Preventive Effectiveness of Thoracic Side Airbags in Side-Impact Crashes Based on Korea In-Depth Accident Study (KIDAS) Database
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Population
2.3. Crash Characteristics
2.4. Binary Injury Severity Classification
2.5. Evaluation of Preventive Effectiveness
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Subit, D.; Duprey, S.; Lau, S.; Guillemot, H.; Lessley, D.; Kent, R. Response of the human torso to lateral and oblique constant-velocity impacts. Ann. Adv. Automot. Med. 2010, 54, 27–40. [Google Scholar] [PubMed]
- IIHS Fatality Facts 2020 Passenger Vehicle Occupants. Available online: https://www.iihs.org/topics/fatality-statistics/detail/passenger-vehicle-occupants (accessed on 1 January 2020).
- Laberge-Nadeau, C.; Bellavance, F.; Messier, S.; Vézina, L.; Pichette, F. Occupant injury severity from lateral collisions: A literature review. J. Saf. Res. 2009, 40, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Welsh, R.; Lenguerrand, E.; Vallet, G.; Otte, D.; Straandroth, J. Priorities for Enhanced Side Impact Protection in Regulation 95 Compliant Cars; National Highway Traffic Safety Administration: Washington DC, USA, 2009.
- Zhang, X.; Yao, H.; Hu, G.; Cui, M.; Gu, Y.; Xiang, H. Basic characteristics of road traffic deaths in China. Iran. J. Public Health 2013, 42, 7–15. [Google Scholar] [PubMed]
- Szumska, E.; Frej, D.; Grabski, P. Analysis of the causes of vehicle accidents in Poland in 2009–2019. LOGI Sci. J. Transp. Logist. 2020, 11, 76–87. [Google Scholar] [CrossRef]
- Bédard, M.; Guyatt, G.H.; Stones, M.J.; Hirdes, J.P. The independent contribution of driver, crash, and vehicle characteristics to driver fatalities. Accid. Anal. Prev. 2002, 34, 717–727. [Google Scholar] [CrossRef]
- Lidbe, A.; Penmetsa, P.; Wang, T.; Kofi Adanu, E.K.; Nambisan, S. Do NHSTA vehicle safety ratings affect side impact crash outcomes? J. Saf. Res. 2020, 73, 1–7. [Google Scholar] [CrossRef]
- Viano, D.C. Estimates of fatal chest and abdominal injury prevention in side-impact crashes. J. Saf. Res. 1989, 20, 145–152. [Google Scholar] [CrossRef]
- Koppel, S.; Charlton, J.; Fildes, B.; Fitzharris, M. How important is vehicle safety in the new vehicle purchase process? Accid. Anal. Prev. 2008, 40, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Stadter, G.; Grabowski, J.G.; Burke, C.; Aldaghlas, T.A.; Robinson, L.; Fakhry, S.M. Injury and side impact air bag deployment in near and far sided motor vehicle crashes, united states, 2000–2005. J. Trauma 2008, 65, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.; Skötte, L.; Svensson, S. Air bag system for side impact protection. In Proceedings of the 12th International Technical Conference on Experimental Safety Vehicles (ESV), Göteborg, Sweden, 29 May–1 June 1989; pp. 976–983. [Google Scholar]
- Yoganandan, N.; Pintar, F.A.; Gennarelli, T.A. Evaluation of Side Impact Injuries in Vehicles Equipped with Side Airbags International Research Council on Biokinetics of Impacts. Available online: http://www.ircobi.org/wordpress/downloads/irc0111/2005/Session2/23.pdf (accessed on 1 September 2005).
- Gaylor, L.; Junge, M. Assessment of the efficacy of vehicle side airbags: A matched cohort study of vehicle-vehicle side collisions using the gidas database. In Proceedings of the IRCOBI Conference, Lyon, France, 9–11 September 2015; pp. 9–11. [Google Scholar]
- Hassan, A.; Morris, A.; Mackay, M.; Haland, Y. Injury severity in side impacts-implications for side impact airbag. In Proceedings of the IRCOBI Conference, Brunnen, Switzerland, 13–15 September 1995. [Google Scholar]
- Yoganandan, N.; Pintar, F.A.; Zhang, J.; Gennarelli, T.A. Lateral impact injuries with side airbag deployments - A descriptive study. Accid. Anal. Prev. 2007, 39, 22–27. [Google Scholar] [CrossRef]
- Page, Y.; Thomas, P.; Kirk, A.; Hervé, V. The Effectiveness of Side Airbags in Preventing Thoracic Injuries in Europe. Available online: https://opus4.hbz-nrw.de/opus45-bast/frontdoor/deliver/index/docId/450/file/The_Effectiveness_of_Side_Airbags.pdf (accessed on 1 November 2022).
