Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Graded Exercise Test
2.4. Wingate Test
2.5. Isokinetic Strength Test
2.6. Body Composition
2.7. High-Intensity Interval Training Program
2.8. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, I.; Jeong, H.S.; Lee, S.Y. Injury profiles in Korean youth soccer. Int. J. Environ. Res. Public Health 2020, 17, 5125. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, A.; Bourdon, P.; Snowden, K.; Gore, C. Detraining decreases Hbmass of triathletes. Int. J. Sports Med. 2012, 33, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Arciero, P.J. Detraining increases body fat and weight and decreases VO2peak and metabolic rate. J. Strength Cond. Res. 2012, 26, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Montero, F.C.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Jemni, M.; Prince, M.S.; Baker, J.S. Retracted Article: Assessing Cardiorespiratory Fitness of Soccer Players: Is Test Specificity the Issue?—A Review. Sports Med. 2018, 4, 1–18. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Franchini, E. High-intensity interval training prescription for combat-sport athletes. Int. J. Sports Physiol. Perform. 2020, 15, 767–776. [Google Scholar] [CrossRef]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-intensity interval training performed by young athletes: A systematic review and meta-analysis. Front. Physiol. 2018, 9, 1012–1029. [Google Scholar] [CrossRef] [Green Version]
- García-Pinillos, F.; Cámara-Pérez, J.C.; Soto-Hermoso, V.M.; Latorre-Román, P.Á. A high intensity interval training (HIIT)-based running plan improves athletic performance by improving muscle power. J. Strength Cond. Res. 2017, 31, 146–153. [Google Scholar] [CrossRef]
- Dolci, F.; Kilding, A.E.; Chivers, P.; Piggott, B.; Hart, N.H. High-intensity interval training shock microcycle for enhancing sport performance: A brief review. J. Strength Cond. Res. 2020, 34, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Weston, M.; Taylor, K.L.; Batterham, A.M.; Hopkins, W.G. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med. 2014, 44, 1005–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Manuel Clemente, F.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 39, 1202–1222. [Google Scholar] [CrossRef]
- Kunz, P.; Engel, F.A.; Holmberg, H.-C.; Sperlich, B. A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Med. 2019, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, A.; Clemente, F.M.; Kargarfard, M.; Jahangiri, S. Combined small-sided game and high-intensity interval training in soccer players: The effect of exercise order. J. Hum. Kinet. 2019, 69, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Wong, P.-L.; Chaouachi, A.; Chamari, K.; Dellal, A.; Wisloff, U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J. Strength Cond. Res. 2010, 24, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Dupont, G.; Akakpo, K.; Berthoin, S. The effect of in-season, high-intensity interval training in soccer players. J. Strength Cond. Res. 2004, 18, 584–589. [Google Scholar]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running low-volume high-intensity interval training: Effects on vo2max and muscular endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Girard, J.; Feng, B.; Chapman, C. The effects of high-intensity interval training on athletic performance measures: A systematic review. Phys. Ther. Rev. 2018, 23, 151–160. