Efficacy of a Mobile App-Based Coaching Program for Addiction Prevention among Apprentices: A Cluster-Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants, Setting and Procedure
2.3. Randomization and Allocation Concealment
2.4. Sample Size Calculation
2.5. Intervention Program
2.6. Assessments and Outcomes
- At risk-drinking in the preceding 30 days, as per guidelines from the Swiss Federal Office of Public Health [22]. At risk-drinking was present, if (1) the maximum consumption on one occasion in the preceding 30 days was higher than 4/5 (female/male) alcoholic standard drinks (10–12 g of pure alcohol) or (2) the total consumption in the preceding 30 days was higher than 20/40 (female/male) drinks or (3) the number of alcohol consumption days in the preceding 30 days was higher than 20.
- 30 days point prevalence for tobacco/e-cigarette smoking, defined as having smoked within the past 30 days [23].
- Number of tobacco cigarettes smoked in the previous 30 days by multiplying the number of cigarettes smoked on a typical smoking day and the number of cigarette smoking days.
- Cannabis use days in the preceding 30 days.
- Problematic Internet use evaluated by the Short Compulsive Internet Use Scale (CIUS-5) with a cut-off of nine points [24].
- General self-efficacy measured by the Short Scale for Measuring General Self-efficacy Beliefs [25].
- Self-perceived stress evaluated by a single-item measure of stress symptoms [26].
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Program Use
3.3. Efficacy of the Intervention Program
4. Discussion
4.1. Principal Results
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Trial Registration
References
- Frey, T.; Friemel, T.N. Substanzkonsum unter Jugendlichen und jungen Erwachsenen in der Schweiz im Jahr 2021. Eine repräsentative Befragung unter 15- bis 19-Jährigen [Substance use among adolescents and young adults in Switzerland in 2021. A representative survey among 15- to 19-year-olds]; University of Zurich: Zurich, Switzerland, 2021. [Google Scholar]
- Paz Castro, R.; Meyer, C.; Rumpf, H.J.; Schaub, M.P.; Wenger, A.; Haug, S. Präventionsbedarfe und -interessen bei Berufslernenden [Prevention needs and interests among vocational students]. Prävention Gesundh. 2022. [Google Scholar] [CrossRef]
- Stockings, E.; Hall, W.D.; Lynskey, M.; Morley, K.I.; Reavley, N.; Strang, J.; Patton, G.; Degenhardt, L. Prevention, early intervention, harm reduction, and treatment of substance use in young people. Lancet Psychiatry 2016, 3, 280–296. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.A.; Perdue, L.A.; Senger, C.A.; Rushkin, M.; Patnode, C.D.; Bean, S.I.; Jonas, D.E. Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 1910–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellickson, P.L. You‘ve shown the program is effective. Now what? In Theory-Based Approaches to Substance Misuse and Abuse Prevention in School; Weichold, K., Giannotta, F., Eds.; Jossey-Bass: San Francisco, CA, USA, 2014; pp. 95–106. [Google Scholar]
- Head, K.J.; Noar, S.M.; Iannarino, N.T.; Grant Harrington, N. Efficacy of text messaging-based interventions for health promotion: A meta-analysis. Soc. Sci. Med. 2013, 97, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ondersma, S.J.; Ellis, J.D.; Resko, S.M.; Grekin, E. Technology-Delivered Interventions for Substance Use Among Adolescents. Pediatr. Clin. North Am. 2019, 66, 1203–1215. [Google Scholar] [CrossRef]
