndrome and its components in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. 2018, 28, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, E.K.; Kim, H.C.; Nguyen, N.; van Vreden, C.; Xia, T.; Iles, R. The effect of weight loss interventions in truck drivers: Systematic review. PLoS ONE 2022, 17, e0262893. [Google Scholar] [CrossRef]
- Puhkala, J.; Kukkonen-Harjula, K.; Mansikkamäki, K.; Aittasalo, M.; Hublin, C.; Kärmeniemi, P.; Olkkonen, S.; Partinen, M.; Sallinen, M.; Tokola, K.; et al. Lifestyle counseling to reduce body weight and cardiometabolic risk factors among truck and bus drivers—A randomized controlled trial. Scand. J. Work. Environ. Health 2015, 41, 54–64. [Google Scholar] [CrossRef]
- Olson, R.; Anger, W.K.; Elliot, D.L.; Wipfli, B.; Gray, M. A new health promotion model for lone workers: Results of the safety health involvement for truckers (SHIFT) pilot study. J. Occup. Environ. Med. 2009, 51, 1233–1246. [Google Scholar] [CrossRef]
- Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016, 23, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Tahrani, A.A.; Morton, J. Benefits of weight loss of 10% or more in patients with overweight or obesity: A review. Obesity 2022, 30, 802–840. [Google Scholar] [CrossRef]
Participants without Obesity Based on Baseline BMI (BMI < 30 kg/m2) Median (IQR), Mean (SD) or % N = 131 | Participants with Obesity Based on Baseline BMI (BMI ≥ 30 kg/m2) Median (IQR), Mean (SD) or % N = 113 | |||
---|---|---|---|---|
Demographics | Intervention N = 51 | Control N = 80 | Intervention N = 51 | Control N = 62 |
Age (years) * | 50 (55, 43) | 49 (55, 39) | 48 (54, 39) | 47 (55, 41) |
Average working hours/week * | 48 (50, 43) | 48 (50, 45) | 48 (50, 45) | 48 (50, 45) |
Ethnicity (%) White European Other | 96.2 3.8 | 91.4 8.6 | 96.1 3.9 | 95.1 4.9 |
Highest level of education (%) GCSEs A-Level University Other | 54.9 13.7 7.9 23.5 | 56.3 8.8 10.0 24.9 | 68.6 7.8 5.9 17.7 | 59.7 8.1 8.1 24.1 |
Medical information (%) | ||||
Cholesterol medication | 9.8 | 2.5 | 9.8 | 12.9 |
Blood pressure medication | 9.8 | 8.8 | 13.7 | 14.5 |
Diabetes medication | 2.0 | 2.5 | 3.9 | 8.1 |
Other medication | 15.7 | 22.5 | 29.4 | 22.6 |
Q-Risk (%) Less than 10% 10% or over 20% or over | 80.4 19.6 | 80.0 13.8 6.3 | 72.5 23.5 3.9 | 72.6 24.2 3.2 |
Anthropometric measures | ||||
Body fat % | 23.6 (4.3) | 22.8 (4.6) | 30.7 (4.3) | 31.0 (4.1) |
Weight (kg) * | 85.1 (90.1, 80.2) | 84.6 (92.6, 76.2) | 105.0 (117.7, 97.8) | 108.3 (117.2, 98.7) |
BMI (kg/m2) * | 27.0 (28.5, 26.1) | 27.2 (28.6, 24.9) | 33.2 (35.8, 31.1) | 33.3 (36.0, 31.1) |
Waist Circumference (cm) * | 96.0 (101.0, 92.0) | 95.4 (100.9, 90.2) | 112.0 (120.0, 104.0) | 113.7 (122.0, 106.9) |
Hip Circumference (cm) * | 104.0 (107.0, 101.0) | 101.6 (105.8, 97.6) | 113.0 (118.5, 108.5) | 112.0 (118.1, 107.2) |
Neck Circumference (cm) * | 39.0 (41.0, 37.0) | 39.2 (40.1, 37.4) | 42.0 (44.1, 40.3) | 42.0 (44.0, 40.2) |
Grip strength (kg) * | 50.5 (54.5, 44.3) | 50.0 (55.9, 43.4) | 52.0 (58.5, 46.5) | 52.0 (57.8, 46.4) |