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of high-intensity interval training on olympic combat sports athletes’ performance and physiological adaptation: A systematic review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Menz, V.; Strobl, J.; Faulhaber, M.; Gatterer, H.; Burtscher, M. Effect of 3-week high-intensity interval training on VO2max, total haemoglobin mass, plasma and blood volume in well-trained athletes. Eur. J. Appl. Physiol. 2015, 115, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, K.; Choi, Y.C. Very short-term high-intensity interval training in highschool soccer players. J. Men’s Health 2020, 16, 1–8. [Google Scholar]
- Stallman, H.M.; Hurst, C.P. The university stress scale: Measuring domains and extent of stress in university students. Aust. Psychol. 2016, 51, 128–134. [Google Scholar] [CrossRef]
- Hamlin, M.J.; Wilkes, D.; Elliot, C.A.; Lizamore, C.A.; Kathiravel, Y. Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liguori, G. American College of Sports Medicine. In ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Christie, C. The Wingate Anaerobic Test: A Comprehensive Literature Review and Update on Reference Values in Athletes; Utah State University: Logan, UT, USA, 2021. [Google Scholar]
- Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Cvetic, D.; Mirkov, D.M. Isokinetic testing: Sensitivity of the force-velocity relationship assessed through the two-point method to discriminate between muscle groups and participants’ physical activity levels. Int. J. Environ. Res. Public Health 2020, 17, 8570. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Zacharewicz, E.; Martin, B.J.; Haikalis, M.E.; Skelly, L.E.; Tarnopolsky, M.A.; Murphy, R.M.; Gibala, M.J. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017, 595, 2955–2968. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Chatterjee, S.; Dey, S.K. Effect of 8 weeks high intensity interval training on maximum oxygen uptake capacity and related cardio-respiratory parameters at anaerobic threshold level of indian male field hockey players. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 106–116. [Google Scholar]
- Smith-Ryan, A.E.; Melvin, M.N.; Wingfield, H.L. High-intensity interval training: Modulating interval duration in overweight/obese men. Physician Sports Med. 2015, 43, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cometti, G.; Maffiuletti, N.; Pousson, M.; Chatard, J.-C.; Maffulli, N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int. J. Sports Med. 2001, 22, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Julio, U.F.; Panissa, V.L.; Lira, F.S.; Gerosa-Neto, J.; Branco, B.H. High-intensity intermittent training positively affects aerobic and anaerobic performance in judo athletes independently of exercise mode. Front. Physiol. 2016, 7, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.-H.; Choi, Y.-C.; Lee, D.-S. The effect of short-term wingate-based high intensity interval training on anaerobic power and isokinetic muscle function in adolescent badminton players. Children 2021, 8, 458. [Google Scholar] [CrossRef]