- Champion, K.E.; Parmenter, B.; McGowan, C.; Spring, B.; Wafford, Q.E.; Gardner, L.A.; Thornton, L.; McBride, N.; Barrett, E.L.; Teesson, M.; et al. Effectiveness of school-based eHealth interventions to prevent multiple lifestyle risk behaviours among adolescents: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, E206–E221. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, D.M.; Li, S.Y.; Levine, M.J.; Auten, B.; Granson, M. Systematic Review of Smartphone Apps as a mHealth Intervention to Address Substance Abuse in Adolescents and Adults. J. Addict. Nurs. 2021, 32, 180–187. [Google Scholar] [CrossRef]
- Bernath, J.; Suter, L.; Waller, G.; Külling, C.; Willemse, I.; Süss, D. JAMES: Jugend, Aktivitäten, Medien—Erhebung Schweiz [JAMES: Youth, Activity, Media—Data Switzerland]; Zürcher Hochschule für angewandte Wissenschaften: Zurich, Switzerland, 2020. [Google Scholar]
- Whittaker, R.; McRobbie, H.; Bullen, C.; Rodgers, A.; Gu, Y.; Dobson, R. Mobile phone text messaging and app-based interventions for smoking cessation. Cochrane Database Syst. Rev. 2019, 10, CD006611. [Google Scholar] [CrossRef]
- Bendtsen, M.; McCambridge, J.; Asberg, K.; Bendtsen, P. Text messaging interventions for reducing alcohol consumption among risky drinkers: Systematic review and meta-analysis. Addiction 2021, 116, 1021–1033. [Google Scholar] [CrossRef]
- Haug, S.; Paz Castro, R.; Kowatsch, T.; Filler, A.; Dey, M.; Schaub, M.P. Efficacy of a web- and text messaging-based intervention to reduce problem drinking in adolescents: Results of a cluster-randomized controlled trial. J. Consult. Clin. Psychol. 2017, 85, 147–159. [Google Scholar] [CrossRef]
- Haug, S.; Paz Castro, R.; Meyer, C.; Filler, A.; Kowatsch, T.; Schaub, M.P. A mobile phone-based life-skills training for substance use prevention among adolescents: A pre-post study on the acceptance and potential effectiveness of the program Ready4life. J. Med. Internet Res. Mhealth Uhealth 2017, 5, e143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundesamt für Statistik. Schulbesuchsquoten der 16-26-Jährigen 2018/19 [School Attendance Rates among 16–26 Year Olds in 2018/19]; Bundesamt für Statistik: Neuchâtel, Switzerland, 2020. [Google Scholar]
- Edwards, P.; Cooper, R.; Roberts, I.; Frost, C. Meta-analysis of randomised trials of monetary incentives and response to mailed questionnaires. J. Epidemiol. Community Health 2005, 59, 987–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pocock, S.J. Clinical Trials: A Practical Approach; Wiley & Sons: Chichester, UK, 1994. [Google Scholar]
- Haug, S.; Paz Castro, R.; Wenger, A.; Schaub, M.P. Efficacy of a smartphone-based coaching program for addiction prevention among apprentices: Study protocol of a cluster-randomised controlled trial. BMC Public Health 2020, 20, 1910. [Google Scholar] [CrossRef] [PubMed]
- McAlister, A.L.; Perry, C.L.; Parcel, G.S. How Individuals, Environments, and Health Behaviour Interact: Social Cognitive Theory In Health Behavior and Health Education: Theory, Research, and Practice; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; Jossey-Bass: San Francisco, CA, USA, 2008. [Google Scholar]
- Perkins, H.W. The Social Norms Approach to Preventing School and College Age Substance Abuse: A Handbook for Educators, Counselors, and Clinicians., 1st ed.; Jossey-Bass: San Francisco, CA, USA, 2003. [Google Scholar]
- Miller, W.R.; Rollnick, S. Motivational Interviewing: Helping People Change, 3rd ed.; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Eidgenössische Kommission für Alkoholfragen EKAL. Orientierungshilfe zum Alkoholkonsum (Orientation Guide to Alcohol Consumption); Eidgenössische Kommission für Alkoholfragen: Bern, Switzerland, 2018. [Google Scholar]
