Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analysis of Physical and Chemical Properties of Samples
2.3. Microbiological Analysis of Samples
2.4. Static Analysis
3. Results
4. Discussion
5. Study limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Occhipinti–Ambrogi, A.; Savini, D. Biological invasions as a component of global change in stressed marine ecosystems. Mar. Pollut. Bull. 2003, 46, 542–551. [Google Scholar] [CrossRef]
- Gollasch, S. Is ballast water a major dispersal mechanism for marine organisms? In Biological Invasions; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Galil, B.; Marchini, A.; Occhipinti–Ambrogi, A.; Minchin, D.; Narščius, A.; Ojaveer, H.; Olenin, S. International arrivals: Widespread bioinvasions in European seas. Ethol. Ecol. Evol. 2014, 26, 152–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuer–Lauridsen, F.; Drillet, G.; Hansen, F.; Saunders, J. Same Risk Area: An area-based approach for the management of bioinvasion risks from ships’ ballast water. Mar. Policy 2018, 97, 147–155. [Google Scholar] [CrossRef]
- González–Ortegón, E.; Moreno–Andrés, J. Anthropogenic Modifications to Estuaries Facilitate the Invasion of Non-Native Species. Processes 2021, 9, 740. [Google Scholar] [CrossRef]
- Rybczyk, A.; Czerniejewski, P.; Keszka, S.; Janowicz, M.; Brysiewicz, A.; Wawrzyniak, W. First data of age, condition, growth rate and diet of invasive Neogobius melanostomus (Pallas, 1814) in the Pomeranian Bay, Poland. J. Water Land Dev. 2020, 47, 142–149. [Google Scholar] [CrossRef]
- Huang, D.; Haack, R.; Zhang, R. Does global warming in-crease establishment rates of invasive alien species? A centurial time series analysis. PLoS ONE 2011, 6, 247–333. [Google Scholar] [CrossRef] [Green Version]
- Ojaveer, H.; Olenin, S.; Narščius, A.; Florin, A.B.; Ezhova, E.; Gollasch, S.; Jensen, K.; Lehtiniemi, M.; Minchin, D.; Normant–Saremba, M.; et al. Dynamics of biological invasions and pathways overtime: A case study of a temperate coastal sea. Biol. Invasions 2016, 5, 799–813. [Google Scholar] [CrossRef]
- Normant–Saremba, M.; Marszewska, L.; Kerckhof, F. First record of the North American amphipod Melita nitida Smith, 1873 in Polish coastal waters. Oceanol. Hydrobiol. Stud. 2017, 46, 108–115. [Google Scholar] [CrossRef]
- Smith, R.; Baker, R.; Collins, D.; Korycinska, A.; Malumphy, C.; Ostojá-Starzewski, J.; Prior, T.; Pye, D.; Reid, S. Recent trends in non-native, invertebrate, plant pest establishments in Great Britain, accounting for time lags in reporting. Agric. For. Entomol. 2018, 20, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Gollasch, S.; David, M. Chapter 13—Ballast Water: Problems and Management. In World Seas: An Environmental Evaluation Vol. III: Ecological Issues and Environmental Impacts, 2nd ed.; Sheppard, C., Ed.; Academic Press: Warwick, UK, 2018; pp. 237–250. [Google Scholar]
- Ojaveer, H.; Jaanus, A.B.R.; Martin, G.; Olenin, S.; Radziejewska, T.; Telesh, I.; Zettler, M.L.; Zaiko, A. Status of Biodiversity in the Baltic Sea. PLoS ONE 2010, 5, e12467. [Google Scholar] [CrossRef]
- IMO. International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004. In Guidance on Ballast Water Sampling and Analysis for Trial Use in Accordance with the BWM Convention and Guidelines (G2) BWM.2/Circ.42; International Maritime Organization: London, UK, 2013. [Google Scholar]