- Diker, G.; Struzik, A.; Ön, S.; Zileli, R. The Relationship between the Hamstring-to-Quadriceps Ratio and Jumping and Sprinting Abilities of Young Male Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 7471. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Sarmento, H.; Duarte, J.P.; Barrera, J.; Loureiro, F.; Vaz, V.; Saavedra, N.; Figueiredo, A.J. Knee and hip agonist-antagonist relationship in male under-19 soccer players. PLoS ONE 2022, 17, e0266881–e0266891. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.; Selvanayagam, V.; Riek, S.; Semmler, J. Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. J. Acta Physiol. 2011, 202, 119–140. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P. High-intensity training versus traditional exercise interventions for promoting health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [Green Version]
- Botta, R.M.; Palermi, S.; Tarantino, D. High-intensity interval training for chronic pain conditions: A narrative review. J. Exerc. Rehabil. 2022, 18, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Torma, F.; Gombos, Z.; Jokai, M.; Takeda, M.; Mimura, T.; Radak, Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med. Health Sci. 2019, 1, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choi, Y.C. The effect of short-term off-season cross-country ski training on body composition, physical fitness, and isokinetic muscle functions of cross-country skiers. J. Men’s Health 2020, 16, 63–74. [Google Scholar]
- Kim, T.H.; Han, J.K.; Lee, J.Y.; Choi, Y.C. The effect of polarized training on the athletic performance of male and female cross-country skiers during the general preparation period. Healthcare 2021, 9, 851. [Google Scholar] [CrossRef]
- Bompa, T.O.; Buzzichelli, C. Periodization—Theory and Methodology of Training; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
Training Type | Bout | Intensity | Acceleration | Target Intensity Maintain | Interval Recovery | Set |
---|---|---|---|---|---|---|
Cycle ergometer | First bout | HRmax 85% | 10 s | 20 s | 120 s | 3 |
Bout recovery 3 min | ||||||
Second bout | HRmax 90% | 10 s | 15 s | 120 s | 3 | |
Bout recovery 3 min | ||||||
Third bout | HRmax 100% | 10 s | 10 s | 120 s | 3 | |
End of cycle ergometer training and recovery 10 min | ||||||
Treadmill | First bout | HRmax 85% | 10 s | 20 s | 120 s | 3 |
Bout recovery 3 min | ||||||
Second bout | HRmax 90% | 10 s | 15 s | 120 s | 3 | |
Bout recovery 3 min | ||||||
Third bout | HRmax 100% | 10 s | 10 s | 120 s | 3 | |
End of training |
Variables | LFG (n = 27) | HFG (n = 27) | t-Value | p-Value |
---|---|---|---|---|
Age, years | 15.7 ± 0.8 | 15.8 ± 0.9 | −0.242 | 0.710 |
Height, cm | 176.4 ± 4.7 | 177.1 ± 4.3 | −0.884 | 0.383 |
Weight, kg | 63.8 ± 6.8 | 64.6 ± 7.1 | −0.615 | 0.754 |
BMI, kg/m2 | 20.5 ± 1.8 | 20.6 ± 1.9 | 0.239 | 0.813 |
Injury duration, week | 6.8 ± 1.2 | 7.0 ± 1.1 | 0.247 | 0.510 |
Injury site, n | ||||
Ankle | 5 | 8 | 0.450 | 0.258 |
Knee | 17 | 17 | ||
Hip | 3 | 1 | ||
Low back | 2 | 1 |
Variables | Group | Pre | Post | p-Value |
---|---|---|---|---|
VO2peak, mL/kg/min | LFG | 48.7 ± 6.9 | 56.4 ± 8.9 | 0.003 |
HFG | 50.1 ± 7.3 | 57.1 ± 9.0 | 0.009 | |
p-value | 0.241 | 0.035 | ||
Anaerobic Threshold, % | LFG | 63.1 ± 6.0 | 69.3 ± 6.8 | 0.028 |
HFG | 62.9 ± 6.8 | 71.7 ± 6.7 | 0.017 | |
p-value | 0.419 | 0.159 | ||
ATHR, bpm | LFG | 149.1 ± 12.3 | 158.0 ± 11.9 | 0.014 |
HFG | 148.9 ± 11.8 | 160.9 ± 12.1 | 0.002 | |
p-value | 0.543 | 0.215 | ||
Exercise duration, s | LFG | 907.1 ± 32.1 | 972.3 ± 29.6 | 0.036 |
HFG | 918.7 ± 28.9 | 990.4 ± 30.1 | 0.025 | |
