Economic Development and Gender Ratio Change in Chinese Suicide Rates (1990–2017)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, M.R.; Li, X.; Zhang, Y. Suicide rates in China, 1995–99. Lancet 2002, 359, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Suicide Reduction in China. Am. J. Public Health 2019, 109, 1533–1534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lyu, J.; Sun, W.; Wang, L. Changes and explanations of suicide rates in China by province and gender over the past three decades. J. Affect. Disord. 2022, 299, 470–474. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2020.
- Hedegaard, H.; Curtin, S.C.; Warner, M. Suicide Rates in the United States Continue to Increase. NCHS Data Brief, No. 309; National Center for Health Statistics: Hyattsville, MD, USA, 2018; pp. 1–8.
- Durkheim, É. Suicide: A Study in Sociology 1951; The Free Press: New York, NY, USA, 1897. [Google Scholar]
- Chang, Q.; Yip, P.S.; Chen, Y.Y. Gender inequality and suicide gender ratios in the world. J. Affect. Disord. 2019, 243, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Niu, L.; Hahne, J.; Hu, M.; Fang, J.; Shen, M.; Xiao, S. Changing of suicide rates in China, 2002–2015. J. Affect. Disord. 2018, 240, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. From Psychological Strain to Disconnectedness: A Two-Factor Model Theory of Suicide. Crisis J. Crisis Interv. Suicide Prev. 2016, 37, 169–175. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ (accessed on 28 February 2020).
- Britton, P.C.; Van Orden, K.A.; Hirsch, J.K.; Williams, G.C. Basic psychological needs, suicidal ideation, and risk for suicidal behavior in young adults. Suicide Life Threat Behav. 2014, 44, 271–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, J.; Wang, Y.; Shi, H.; Zhang, J. Early warnings for suicide attempt among Chinese rural population. J. Affect. Disord. 2018, 238, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Merton, R.K. Social Theory and Social Structure; Free Press: New York, NY, USA, 1957. [Google Scholar]
- Agnew, R. Foundation for a general strain theory of crime and delinquency. Criminology 1992, 30, 47–87. [Google Scholar] [CrossRef]
- Zhang, J.; Wieczorek, W.F.; Conwell, Y.; Tu, X.M. Psychological strains and youth suicide in rural China. Soc. Sci. Med. 2011, 72, 2003–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J. Marriage and Suicide among Chinese Rural Young Women. Social Forces 2010, 89, 311–326. [Google Scholar] [CrossRef]
- Zhang, J. The strain theory of suicide. J. Pac. Rim Psychol. 2019, 13, e19. [Google Scholar] [CrossRef] [Green Version]
- Pak, T.Y.; Choung, Y. Relative deprivation and suicide risk in South Korea. Soc. Sci. Med. 2020, 247, 112815. [Google Scholar] [CrossRef] [PubMed]