- Soleimani, F.; Taherkhani, R.; Dobaradaran, S.; Spitz, J.; Saeedi, R. Molecular detection of E. coli and Vibrio cholerae in ballast water of commercial ships: A primary study along the Persian Gulf. J. Environ. Health Sci. Eng. 2021, 19, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Gastner, M.; Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 2013, 16, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Liu, Z.; Salhi, E.; Höfer, T.; Werschkund, B.; Von Gunten, U. Formation of disinfection by-products during ballast water treatment with ozone, chlorine and peracetic acid: Influence of water quality parameters. Environ. Sci. Water Res. Technol. 2015, 1, 465–480. [Google Scholar] [CrossRef]
- Hess–Erga, O.; Moreno–Andrés, J.; Enger, Ø.; Vadstein, O. Microorganisms in ballastwater: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 2019, 657, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Rojas–Tirado, P.; Pedersen, P.; Vadstein, O.; Pedersen, L. Microbial dynamics in RAS water: Effects of adding acetate as a biodegradable carbon-source. Aquac. Eng. 2019, 84, 106–116. [Google Scholar] [CrossRef]
- Soleimani, F.; Dobaradaran, S.; Taherkhani, R.; Saeedi, R.; Mohammadi, M.; Keshtkar, M.; Ghaderi, M.; Mirahmadi, R. Assessment of microbial and physiochemical quality of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Desalin Water Treat. 2017, 98, 190–195. [Google Scholar] [CrossRef]
- Soleimani, F.; Dobaradaran, S.; Mahyi, A.; Parhizkar, G.; Ghaderi, M.; Keshtkar, M.; Karbasdehia, V. Fluoride and chloride levels in ballast water in commercial ships entering Bushehr port on the Persian Gulf. Fluoride 2017, 50 Pt 2, 121–126. [Google Scholar]
- Dobaradaran, S.; Soleimani, F.; Nabipour, I.; Saeedi, R.; Mohammadi, M.J. Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Mar. Pollut. Bull. 2018, 126, 74–76. [Google Scholar] [CrossRef]
- Kurniawan, S.; Pambudi, D.M.; Alfanda, B.; Imron, M.; Abdullah, S. Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon 2022, 8, e09107. [Google Scholar] [CrossRef] [PubMed]
- Kadriu, S.; Sadiku, M.; Kelmendi, M.; Aliu, M.; Mulliqi, I.; Hyseni, A. Impact of Kishnica mines on pollution of the Graçanka River and water wells nearby, Kosovo. J. Water Land Dev. 2021, 48, 16–21. [Google Scholar] [CrossRef]
- Hassard, F.; Andrews, A.; Jones, D.L.; Parsons, L.; Jones, V.; Cox, B.A.; Daldorph, P.; Brett, H.; McDonald, J.E.; Malham, S.K. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment. Front. Microbiol. 2017, 8, 1996. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.M.; York, J.; Biddle, J.F. Impacts of Salinity and Oxygen on Particle-Associated Microbial Communities in the Broadkill River, Lewes DE. Front. Mar. Sci. 2018, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Lew, S.; Glińska–Lewczuk, K.; Burandt, P.; Kulesza, K.; Kobus, S.; Obolewski, K. Salinity as a Determinant Structuring Microbial Communities in Coastal Lakes. Int. J. Res. Public Health 2022, 19, 4592. [Google Scholar] [CrossRef]
- Spietz, R.L.; Williams, C.M.; Rocap, G.; Horner–Devine, M.C. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary. PLoS ONE 2015, 10, e0135731. [Google Scholar] [CrossRef] [Green Version]
- Krzanowski, W. Principles of Multivariate Analysis: A User’s Perspective; Oxford University Press: New York, NY, USA, 2000; pp. 53–74. [Google Scholar]