- Hughes, J.R.; Keely, J.P.; Niaura, R.S.; Ossip-Klein, D.J.; Richmond, R.L.; Swan, G.E. Measures of abstinence in clinical trials: Issues and recommendations. Nicotine Tob. Res. 2003, 5, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Besser, B.; Rumpf, H.J.; Bischof, A.; Meerkerk, G.J.; Higuchi, S.; Bischof, G. Internet-Related Disorders: Development of the Short Compulsive Internet Use Scale. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 709–717. [Google Scholar] [CrossRef]
- Beierlein, C.; Kovaleva, A.; Kemper, C.J.; Rammstedt, B. Ein Messinstrument zur Erfasssung Subjektiver Kompetenzerwartungen. Allgemeine Selbstwirksamkeit Kurzskala (ASKU) [A Short Scale for Measuring General Self-efficacy Beliefs (ASKU)]; GESIS: Köln, Germany, 2012. [Google Scholar]
- Elo, A.L.; Leppanen, A.; Jahkola, A. Validity of a single-item measure of stress symptoms. Scand J. Work Environ. Health 2003, 29, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Laird, N.M.; Ware, J.H. Random-effects models for longitudinal data. Biometrics 1982, 38, 963–974. [Google Scholar] [CrossRef]
- Twisk, J.W. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide; University Press: Cambridge, UK, 2013. [Google Scholar]
- Austin, P.C.; Merlo, J. Intermediate and advanced topics in multilevel logistic regression analysis. Stat. Med. 2017, 36, 3257–3277. [Google Scholar] [CrossRef] [Green Version]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Morris, S.B. Estimating effect sizes from pretest-posttest-control group designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Thornton, L.; Brown, H.M.; Osman, B.; Stewart, C.; Whife, J.; Champion, K.E.; Gardner, L.A.; McBride, N.; Allsop, S.; Spring, B.; et al. Factors associated with adolescents’ engagement with a healthy lifestyles app. Procedia Comput. Sci. 2022, 206, 56–67. [Google Scholar] [CrossRef]
- Haug, S.; Schaub, M.P.; Venzin, V.; Meyer, C.; John, U.; Gmel, G. A pre-post study on the appropriateness and effectiveness of a web- and text messaging-based intervention to reduce problem drinking in emerging adults. J. Med. Internet Res. 2013, 15, e196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, S.; Schaub, M.P.; Venzin, V.; Meyer, C.; John, U. Efficacy of a text message-based smoking cessation intervention for young people: A cluster randomized controlled trial. J. Med. Internet Res. 2013, 15, e171. [Google Scholar] [CrossRef] [Green Version]
- Haug, S.; Paz Castro, R.; Kowatsch, T.; Filler, A.; Schaub, M.P. Efficacy of a technology-based, integrated smoking cessation and alcohol intervention for smoking cessation in adolescents: Results of a cluster-randomised controlled trial. J. Subst. Abus. Treat. 2017, 82, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Haug, S.; Paz Castro, R.; Filler, A.; Kowatsch, T.; Fleisch, E.; Schaub, M.P. Efficacy of an internet and SMS-based integrated smoking cessation and alcohol intervention for smoking cessation in young people: Study protocol of a two-arm cluster randomised controlled trial. BMC Public Health 2014, 14, 1140. [Google Scholar] [CrossRef] [Green Version]
- Haug, S.; Bitter, G.; Hanke, M.; Ulbricht, S.; Meyer, C.; John, U. Brief Text Messaging (SMS)-Delivered Smoking Cessation Intervention for Apprentices in Vocational Schools: A Longitudinal Intervention Study for Process and Outcome Evaluation. Gesundheitswesen 2013, 75, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Garrido, S.; Millington, C.; Cheers, D.; Boydell, K.; Schubert, E.; Meade, T.; Nguyen, Q.V. What Works and What Doesn’t Work? A Systematic Review of Digital Mental Health Interventions for Depression and Anxiety in Young People. Front. Psychiatry 2019, 10, 759. [Google Scholar] [CrossRef]