- Hagedoorn, P.; Groenewegen, P.P.; Roberts, H.; Helbich, M. Is suicide mortality associated with neighbourhood social fragmentation and deprivation? A Dutch register-based case-control study using individualised neighbourhoods. J. Epidemiol. Community Health 2020, 74, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, E.; Hanley, S.; Sato, Y.; Saijo, Y. Associations between social fragmentation, socioeconomic deprivation and suicide risk across 1887 municipalities in Japan, 2009–2017: A spatial analysis using the Bayesian hierarchical model. BMJ Open 2022, 12, e063255. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Zhang, J.; Sun, L. Stronger psychological strains increase the odds of suicide death: A comparison between suicides and suicide attempters. Compr. Psychiatry 2020, 103, 152205. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, J. Potential years of life lost due to suicide in China, 2006–2010. Public Health 2015, 129, 555–560. [Google Scholar] [CrossRef] [PubMed]
No. | Province | Gender | Years | Mean | Suicide Rate Decreased from 1990 to 2017 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2017 | |||||
1 | Anhui | Male | 31.99 | 31.63 | 25.85 | 19.51 | 14.26 | 12.12 | 12.13 | 21.07 | 19.86 |
Female | 44.82 | 41.92 | 25.40 | 16.08 | 12.72 | 9.38 | 8.9 | 22.74 | 35.92 | ||
2 | Beijing | Male | 8.09 | 7.86 | 7.11 | 4.76 | 3.98 | 3.84 | 3.9 | 5.65 | 4.19 |
Female | 6.68 | 6.23 | 3.94 | 2.33 | 1.59 | 1.22 | 1.19 | 3.31 | 5.49 | ||
3 | Chongqing | Male | 18.19 | 15.63 | 10.83 | 8.31 | 7.19 | 7.09 | 7.21 | 10.64 | 10.98 |
Female | 22.98 | 18.96 | 10.48 | 6.76 | 5.36 | 4.53 | 4.43 | 10.5 | 18.55 | ||
4 | Fujian | Male | 14.65 | 15.37 | 14.37 | 11.64 | 9.16 | 7.39 | 7.26 | 11.41 | 7.39 |
Female | 35.52 | 30.61 | 16.29 | 9.98 | 8.07 | 5.80 | 5.30 | 15.94 | 30.22 | ||
5 | Gansu | Male | 34.28 | 28.63 | 18.88 | 13.65 | 11.81 | 9.96 | 9.92 | 18.16 | 24.36 |
Female | 25.87 | 25.69 | 16.86 | 13.36 | 10.25 | 6.72 | 6.3 | 15.01 | 19.57 | ||
6 | Guangdong | Male | 13.29 | 12.77 | 10.07 | 7.84 | 6.37 | 5.27 | 5.18 | 8.68 | 8.11 |
Female | 11.49 | 12.09 | 7.85 | 6.1 | 4.45 | 2.88 | 2.62 | 6.78 | 8.87 | ||
7 | Guangxi | Male | 14.57 | 14.78 | 11.05 | 8.51 | 7.59 | 6.77 | 6.87 | 10.02 | 7.70 |
Female | 15.32 | 14.64 | 7.89 | 5.45 | 4.66 | 3.85 | 3.73 | 7.93 | 11.59 | ||
8 | Guizhou | Male | 22.93 | 22.59 | 16.97 | 14.05 | 11.95 | 10.92 | 10.95 | 15.77 | 11.98 |
Female | 25.44 | 23.84 | 14.13 | 10.45 | 8.68 | 6.56 | 6.21 | 13.62 | 19.23 | ||
9 | Hainan | Male | 18.33 | 16.73 | 13.80 | 10.76 | 9.25 | 8.57 | 8.7 | 12.31 | 9.63 |
Female | 20.36 | 18.88 | 13.36 | 8.97 | 7.32 | 6 | 5.89 | 11.54 | 14.47 | ||