- Brinkmeyer, R. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing. Mar. Pollut. Bull. 2016, 107, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Khandeparker, L.; Desai, D.; Sawant, S.; Krishnamurthy, V.; Anil, A. Spatio-temporal Variations in Bacterial Abundance with an Emphasis on Fecal Indicator Bacteria and Vibrio spp. in and around Visakhapatnam Port, East Coast of India. ASEAN J. Sci. Technol. Dev. 2020, 37, 91–99. [Google Scholar] [CrossRef]
- Seiden, J.; Way, C.; Rivkin, R. Microbial hitchhikers: Dynamics of bacterial populations in ballast water during a trans-Pacific voyage of a bulk carrier. Aquat. Invasions 2010, 5, 13–22. [Google Scholar] [CrossRef]
- Drake, L.A.; Gregory, M.; Ruiz, G.M.; Galil, B.S.; Mullady, T.L.; Friedmann, D.O.; Dobbs, F.C. Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange. Mar. Ecol. Prog. Ser. 2002, 233, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Tomaru, A.; Kawachi, M.; Demura, M.; Fukuyo, Y. Changes in microbial communities, including both uncultured and culturable bacteria, with mid-ocean ballast-water exchange during a voyage from Japan to Australia. PLoS ONE 2014, 9, e96274. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, W.A.; Gunsch, C.K. Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports. Environ. Int. 2019, 124, 312–319. [Google Scholar] [CrossRef]
- Burkholder., J.M.; Hallegraeff, G.M.; Melia, G.; Cohen, A.; Bowers, H.A.; Oldach, D.W.; Parrow, M.W.; Sullivan, M.J.; Zimba, P.V.; Allen, E.H.; et al. Phytoplankton and bacterial assemblages in ballast water of U.S. military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae 2007, 6, 486–518. [Google Scholar] [CrossRef]
- Jang, P.G.; Bonggil, H.; Kyoungsoon, S. Ballast Water Treatment Performance Evaluation under Real Changing Conditions. J. Mar. Sci. Eng. 2020, 8, 817. [Google Scholar] [CrossRef]
- Cuevas, L.; Morales, C. Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas off northern Chile. J. Plankton Res. 2006, 28, 385–397. [Google Scholar] [CrossRef]
- Pradeep Ram, A.; Sime-Ngando, T. Functional Responses of Prokaryotes and Viruses to Grazer Effects and Nutrient Additions in Freshwater Microcosms. ISME J. 2008, 2, 498–509. [Google Scholar] [CrossRef]
- Starliper, C.E.; Watten, B.J.; Iwanowicz, D.D.; Green, P.A.; Bassett, N.L.; Adams, C.R. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers. J. Adv. Res. 2015, 6, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, E.; Gustafsson, B.G. Future acidification of the Baltic Sea—A sensitivity study. J. Mar. Syst. 2020, 211, 103397. [Google Scholar] [CrossRef]
- Hiroyuki, A. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2011, 2, 103. [Google Scholar] [CrossRef] [Green Version]
- Feisale, E.V.; Bonnett, E.O. The effect of water hardness on the growth of Pseudomonas aeruginosa in metal cutting fluids. J. Appl. Microbiol. 2008, 24, 125–130. [Google Scholar] [CrossRef]
- Forghani, F.; Park, J.; Oh, D. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol. 2015, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, C.; Lourenço, N.; Lopes, T.; Rall, V.; Lopes, C. Ballast water: A review of the impact on the world public health. J. Venom. Anim. Toxins incl. Trop. Dis. 2008, 14, 393–408. [Google Scholar] [CrossRef]
- Dobbs, F. Ship Ballast Tanks: How Microbes Travel The World. Microbiol. Today 2008, 35, 78–81. [Google Scholar]
- Logan, N.; de Vos, P.B. Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–163. [Google Scholar] [CrossRef]