- MacDougall, S.; Jerrott, S.; Clark, S.; Campbell, L.A.; Murphy, A.; Wozney, L. Text Message Interventions in Adolescent Mental Health and Addiction Services: Scoping Review. JMIR Ment. Health 2021, 8, e16508. [Google Scholar] [CrossRef]
- Jakob, R.; Harperink, S.; Rudolf, A.M.; Fleisch, E.; Haug, S.; Mair, J.L.; Salamanca-Sanabria, A.; Kowatsch, T. Factors Influencing Adherence to mHealth Apps for Prevention or Management of Noncommunicable Diseases: Systematic Review. J. Med. Internet Res. 2022, 24, e35371. [Google Scholar] [CrossRef]
- Kazemi, D.M.; Borsari, B.; Levine, M.J.; Li, S.; Lamberson, K.A.; Matta, L.A. A Systematic Review of the mHealth Interventions to Prevent Alcohol and Substance Abuse. J. Health Commun. 2017, 22, 413–432. [Google Scholar] [CrossRef] [PubMed]
Variable | Intervention n = 688 | Control n = 663 | Total n = 1351 | pa |
---|---|---|---|---|
Sex | 0.21 b | |||
Male | 401 (58.3%) | 363 (54.8%) | 764 (56.6%) | |
Female | 287 (41.7%) | 300 (45.2%) | 587 (43.4%) | |
Age, M (SD) | 17.3 (2.7) | 17.4 (3.2) | 17.3 (3.0) | 0.27 c |
Composite measure of risk behaviors, M (SD) | 1.5 (1.2) | 1.5 (1.2) | 1.5 (1.2) | 0.74 b |
0 risks | 176 (25.6%) | 155 (23.4%) | 331 (24.5%) | |
1 risk | 226 (32.8%) | 235 (35.4%) | 461 (34.1%) | |
2 risks | 135 (19.6%) | 138 (20.8%) | 273 (20.2%) | |
3 risks | 101 (14.7%) | 89 (13.4%) | 190 (14.1%) | |
4 risks | 50 (7.3%) | 46 (6.9%) | 96 (7.1%) | |
At risk-drinking in the preceding 30 days | 0.12 b | |||
No | 475 (69.0%) | 430 (64.9%) | 905 (67.0%) | |
Yes | 213 (31.0%) | 233 (35.1%) | 446 (33.0%) | |
Total number of alcoholic drinks consumed in the preceding 30 days, M (SD) | 14.8 (34.5) | 15.1 (33.0) | 14.9 (33.7) | 0.86 c |
Tobacco/e-cigarette smoking, preceding 30 days | 0.59 b | |||
No | 393 (57.1%) | 368 (55.5%) | 761 (58.3%) | |
Yes | 252 (36.6%) | 246 (37.1%) | 498 (36.9%) | |
Quantity of cigarettes smoked, preceding 30 days, M (SD) | 89.9 (199.9) | 78.0 (176.0) | 84.1 (188.5) | 0.25 c |
Cannabis use, preceding 30 days | 0.19 b | |||
No | 521 (75.7%) | 523 (78.9%) | 1044 (77.3%) | |
Yes | 167 (24.3%) | 140 (21.1%) | 307 (22.7%) | |
Cannabis use days, preceding 30 days, M (SD) | 2.5 (6.9) | 2.1 (6.2) | 2.3 (6.6) | 0.27 c |
Problematic Internet use (CIUS-5) d | 0.59 b | |||
No | 321 (46.7%) | 320 (48.3%) | 641 (47.4%) | |
Yes | 367 (53.3%) | 343 (51.7%) | 710 (52.6%) | |
CIUS-5 score, range 0–20, M (SD) | 8.9 (4.2) | 9.0 (4.0) | 8.9 (4.1) | 0.90 c |
General self-efficacy, range 1–5, M (SD) | 3.7 (0.7) | 3.8 (0.7) | 3.7 (0.7) | 0.46 c |
Self-perceived stress, range 1–5, M (SD) | 3.1 (1.1) | 3.2 (1.1) | 3.2 (1.1) | 0.12 c |
Intervention Group | Control Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | Diff.% | Baseline | Follow-Up | Diff.% | Coeff | p | OR | 95% CI | |
Complete-cases analysis a | n = 440 | n = 440 | n = 509 | n = 509 | ||||||
At-risk drinking past 30 days | 140 (31.8%) | 83 (18.9%) | −12.9 | 176 (34.6) | 139 (27.3%) | −7.3 | −0.51 | <0.01 | 0.60 | 0.43; 0.84 |
Tobacco/e-cigarette use past 30 days | 153 (34.8%) | 119 (27.0%) | −7.8 | 178 (35.0%) | 166 (32.6%) | −2.4 | −0.48 | 0.03 | 0.62 | 0.40; 0.96 |
Cannabis use past 30 days | 98 (22.3%) | 82 (18.6%) | −3.7 | 99 (19.4%) | 82 (16.1%) | −3.3 | 0.10 | 0.63 | 1.11 | 0.73; 1.70 |
Problematic Internet use | 237 (53.9%) | 144 (32.7%) | 20.7 | 265 (52.1%) | 219 (43.0%) | −9.1 | −0.58 | <0.01 | 0.56 | 0.40; 0.79 |
Intention-to-treat analysis a | n = 688 | n = 688 | n = 663 | n = 663 | ||||||