Blood pressure | ||||
Systolic Blood pressure (mm Hg) * | 130.0 (137.5, 118.5) | 125.3 (134.3, 118.8) | 130.0 (138.5, 122.0) | 133.0 (144.5, 124.8) |
Diastolic Blood pressure (mm Hg) | 80.8 (9.1) | 79.5 (10.6) | 83.3 (8.7) | 85.4 (9.5) |
Resting heart rate (beats/min) | 64.9 (10.1) | 65.7 (9.9) | 69.7 (11.3) | 69.0 (9.3) |
Blood markers | ||||
HbA1c (mmol/mol) * | 33 (36, 30) | 35 (37, 32) | 35 (38, 32) | 37 (39, 34) |
Triglycerides (mmol/L) * | 1.23 (1.78, 0.94) | 1.13 (1.80, 0.81) | 1.56 (2.40, 1.03) | 1.41 (2.25, 1.08) |
HDL Cholesterol (mmol/L) * | 1.20 (1.53, 1.05) | 1.21 (1.41, 1.00) | 1.07 (1.27, 0.93) | 1.11 (1.35, 0.90) |
LDL Cholesterol (mmol/L) | 2.80 (0.86) | 2.89 (0.91) | 2.80 (0.72) | 2.84 (0.75) |
Total Cholesterol (mmol/L) | 4.38 (0.96) | 4.42 (0.97) | 4.29 (0.88) | 4.41 (0.90) |
Lifestyle behaviours | ||||
Alcohol units/week * | 9.0 (20.0, 2.0) | 4.0 (9.8, 1.5) | 5.5 (10.0, 1.5) | 6.8 (14.0, 1.5) |
Current Smoker (%) | 3.8 | 9.9 | 7.1 | 11.5 |
Fruit intake (grams/day) * | 56.8 (280.0, 28.8) | 56.8 (120.0, 28.8) | 56.8 (120.0, 11.2) | 56.8 (120.0, 24.4) |
Vegetable intake (grams/day) * | 85.6 (176.8, 57.6) | 68.0 (113.6, 40.0) | 68.0 (113.6, 57.6) | 60.8 (113.6, 40.0) |
Dietary Quality Score * | 11.0 (13.0, 10.0) | 12.0 (13.0, 10.0) | 11.0 (13.0, 9.0) | 11.0 (12.0, 10.0) |
Physical activity and sitting behaviours | ||||
Waking wear time (min/day) * | 995.3 (962.6, 1039.5) | 985.1 (950.3, 1027.6) | 995.7 (960.86, 1033.37) | 1009.4 (961.19, 1036.47) |
Steps/day * | 10,070 (7661, 12,664) | 8527 (6474, 10,510) | 7751 (6554, 9800) | 8770 (7028, 10,138) |
Time spent sitting (min/day) | 648.65 (13.29) | 664.7 (12.25) | 680.2 (14.16) | 688.6 (11.35) |
Sitting bouts > 30 min (min/day) * | 400.2 (269.1, 456.9) | 434.05 (376.5, 498.5) | 421.8 (324.5, 500.3) | 435.6 (385.5, 510.5) |
Time spent standing (min/day) * | 215.8 (185.7, 248.9) | 194.7 (165.6, 249.7) | 197.1 (169.4, 232.0) | 197.4 (166.6, 232.0) |
Time spent stepping (min/day) * | 128.0 (104.2, 154.7) | 112.5 (86.2, 140.0) | 100.9 (87.2, 131.3) | 117.1 (90.7, 133.8) |
Sit to upright transitions (n) * | 51.3 (43.4, 64.1) | 49.7 (40.5, 57.8) | 45.9 (39.2, 53.3) | 44.1 (37.3, 55.3) |
Time spent in MVPA (min/day) * | 14.6 (6.9, 25.5) | 10.5 (7.1, 18.3) | 8.9 (4.5, 13.0) | 9.3 (6.9, 15.9) |
Time spent in LPA (min/day) * | 105.3 (87.4, 137.3) | 95.9 (78.7, 116.4) | 93.2 (77.6, 119.1) | 99.3 (81.4, 113.3) |
Participants without Obesity Based on Baseline BMI (BMI < 30 kg/m2) N = 112 | Participants with Obesity Based on Baseline BMI (BMI ≥ 30 kg/m2) N = 95 | |||||||
---|---|---|---|---|---|---|---|---|
Physical Activity Marker Overall | Change from Baseline (Mean (SD)) | Intervention Effect * (95% CI) | p-Value | Change from Baseline (Mean (SD)) | Intervention Effect * (95% CI) | p-Value | ||
Intervention N = 45 | Control N = 67 | Intervention N = 44 | Control N = 51 | |||||
Steps/day | −570 (2768) | −416 (2130) | 132.69 (−721.95, 987.32) | 0.761 | 774 (2893) | −1129 (2048) | 1827.01 (967.77, 2686.24) | <0.001 |