10 | Hebei | Male | 15.14 | 14.61 | 11.98 | 9.63 | 8.97 | 9.08 | 9.39 | 11.26 | 5.75 |
Female | 8.07 | 8.29 | 7.77 | 6.48 | 5.97 | 5.28 | 5.31 | 6.74 | 2.76 | ||
11 | Heilongjiang | Male | 12.76 | 12.6 | 11.81 | 9.76 | 7.41 | 6.86 | 6.9 | 9.73 | 5.86 |
Female | 11.23 | 10.19 | 7.71 | 6.22 | 4.17 | 3.25 | 3.03 | 6.54 | 8.20 | ||
12 | Henan | Male | 20.01 | 20.14 | 15.88 | 13.35 | 11.93 | 10.56 | 10.43 | 14.61 | 9.58 |
Female | 19.63 | 19.14 | 12.70 | 10.38 | 9.37 | 7.49 | 6.94 | 12.24 | 12.69 | ||
13 | Hubei | Male | 37.87 | 37.94 | 29.62 | 29.1 | 24.97 | 20.31 | 19.84 | 28.52 | 18.03 |
Female | 43.12 | 45.64 | 34.11 | 29.45 | 25.43 | 19.49 | 17.94 | 30.74 | 25.18 | ||
14 | Hunan | Male | 17.99 | 18.12 | 16.05 | 15.2 | 12.36 | 11.45 | 11.48 | 14.66 | 6.51 |
Female | 39.29 | 33.33 | 16.47 | 11.46 | 9.4 | 7.37 | 7.03 | 17.76 | 32.26 | ||
15 | Inner Mongolia | Male | 21.64 | 20.63 | 15.76 | 12.42 | 10.13 | 8.25 | 8.06 | 13.84 | 13.58 |
Female | 22.24 | 20.4 | 11.73 | 7.65 | 5.49 | 4.09 | 3.83 | 10.78 | 18.41 | ||
16 | Jiangsu | Male | 15.16 | 14.46 | 12.11 | 9.5 | 7.53 | 6.56 | 6.46 | 10.26 | 8.70 |
Female | 14.71 | 15.05 | 10.48 | 7.83 | 5.3 | 4.47 | 4.15 | 8.86 | 10.56 | ||
17 | Jiangxi | Male | 23.9 | 21.99 | 15.13 | 11.34 | 9.73 | 8.41 | 8.21 | 14.1 | 15.69 |
Female | 36.61 | 30.32 | 14.27 | 8.95 | 7.18 | 5.25 | 4.9 | 15.35 | 31.71 | ||
18 | Jilin | Male | 13.57 | 13.91 | 11.75 | 9.39 | 7.21 | 6.87 | 6.94 | 9.95 | 6.63 |
Female | 10.01 | 9.46 | 7.14 | 5.6 | 4.2 | 3.15 | 3.01 | 6.08 | 7.00 | ||
19 | Liaoning | Male | 12.73 | 13.89 | 11.52 | 9.93 | 7.34 | 7.06 | 7.03 | 9.93 | 5.70 |
Female | 8.71 | 8.22 | 6.88 | 5.75 | 4.07 | 3.73 | 3.52 | 5.84 | 5.19 | ||
20 | Ningxia | Male | 13.15 | 12.62 | 9.77 | 8.12 | 6.98 | 6.37 | 6.35 | 9.05 | 6.80 |
Female | 18.4 | 16.44 | 9.75 | 6.82 | 5.41 | 4.02 | 3.87 | 9.24 | 14.53 | ||
21 | Qinghai | Male | 22.88 | 23.27 | 18.21 | 13.41 | 11.12 | 10.04 | 9.98 | 15.56 | 12.90 |
Female | 23.4 | 24.03 | 15.71 | 10.54 | 8.55 | 6.49 | 6.16 | 13.55 | 17.24 | ||
22 | Shaanxi | Male | 11.48 | 11.76 | 10.71 | 9.63 | 7.93 | 7.48 | 7.56 | 9.51 | 3.92 |
Female | 8.5 | 8.94 | 7.84 | 6.84 | 6.24 | 5.14 | 4.99 | 6.93 | 3.51 | ||
23 | Shandong | Male | 33.59 | 31.98 | 20.75 | 15.54 | 11.48 | 9.75 | 9.55 | 18.95 | 24.04 |
Female | 35.4 | 33.94 | 18.65 | 13 | 9.67 | 7.81 | 7.33 | 17.97 | 28.07 | ||
24 | Shanghai | Male | 7.17 | 7.36 | 6.52 | 5.08 | 4.57 | 4.61 | 4.68 | 5.71 | 2.49 |
Female | 6.46 | 6.28 | 3.86 | 2.33 | 1.96 | 1.58 | 1.55 | 3.43 | 4.91 | ||
25 | Shanxi | Male | 14.5 | 13.2 | 9.42 | 6.93 | 6.3 | 6.33 | 6.37 | 9.01 | 8.13 |
Female | 12.36 | 10.76 | 6.16 | 3.98 | 3.46 | 2.88 | 2.78 | 6.06 | 9.58 | ||