At-risk drinking past 30 days | 213 (31.0%) | 138 (20.1%) | −10.9 | 233 (35.1%) | 182 (27.5%) | −7.6 | −0.38 | <0.01 | 0.68 | 0.52; 0.89 |
Tobacco/e-cigarette use past 30 days | 252 (36.6) | 179 (26.0%) | −10.6 | 246 (37.1%) | 209 (31.5%) | −5.6 | −0.30 | 0.06 | 0.74 | 0.55; 1.01 |
Cannabis use past 30 days | 167 (24.3%) | 128 (18.6%) | −5.7 | 140 (21.1%) | 99 (14.9%) | −6.2 | 0.26 | 0.16 | 1.29 | 0.90; 1.85 |
Problematic Internet use | 367 (53.3%) | 222 (32.3%) | −21.0 | 343 (51.7%) | 280 (42.2%) | −9.5 | −0.49 | <0.01 | 0.61 | 0.46; 0.81 |
Intervention Group | Control Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Follow-up | Diff. | Baseline | Follow-up | Diff. | Coeff | p | da | |
Complete-cases analysis b | n = 440 | n = 440 | n = 509 | n = 509 | |||||
Quantity of alcohol use past 30 days, M (SD) | 14.5 (31.8) | 7.0 (15.7) | −7.5 | 13.9 (31.2) | 9.8 (17.4) | −4.1 | −2.81 | 0.01 | 0.11 |
Quantity of cigarettes smoked past 30 days, M (SD) | 81.4 (195.5) | 55.3 (155.4) | −26.1 | 71.7 (167.8) | 57.9 (148.7) | −13.8 | −8.58 | 0.20 | 0.07 |
Cannabis smoking days past 30 days, M (SD) | 2.5 (7.0) | 1.5 (5.3) | −1.0 | 1.8 (5.7) | 1.7 (6.1) | −0.1 | −0.61 | 0.03 | 0.14 |
Perceived stress past 30 days, M (SD) | 3.1 (1.1) | 2.7 (1.1) | −0.4 | 3.2 (1.1) | 3.0 (1.1) | −0.2 | −0.26 | <0.01 | 0.18 |
General self-efficacy, M (SD) | 3.7 (0.7) | 3.8 (0.7) | −0.1 | 3.8 (0.7) | 3.7 (0.7) | −0.1 | 0.07 | 0.16 | −0.29 |
Problematic Internet use, M (SD) | 8.9 (4.2) | 6.8 (4.1) | −2.1 | 8.9 (3.9) | 7.8 (4.0) | −1.1 | −1.03 | <0.01 | 0.25 |
Intention-to-treat-analysis b | n = 688 | n = 688 | n = 663 | n = 663 | |||||
Quantity of alcohol use past 30 days, M (SD) | 14.8 (34.5) | 6.8 (15.3) | −8.0 | 15.1 (33.0) | 9.5 (16.9) | −5.6 | −2.66 | <0.01 | 0.07 |
Quantity of cigarettes smoked past 30 days, M (SD) | 89.9 (199.9) | 54.2 (155.4) | −35.7 | 78.0 (176.0) | 55.5 (144.9) | −22.5 | −6.0 | 0.40 | 0.07 |
Cannabis use days past 30 days, M (SD) | 2.5 (6.8) | 1.7 (5.7) | −0.8 | 2.1 (6.3) | 1.7 (6.0) | −0.4 | −0.07 | 0.81 | 0.06 |
Perceived stress past 30 days, M (SD) | 3.1 (1.1) | 2.7 (1.1) | −0.4 | 3.2 (1.1) | 3.1 (1.1) | −0.1 | −0.28 | <0.01 | 0.27 |
General self-efficacy, M (SD) | 3.7 (0.7) | 3.8 (0.8) | 0.1 | 3.8 (0.7) | 3.8 (0.7) | 0 | 0.05 | 0.24 | −0.14 |
Problematic Internet use, M (SD) | 8.9 (4.2) | 6.8 (4.0) | −2.1 | 9.0 (4.0) | 8.0 (4.0) | −1 | −1.20 | <0.01 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haug, S.; Boumparis, N.; Wenger, A.; Schaub, M.P.; Paz Castro, R. Efficacy of a Mobile App-Based Coaching Program for Addiction Prevention among Apprentices: A Cluster-Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 15730. https://doi.org/10.3390/ijerph192315730
Haug S, Boumparis N, Wenger A, Schaub MP, Paz Castro R. Efficacy of a Mobile App-Based Coaching Program for Addiction Prevention among Apprentices: A Cluster-Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(23):15730. https://doi.org/10.3390/ijerph192315730
Chicago/Turabian StyleHaug, Severin, Nikolaos Boumparis, Andreas Wenger, Michael Patrick Schaub, and Raquel Paz Castro. 2022. "Efficacy of a Mobile App-Based Coaching Program for Addiction Prevention among Apprentices: A Cluster-Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 23: 15730. https://doi.org/10.3390/ijerph192315730
APA StyleHaug, S., Boumparis, N., Wenger, A., Schaub, M. P., & Paz Castro, R. (2022). Efficacy of a Mobile App-Based Coaching Program for Addiction Prevention among Apprentices: A Cluster-Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(23), 15730. https://doi.org/10.3390/ijerph192315730