Time spent sitting (min/day) | 6.16 (63.73) | 14.31 (84.31) | 4.71 (−13.32, 22.74) | 0.609 | −26.58 (85.67) | 30.05 (70.78) | −57.04 (−80.25, −33.83) | <0.001 |
Sitting bouts > 30 min (min/day) | 16.05 (81.11) | 15.55 (100.70) | 1.45 (−26.37, 29.28) | 0.918 | −23.93 (92.93) | 38.53 (78.71) | −69.03 (−97.11, −40.95) | <0.001 |
Time spent standing (min/day) | −5.33 (29.71) | −0.45 (36.09) | −3.57 (−16.40, 9.27) | 0.585 | 8.73 (60.66) | −22.68 (34.24) | 32.75 (14.36, 51.13) | <0.001 |
Time spent stepping (min/day) | −8.18 (29.38) | −4.89 (21.73) | −0.20 (−9.47, 9.07) | 0.966 | 8.99 (30.48) | −13.29 (23.72) | 22.10 (12.48, 31.72) | <0.001 |
Sitting–to–being upright transitions (n) | −1.38 (14.87) | −0.58 (11.25) | −0.09 (−5.16, 4.97) | 0.971 | 0.36 (12.03) | −2.85 (13.15) | 3.72 (−0.96, 8.39) | 0.119 |
Time spent in MVPA (min/day) | 1.23 (19.73) | −1.67 (14.88) | 4.12 (−1.49, 9.74) | 0.150 | 3.98 (18.26) | −3.37 (13.36) | 6.65 (1.61, 11.69) | 0.010 |
Time spent in LPA (min/day) | −9.43 (24.25) | −3.22 (17.02) | −3.34 (−11.21, 4.52) | 0.405 | 5.01 (21.78) | −9.92 (20.43) | 15.26 (7.47, 23.05) | <0.001 |
Participants without Obesity Based on Baseline BMI (BMI < 30 kg/m2) N = 131 | Participants with Obesity Based on Baseline BMI (BMI ≥ 30 kg/m2) N = 113 | |||||||
---|---|---|---|---|---|---|---|---|
Anthropometric Measures | Change from Baseline (Mean (SD)) | Intervention Effect * (95% CI) | p-Value | Change from Baseline (Mean (SD)) | Intervention Effect * (95% CI) | p-Value | ||
Intervention N = 51 | Control N = 80 | Intervention N = 51 | Control N = 62 | |||||
Body fat (%) | 0.09 (2.22) | −0.03 (2.29) | 0.26 (−0.45, 0.97) | 0.476 | −0.61 (2.22) | 0.02 (1.57) | −0.66 (−1.39, 0.06) | 0.071 |
Weight (kg) | −0.50 (4.11) | −0.08 (4.10) | −0.41 (−1.71, 0.89) | 0.535 | −2.51 (5.95) | −0.29 (5.26) | −2.37 (−4.39, −0.34) | 0.022 |
BMI (kg/m2) | −0.04 (1.19) | −0.01 (1.11) | −0.02 (−0.39, 0.35) | 0.933 | −0.71 (1.85) | −0.04 (1.70) | −0.70 (−1.35, −0.06) | 0.032 |
Waist Circumference (cm) | −0.61 (5.64) | −0.31 (4.92) | −0.31 (−2.11, 1.49) | 0.735 | −2.09 (7.30) | 0.38 (5.81) | −2.47 (−4.88, −0.05) | 0.045 |
Hip Circumference (cm) | −0.50 (3.22) | 0.13 (3.76) | −0.35 (−1.49, 0.79) | 0.545 | −1.39 (4.25) | −0.26 (5.31) | −1.25 (−2.89, 0.39) | 0.134 |
Neck Circumference (cm) | −0.15 (1.55) | 0.34 (1.74) | −0.40 (−0.96, 0.16) | 0.164 | −0.32 (2.15) | 0.58 (1.84) | −0.89 (−1.59, −0.20) | 0.011 |
Grip strength (kg) | 0.64 (6.11) | 0.53 (5.61) | 0.01 (−2.03, 2.05) | 0.992 | 0.86 (4.78) | −0.46 (5.72) | 1.34 (−0.51, 3.19) | 0.155 |
Blood pressure | ||||||||
Systolic Blood pressure (mm Hg) | −2.54 (11.01) | −2.80 (10.95) | 1.10 (−2.44, 4.64) | 0.543 | −2.60 (10.21) | −1.41 (14.89) | −2.14 (−6.55, 2.28) | 0.343 |
Diastolic Blood pressure (mm Hg) | −0.39 (8.90) | −0.76 (8.16) | 0.68 (−1.93, 3.28) | 0.61 | −1.81 (7.16) | −0.72 (9.22) | −1.52 (−4.41, 1.37) | 0.303 |
Resting heart rate (beats/min) | −1.73 (9.99) | 1.09 (9.53) | −3.04 (−5.89, −0.19) | 0.037 | −2.27 (10.08) | −2.25 (8.17) | 0.29 (−2.71, 3.29) | 0.851 |