- Ng, C.; Le, T.; Goh, S.; Liang, L.; Kim, Y.; Rose, J.; Yew–Hong, K. A Comparison of Microbial Water Quality and Diversity for Ballast and Tropical Harbor Waters. PLoS ONE 2015, 10, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Ojaveer, H.; Galil, B.S.; Minchin, D.; Olenin, S.; Amorim, A.; Canning—Clode, J.; Chainho, P.; Copp, G.H.; Gollasch, S.; Jelmert, A.; et al. Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Policy 2014, 44, 160–165. [Google Scholar] [CrossRef]
- Courchamp, F.; Fournier, A.; Bellard, C.; Bertelsmeier, C.; Bonnaud, E.; Jeschke, J.M.; Russell, J.C. Invasion biology: Specific problems and possible solutions. Trends Ecol. Evol. 2017, 32, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Young, H.S.; Parker, I.M.; Gilbert, G.S.; Sofia Guerra, A.; Nunn, C.L. Introduced species, disease ecology, and biodiversity—disease relationships. Trends Ecol. Evol. 2017, 32, 41–54. [Google Scholar] [CrossRef]
- Wu, H.; Chen, C.; Wang, Q.; Lin, J.; Xue, J. The biological content of ballast water in China: A review. Aquac. Fish. 2017, 2, 241–246. [Google Scholar] [CrossRef]
- Zatoń–Sieczka, K.; Błaszak, M.; Buśko, M.; Czerniejewski, P. Microorganisms’ communities from ballast water transferred into the Odra River Estuary. J. Water Land Dev. 2022, 54, 48–58. [Google Scholar] [CrossRef]
Sample | P1 (SD) | S1 (SD) | S2 (SD) | L1 (SD) | L2 (SD) | ||
---|---|---|---|---|---|---|---|
Property | |||||||
pH | 7.58 (0.57) | 8.03 (0.18) | 8.00 (0.02) | 8.10 (0.02) | 8.02 (0.20) | ||
PSU (‰) | 0.34 (0.23) | 1.35 (0.23) | 1.43 (0.96) | 3.34 (1.19) | 4.94 (2.03) | ||
Venice system for the classification of water salinity | Limnetic | Mixohaline | Mixohaline | Mixohaline | Mixohaline | ||
Oxidoreductive potential (mV) | 185 (0.01) | 181 (0.02) | 177 (0.01) | 176 (0.03) | 169 (0.02) | ||
Electrolytic conductivity EC (mS/cm) | 9.31 (0.58) | 4.92 (0.08) | 5.36 (0.18) | 6.38 (0.49) | 6.38 (0.21) | ||
Total hardness (°N) | 46.88 (0.12) | 27.51 (0.15) | 29.83 (0.03) | 32.48 (0.05) | 36.14 (0.11) | ||
Dissolved oxygen (mg L−1) | 4.60 (0.16) | 2.80 (1.04) | 3.10 (0.76) | 1.60 (0.06) | 1.80 (0.07) | ||
Levels of biogenic elements [mg/L] | NO2 | 0.04 (0.00) | 0.02 (0.01) | 0.04 (0.00) | 0.04 (0.00) | 0.05 (0.01) | |
NO3 | 2.26 (0.22) | 4.30 (0.19) | 2.77 (0.47) | 1.91 (0.38) | 1.23 (0.03) | ||
NH4 | 0.31 (0.03) | 0.28 (0.06) | 0.26 (0.03) | 0.34 (0.06) | 0.29 (0.01) | ||
PO4 | 1.03 (0.51) | 2.02 (0.40) | 1.63 (0.23) | 0.77 (0.18) | 0.65 (0.29) |
Sample | P2 (SD) | S3 (SD) | S4 (SD) | L3 (SD) | L4 (SD) | ||
---|---|---|---|---|---|---|---|
Property | |||||||
pH | 7.75 (0.04) | 7.91 (0.08) | 8.08 (0.04) | 8.07 (0.12) | 7.93 (0.17) | ||
PSU (‰) | 0.47 (0.62) | 1.22 (0.46) | 2.11 (1.30) | 5.15 (2.16) | 6.18 (2.34) | ||
Venice system for the classification of water salinity | Limnetic | Mixohaline | Mixohaline | Mixohaline | Mixohaline | ||
Oxidoreductive potential (mV) | 196 (0.02) | 189 (0.00) | 195 (0.01) | 183 (0.00) | 185 (0.00) | ||
Electrolytic conductivity EC (mS/cm) | 7.65 (1.56) | 2.00 (0.30) | 9.31 (1.90) | 14.99 (0.47) | 16.37 (2.09) | ||
Total hardness (°N) | 30.65 (0.01) | 19.01 (0.02) | 57.22 (0.05) | 67.48 (0.02) | 90.10 (0.04) | ||
Dissolved oxygen (mg L−1) | 4.30 (0.05) | 2.10 (0.56) | 3.00 (0.09) | 1.10 (0.56) | 0.60 (0.06) | ||
Levels of biogenic elements [mg/L] | NO2 | 0.05 (0.01) | 0.04 (0.01) | 0.34 (0.42) | 0.06 (0.01) | 0.06 (0.01) | |