p-value | 0.144 | 0.041 | ||
Recovery 1 m HR, % | LFG | 58.6 ± 8.8 | 62.3 ± 10.7 | 0.014 |
HFG | 57.7 ± 8.1 | 60.1 ± 12.1 | 0.011 | |
p-value | 0.296 | 0.028 |
Set | Variables | Group | Pre | Post | p-Value |
---|---|---|---|---|---|
1 set | Peak power, watt | LFG | 667.1 ± 110.7 | 766.6 ± 137.8 | 0.005 |
HFG | 680.9 ± 105.4 | 776.6 ± 127.0 | 0.014 | ||
p-value | 0.210 | 0.585 | |||
Peak power/kg | LFG | 10.5 ± 2.1 | 11.9 ± 1.2 | 0.003 | |
HFG | 11.0 ± 1.3 | 12.1 ± 1.3 | 0.015 | ||
p-value | 0.300 | 0.419 | |||
Fatigue Index | LFG | 43.2 ± 14.8 | 35.8 ± 10.5 | 0.037 | |
HFG | 45.4 ± 18.9 | 36.5 ± 10.9 | 0.008 | ||
p-value | 0.415 | 0.410 | |||
3 set | Peak power, watt | LFG | 636.4 ± 98.8 | 674.1 ± 76.7 | 0.019 |
HFG | 627.0 ± 88.9 | 685.2 ± 78.5 | 0.002 | ||
p-value | 0.516 | 0.021 | |||
Peak power/kg | LFG | 10.0 ± 1.4 | 10.1 ± 1.2 | 0.039 | |
HFG | 9.8 ± 1.5 | 10.9 ± 1.7 | 0.041 | ||
p-value | 0.410 | 0.025 | |||
Fatigue Index | LFG | 51.6 ± 12.3 | 44.4 ± 13.1 | 0.017 | |
HFG | 54.7 ± 10.5 | 39.5 ± 15.0 | 0.030 | ||
p-value | 0.315 | 0.017 | |||
5 set | Peak power, watt | LFG | 594.6 ± 81.4 | 606.3 ± 85.8 | 0.160 |
HFG | 603.1 ± 78.7 | 629.3 ± 81.6 | 0.019 | ||
p-value | 0.194 | 0.039 | |||
Peak power/kg | LFG | 9.5 ± 1.6 | 9.6 ± 1.5 | 0.289 | |
HFG | 9.3 ± 1.7 | 10.0 ± 1.4 | 0.024 | ||
p-value | 0.416 | 0.044 | |||
Fatigue Index | LFG | 57.1 ± 10.6 | 56.1 ± 12.4 | 0.177 | |
HFG | 59.1 ± 11.4 | 51.6 ± 12.6 | 0.013 | ||
p-value | 0.284 | 0.033 |
Variables | Group | Pre | Post | p-Value | |
---|---|---|---|---|---|
Isokinetic knee strength | 60°/s, peak Nm/kg, % | LFG | 466.2 ± 58.9 | 482.7 ± 36.4 | 0.017 |
HFG | 464.9 ± 77.6 | 498.3 ± 64.5 | 0.002 | ||
p-value | 0.251 | 0.515 | |||
180°/s, average Watt/kg, % | LFG | 613.4 ± 95.5 | 632.9 ± 53.3 | 0.017 | |
HFG | 629.8 ± 98.8 | 647.8 ± 90.3 | 0.020 | ||
p-value | 0.274 | 0.610 | |||
240°/s, total Joule/kg, % | LFG | 65.6 ± 9.8 | 68.5 ± 8.5 | 0.360 | |
HFG | 64.4 ± 9.9 | 70.2 ± 10.5 | 0.006 | ||
p-value | 0.380 | 0.010 | |||
Body composition | Fat mass, kg | LFG | 7.4 ± 1.7 | 7.2 ± 1.7 | 0.805 |
HFG | 7.3 ± 1.5 | 7.1 ± 1.8 | 0.789 | ||
p-value | 0.332 | 0.250 | |||
Fat ratio, % | LFG | 11.6 ± 2.1 | 11.1 ± 2.9 | 0.746 | |
HFG | 11.4 ± 1.9 | 11.0 ± 2.5 | 0.527 | ||
p-value | 0.284 | 0.528 | |||
Muscle mass, kg | LFG | 31.7 ± 4.7 | 32.3 ± 4.4 | 0.613 | |
HFG | 31.7 ± 4.6 | 32.0 ± 4.2 | 0.245 | ||
p-value | 0.468 | 0.601 | |||
Muscle ratio, % | LFG | 49.7 ± 2.1 | 50.1 ± 2.4 | 0.585 | |
HFG | 50.1 ± 2.2 | 50.3 ± 2.4 | 0.628 | ||
p-value | 0.601 | 0.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Kim, Y.; Choi, Y. Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 15573. https://doi.org/10.3390/ijerph192315573
Yan S, Kim Y, Choi Y. Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. International Journal of Environmental Research and Public Health. 2022; 19(23):15573. https://doi.org/10.3390/ijerph192315573
Chicago/Turabian StyleYan, Shuren, Yonghwan Kim, and Yongchul Choi. 2022. "Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation" International Journal of Environmental Research and Public Health 19, no. 23: 15573. https://doi.org/10.3390/ijerph192315573
APA StyleYan, S., Kim, Y., & Choi, Y. (2022). Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. International Journal of Environmental Research and Public Health, 19(23), 15573. https://doi.org/10.3390/ijerph192315573