26 | Sichuan | Male | 16.36 | 17.11 | 14.77 | 12.91 | 9.87 | 8.82 | 8.87 | 12.67 | 7.49 |
Female | 16.53 | 17.03 | 12.68 | 10.19 | 7.69 | 6.09 | 5.91 | 10.88 | 10.62 | ||
27 | Tianjin | Male | 11.78 | 10.89 | 8.23 | 6.12 | 5.73 | 5.86 | 5.84 | 7.78 | 5.94 |
Female | 9.84 | 8.16 | 4.78 | 3.33 | 2.76 | 2.26 | 2.2 | 4.76 | 7.64 | ||
28 | Tibet | Male | 21.68 | 22.42 | 17.17 | 10.91 | 8.87 | 7.75 | 7.9 | 13.81 | 13.78 |
Female | 18.5 | 18.69 | 12.00 | 7.81 | 5.55 | 4.29 | 4.12 | 10.14 | 14.38 | ||
29 | Xinjiang | Male | 11.33 | 11.73 | 11.02 | 8.67 | 7.5 | 7.35 | 7.55 | 9.31 | 3.78 |
Female | 11.11 | 10.65 | 8.39 | 6.17 | 5.36 | 4.89 | 4.77 | 7.33 | 6.34 | ||
30 | Yunnan | Male | 34.57 | 35.82 | 26.80 | 20.65 | 17.89 | 15.58 | 15.27 | 23.8 | 19.30 |
Female | 40.76 | 41.69 | 24.77 | 17.07 | 13.66 | 10.27 | 9.58 | 22.54 | 31.18 | ||
31 | Zhejiang | Male | 13.14 | 12.92 | 12.37 | 10.72 | 7.73 | 5.94 | 5.8 | 9.8 | 7.34 |
Female | 25.18 | 21.69 | 10.98 | 7.69 | 5.37 | 3.57 | 3.29 | 11.11 | 21.89 | ||
32 | Hong Kong SAR | Male | 12.76 | 13.3 | 13.48 | 12.74 | 9.52 | 8.55 | 8.51 | 11.26 | 4.25 |
Female | 9.22 | 8.9 | 7.90 | 7.66 | 6.05 | 5.35 | 5.34 | 7.2 | 3.88 | ||
33 | Macao SAR | Male | 15.82 | 14.3 | 11.59 | 9.27 | 8.18 | 7.38 | 7.4 | 10.56 | 8.42 |
Female | 12.41 | 10.15 | 8.48 | 7.48 | 7.22 | 6.07 | 5.91 | 8.24 | 6.50 | ||
All | China | Male | 19.65 | 19.41 | 15.26 | 12.47 | 10.09 | 8.88 | 8.82 | 13.51 | 10.83 |
Female | 22.45 | 21.49 | 13.37 | 9.81 | 7.75 | 6.01 | 5.65 | 12.36 | 16.80 |
Correlation Variables | GDP per Capita Increased | Income per Capita Increased | Suicide Rates Gender Ratio Increased |
---|---|---|---|
GDP per capita increased | r = 0.728, p < 0.001 | r = 0.439, p = 0.015 | |
Income per capital increased | r = 0.282, p = 0.124 |
No. | Province | Gender Ratio | Change of Gender Ratio (2017 − 1990) | ||||||
---|---|---|---|---|---|---|---|---|---|
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2017 | |||
1 | Anhui | 0.71 | 0.75 | 1.02 | 1.21 | 1.12 | 1.29 | 1.36 | 0.65 |
2 | Beijing | 1.21 | 1.26 | 1.80 | 2.04 | 2.50 | 3.15 | 3.28 | 2.07 |
3 | Chongqing | 0.79 | 0.82 | 1.03 | 1.23 | 1.34 | 1.57 | 1.63 | 0.84 |
4 | Fujian | 0.41 | 0.50 | 0.88 | 1.17 | 1.14 | 1.27 | 1.37 | 0.96 |
5 | Gansu | 1.33 | 1.11 | 1.12 | 1.02 | 1.15 | 1.48 | 1.57 | 0.24 |
6 | Guangdong | 1.16 | 1.06 | 1.28 | 1.29 | 1.43 | 1.83 | 1.98 | 0.82 |
7 | Guangxi | 0.95 | 1.01 | 1.40 | 1.56 | 1.63 | 1.76 | 1.84 | 0.89 |
8 | Guizhou | 0.9 | 0.95 | 1.20 | 1.34 | 1.38 | 1.66 | 1.76 | 0.86 |
9 | Hainan | 0.9 | 0.89 | 1.03 | 1.20 | 1.26 | 1.43 | 1.48 | 0.58 |
10 | Hebei | 1.88 | 1.76 | 1.54 | 1.49 | 1.50 | 1.72 | 1.77 | −0.11 |