NO3 | 2.08 (0.88) | 4.67 (2.51) | 2.52 (1.83) | 5.11 (0.74) | 4.82 (0.60) | ||
NH4 | 0.31 (0.02) | 0.21 (0.01) | 0.30 (0.05) | 0.34 (0.09) | 0.13 (0.01) | ||
PO4 | 0.63 (0.26) | 0.34 (0.31) | 0.58 (0.36) | 0.15 (0.02) | 0.08 (0.05) |
Sampling Collection | Microbiological Fractions (log10/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TAMC | TYMC | TMMC | TCPs | TCPsf | THC | TLC | TAC | TPC | Average of Total | ||
Autumn | P 1 | 4.61 | 2.98 | 2.45 | 4.11 | 1.30 | 1.15 | 2.90 | 2.78 | 0.70 | 2.55 ± (0.44) a |
S 1 | 4.45 | 2.84 | 2.78 | 3.08 | 1.18 | 1.40 | 2.18 | 3.53 | 1.00 | 2.49 ± (0.38) | |
L 1 | 3.98 | 2.90 | 3.26 | 3.49 | 0.90 | 0.85 | 2.30 | 3.02 | 0.90 | 2.40 ± (0.41) b | |
S 2 | 4.19 | 0.00 | 3.09 | 3.41 | 1.70 | 0.00 | 1.93 | 1.88 | 1.88 | 2.01 ± (0.40) | |
L 2 | 3.70 | 1.00 | 3.19 | 3.08 | 1.08 | 0.70 | 2.48 | 2.00 | 0.48 | 1.97 ± (0.40) ab | |
Winter | P 2 | 3.29 | 1.00 | 0.00 | 3.32 | 2.00 | 1.40 | 1.70 | 2.15 | 2.10 | 1.77 ± (0.47) c |
S 3 | 4.19 | 2.71 | 1.48 | 4.03 | 1.00 | 1.08 | 2.93 | 2.81 | 0.00 | 2.25 ± (0.48) d | |
L 3 | 4.57 | 0.00 | 1.30 | 4.40 | 2.65 | 0.70 | 1.85 | 2.57 | 2.39 | 2.27 ± (0.51) c | |
S 4 | 4.18 | 0.00 | 0.00 | 4.18 | 0.00 | 0.00 | 1.48 | 2.36 | 1.18 | 1.49 ± (0.58) d | |
L 4 | 4.42 | 0.00 | 0.00 | 4.23 | 0.00 | 0.00 | 0.70 | 2.49 | 0.70 | 1.39 ± (0.61) cd |
Variable | TAMC | TYMC | TMMC | TCPs | TCPsf | THC | TLC | TAC | TPC | Average of total |
---|---|---|---|---|---|---|---|---|---|---|
pH | 0.07 | −0.46 | 0.16 | −0.13 | −0.06 | −0.52 | −0.31 | −0.1 | 0.21 | −0.2 |
Oxygen | −0.14 | 0.55 | 0.18 | −0.15 | 0.61 | 0.8 | 0.51 | 0.27 | 0.25 | 0.64 |
EC | 0.23 | −0.63 | −0.65 | 0.55 | −0.46 | −0.63 | −0.78 | −0.26 | 0.17 | −0.72 |
Salinity | 0.05 | −0.69 | −0.26 | 0.16 | −0.6 | −0.84 | −0.63 | −0.45 | −0.15 | −0.76 |
Hardness | 0.38 | −0.61 | −0.59 | 0.64 | −0.43 | −0.65 | −0.76 | −0.18 | 0.09 | −0.64 |
Redox | 0.06 | −0.1 | −0.69 | 0.53 | 0.4 | 0.31 | −0.19 | 0.12 | 0.43 | −0.06 |
N−NO2 | 0.32 | −0.43 | −0.2 | 0.52 | 0.58 | −0.09 | −0.17 | −0.07 | 0.58 | 0.08 |
N−NO3 | 0.39 | 0.02 | −0.52 | 0.44 | −0.66 | −0.21 | −0.34 | 0.47 | −0.36 | 0.31 |
N−NH4 | −0.18 | −0.1 | 0.25 | −0.26 | 0.45 | 0.08 | 0.28 | −0.28 | 0.52 | 0.22 |
P−PO4 | 0.10 | 0.68 | 0.69 | −0.59 | 0.23 | 0.57 | 0.41 | 0.66 | 0 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zatoń-Sieczka, K.; Bogusławska-Wąs, E.; Czerniejewski, P.; Brysiewicz, A.; Tański, A. Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary. Int. J. Environ. Res. Public Health 2022, 19, 15598. https://doi.org/10.3390/ijerph192315598
Zatoń-Sieczka K, Bogusławska-Wąs E, Czerniejewski P, Brysiewicz A, Tański A. Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary. International Journal of Environmental Research and Public Health. 2022; 19(23):15598. https://doi.org/10.3390/ijerph192315598
Chicago/Turabian StyleZatoń-Sieczka, Kinga, Elżbieta Bogusławska-Wąs, Przemysław Czerniejewski, Adam Brysiewicz, and Adam Tański. 2022. "Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary" International Journal of Environmental Research and Public Health 19, no. 23: 15598. https://doi.org/10.3390/ijerph192315598
APA StyleZatoń-Sieczka, K., Bogusławska-Wąs, E., Czerniejewski, P., Brysiewicz, A., & Tański, A. (2022). Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary. International Journal of Environmental Research and Public Health, 19(23), 15598. https://doi.org/10.3390/ijerph192315598