Blood markers | ||||||||
HbA1c (mmol/mol) | 0.31 (4.91) | 0.54 (5.51) | −1.20 (−2.72, 0.31) | 0.119 | −1.14 (8.15) | 0.34 (6.74) | −1.62 (−4.28, 1.04) | 0.233 |
Triglycerides (mmol/L) | 0.03 (0.72) | 0.05 (1.12) | −0.06 (−0.322, 0.199) | 0.643 | 0.06 (1.04) | 0.05 (0.79) | −0.017 (−0.342, 0.309) | 0.920 |
HDL Cholesterol (mmol/L) | 0.05 (0.25) | 0.04 (0.25) | 0.04 (−0.03, 0.12) | 0.237 | 0.10 (0.25) | −0.01 (0.25) | 0.08 (0.01, 0.15) | 0.020 |
LDL Cholesterol (mmol/L) | −0.06 (0.77) | −0.09 (0.94) | −0.11 (−0.39, 0.16) | 0.416 | 0.06 (0.82) | 0.11 (0.73) | −0.06 (−0.03, 0.21) | 0.648 |
Total Cholesterol (mmol/L) | 0.01 (0.86) | 0.01 (0.98) | −0.09 (−0.39, 0.20) | 0.546 | 0.15 (0.92) | 0.10 (0.83) | 0.01 (−0.28, 0.30) | 0.954 |
Lifestyle behaviours | ||||||||
Fruit intake grams/day | 10.16 (134.37) | 24.58 (135.73) | 6.47 (−40.05, 52.98) | 0.785 | 4.45 (157.81) | 25.37 (122.68) | −11.57 (−58.59, 35.46) | 0.630 |
Vegetable intake grams/day | 2.02 (293.56) | 10.45 (168.53) | 41.09 (−17.65, 99.83) | 0.170 | 34.29 (186.50) | −17.88 (170.20) | 51.97 (−5.63, 109.57) | 0.077 |
Dietary Quality Score | 0.18 (2.65) | 0.11 (2.07) | −0.18 (−0.92, 0.55) | 0.627 | 0.10 (2.37) | 0.44 (2.39) | −0.37 (−1.05, 0.30) | 0.277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruettger, K.; Clemes, S.A.; Chen, Y.-L.; Edwardson, C.L.; Guest, A.; Gilson, N.D.; Gray, L.J.; Johnson, V.; Paine, N.J.; Sherry, A.P.; et al. Drivers with and without Obesity Respond Differently to a Multi-Component Health Intervention in Heavy Goods Vehicle Drivers. Int. J. Environ. Res. Public Health 2022, 19, 15546. https://doi.org/10.3390/ijerph192315546
Ruettger K, Clemes SA, Chen Y-L, Edwardson CL, Guest A, Gilson ND, Gray LJ, Johnson V, Paine NJ, Sherry AP, et al. Drivers with and without Obesity Respond Differently to a Multi-Component Health Intervention in Heavy Goods Vehicle Drivers. International Journal of Environmental Research and Public Health. 2022; 19(23):15546. https://doi.org/10.3390/ijerph192315546
Chicago/Turabian StyleRuettger, Katharina, Stacy A. Clemes, Yu-Ling Chen, Charlotte L. Edwardson, Amber Guest, Nicholas D. Gilson, Laura J. Gray, Vicki Johnson, Nicola J. Paine, Aron P. Sherry, and et al. 2022. "Drivers with and without Obesity Respond Differently to a Multi-Component Health Intervention in Heavy Goods Vehicle Drivers" International Journal of Environmental Research and Public Health 19, no. 23: 15546. https://doi.org/10.3390/ijerph192315546
APA StyleRuettger, K., Clemes, S. A., Chen, Y. -L., Edwardson, C. L., Guest, A., Gilson, N. D., Gray, L. J., Johnson, V., Paine, N. J., Sherry, A. P., Sayyah, M., Troughton, J., Varela-Mato, V., Yates, T., & King, J. A. (2022). Drivers with and without Obesity Respond Differently to a Multi-Component Health Intervention in Heavy Goods Vehicle Drivers. International Journal of Environmental Research and Public Health, 19(23), 15546. https://doi.org/10.3390/ijerph192315546