11 | Heilongjiang | 1.14 | 1.24 | 1.53 | 1.57 | 1.78 | 2.11 | 2.28 | 1.14 |
12 | Henan | 1.02 | 1.05 | 1.25 | 1.29 | 1.27 | 1.41 | 1.5 | 0.48 |
13 | Hubei | 0.88 | 0.83 | 0.87 | 0.99 | 0.98 | 1.04 | 1.11 | 0.23 |
14 | Hunan | 0.46 | 0.54 | 0.97 | 1.33 | 1.31 | 1.55 | 1.63 | 1.17 |
15 | Inner Mongolia | 0.97 | 1.01 | 1.34 | 1.62 | 1.85 | 2.02 | 2.1 | 1.13 |
16 | Jiangsu | 1.03 | 0.96 | 1.16 | 1.21 | 1.42 | 1.47 | 1.56 | 0.53 |
17 | Jiangxi | 0.65 | 0.73 | 1.06 | 1.27 | 1.36 | 1.60 | 1.68 | 1.03 |
18 | Jilin | 1.36 | 1.47 | 1.65 | 1.68 | 1.72 | 2.18 | 2.31 | 0.95 |
19 | Liaoning | 1.46 | 1.69 | 1.67 | 1.73 | 1.80 | 1.89 | 2 | 0.54 |
20 | Ningxia | 0.71 | 0.77 | 1.00 | 1.19 | 1.29 | 1.58 | 1.64 | 0.93 |
21 | Qinghai | 0.98 | 0.97 | 1.16 | 1.27 | 1.30 | 1.55 | 1.62 | 0.64 |
22 | Shaanxi | 1.35 | 1.32 | 1.37 | 1.41 | 1.27 | 1.46 | 1.52 | 0.17 |
23 | Shandong | 0.95 | 0.94 | 1.11 | 1.20 | 1.19 | 1.25 | 1.3 | 0.35 |
24 | Shanghai | 1.11 | 1.17 | 1.69 | 2.18 | 2.33 | 2.92 | 3.02 | 1.91 |
25 | Shanxi | 1.17 | 1.23 | 1.53 | 1.74 | 1.82 | 2.20 | 2.29 | 1.12 |
26 | Sichuan | 0.99 | 1.00 | 1.16 | 1.27 | 1.28 | 1.45 | 1.5 | 0.51 |
27 | Tianjin | 1.2 | 1.33 | 1.72 | 1.84 | 2.08 | 2.59 | 2.65 | 1.45 |
28 | Tibet | 1.17 | 1.20 | 1.43 | 1.40 | 1.60 | 1.81 | 1.92 | 0.75 |
29 | Xinjiang | 1.02 | 1.10 | 1.31 | 1.41 | 1.40 | 1.50 | 1.58 | 0.56 |
30 | Yunnan | 0.85 | 0.86 | 1.08 | 1.21 | 1.31 | 1.52 | 1.59 | 0.74 |
31 | Zhejiang | 0.52 | 0.60 | 1.13 | 1.39 | 1.44 | 1.66 | 1.76 | 1.24 |
32 | Hong Kong SAR | 1.38 | 1.49 | 1.71 | 1.66 | 1.57 | 1.60 | 1.59 | 0.21 |
33 | Macao SAR | 1.27 | 1.41 | 1.37 | 1.24 | 1.13 | 1.22 | 1.25 | −0.02 |
All | China | 0.88 | 0.90 | 1.14 | 1.27 | 1.30 | 1.48 | 1.56 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lyu, J.; Lamis, D.A. Economic Development and Gender Ratio Change in Chinese Suicide Rates (1990–2017). Int. J. Environ. Res. Public Health 2022, 19, 15606. https://doi.org/10.3390/ijerph192315606
Zhang J, Lyu J, Lamis DA. Economic Development and Gender Ratio Change in Chinese Suicide Rates (1990–2017). International Journal of Environmental Research and Public Health. 2022; 19(23):15606. https://doi.org/10.3390/ijerph192315606
Chicago/Turabian StyleZhang, Jie, Juncheng Lyu, and Dorian A. Lamis. 2022. "Economic Development and Gender Ratio Change in Chinese Suicide Rates (1990–2017)" International Journal of Environmental Research and Public Health 19, no. 23: 15606. https://doi.org/10.3390/ijerph192315606
APA StyleZhang, J., Lyu, J., & Lamis, D. A. (2022). Economic Development and Gender Ratio Change in Chinese Suicide Rates (1990–2017). International Journal of Environmental Research and Public Health, 19(23), 15606. https://doi.org/10.3390/ijerph192315606