- Braver, E.R.; Kyrychenko, S.Y. Efficacy of side air bags in reducing driver deaths in driver-side collisions. Am. J. Epidemiol. 2004, 159, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccartt, A.T.; Kyrychenko, S.Y. Efficacy of side airbags in reducing driver deaths in driver-side car and suv collisions. Traffic Inj. Prev. 2007, 8, 162–170. [Google Scholar] [CrossRef]
- Mcgwin, G., Jr.; Metzger, J.; Rue, L.W., 3rd. The influence of side airbags on the risk of head and thoracic injury after motor vehicle collisions. J. Trauma. 2004, 56, 512–516; discussion 516–517. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.; Huisingh, C.; Mcgwin, G.; Reiff, D. Association between side-impact airbag deployment and risk of injury: A matched cohort study using the ciren and the nass-cds. J. Trauma Acute Care Surg. 2012, 73, 914–918. [Google Scholar] [CrossRef]
- Gaylor, L.; Junge, M.; Abanteriba, S. Efficacy of seat-mounted thoracic side airbags in the German vehicle fleet. Traffic Inj. Prev. 2017, 18, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, D. Collision Deformation Classification Training Program: Intermediate Level-Training/Reference Module. Available online: https://trid.trb.org/view/177200 (accessed on 28 May 1982).
- Gennarelli, T.A.; Wodzin, E. Abbreviated Injury Scale 2005 Update 2008. Available online: https://www.nazl.nl/sites/nazl/files/2021-06/AIS0508_codeboek.pdf (accessed on 1 June 2021).
- Morris, A.P.; Hassan, A.M.; Mackay, M. Chest injuries in real-world side impact crashes: An overview. In Proceedings of the International Research Council on the Biomechanics of Injury Conference, Hanover, Germany, 24–26 September 1997; pp. 165–178. [Google Scholar]
- D’Elia, A.; Newstead, S.; Scully, J. Evaluation of vehicle side airbag effectiveness in Victoria, Australia. Accid. Anal. Prev. 2013, 54, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Loftis, K.L.; Weaver, A.A.; Stitzel, J.D. Investigating the effects of side airbag deployment in real-world crashes using crash comparison techniques. Ann. Adv. Automot. Med. 2011, 55, 81–90. [Google Scholar] [PubMed]
- Sunnevång, C.; Sui, B.; Lindkvist, M.; Krafft, M. Census study of real-life near-side crashes with modern side airbag-equipped vehicles in the United States. Traffic Inj. Prev. 2015, 16 (Suppl. 1), S117–S124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lestina, D.; Gloyns, P.; Rattenbury, S. Fatally Injured Occupants in Side Impact Crashes. In Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles, Paris, France, 4–7 November 1993; pp. 701–707. [Google Scholar]
- Fildes, B.N.; Lane, J.C.; Lenard, J.; Vulcan, A. Passenger Cars and Occupant Injury: Side Impact Crashes. Available online: https://www.monash.edu/__data/assets/pdf_file/0017/217412/atsb134.pdf (accessed on 1 April 1994).
- Frampton, R.J.; Brown, R.; Thomas, P.; Fay, P. The importance of non-struck side occupants in side collisions. 42nd. Annu. Proc. Assoc. Adv. Automot. Med. 1998, 42, 303–320. [Google Scholar]
- Digges, K.; Dalmotas, D. Injuries to Restrained Occupants in Far-Side Crashes; SAE Technical Paper. Available online: http://www.autosafetyresearch.org/ASRI%20Finals/ESV%20FAR%20Side%20Final.pdf (accessed on 31 December 2000).
- Ryb, G.E.; Dischinger, P.C.; Braver, E.R.; Burch, C.A.; Ho, S.M.; Kufera, J.A. Expected differences and unexpected commonalities in mortality, injury severity, and injury patterns between near versus far occupants of side impact crashes. J. Trauma. 2009, 66, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.D.; Lewis, R.J.; Kraus, J.F.; Mcconnell, K.J. Seat position and the risk of serious thoracoabdominal injury in lateral motor vehicle crashes. Accid. Anal. Prev. 2005, 37, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Chudnovsky, Y.; Stocks-Smith, J.; Padmanaban, J.; Marsh, J. Belted Driver Injury in Near-Side and Far-Side Impacts, Past and Present. In Proceedings of the SAE 2016 World Congress and Exhibition, Detroit, MI, USA, 12–14 April 2016. [Google Scholar] [CrossRef]
- Hostetler, Z.S.; Hsu, F.C.; Barnard, R.; Jones, D.A.; Davis, M.L.; Weaver, A.A.; Gayzik, F.S. Injury risk curves in far-side lateral motor vehicle crashes by ais level, body region and injury code. Traffic Inj. Prev. 2020, 21 (Suppl. 1), S112–S117. [Google Scholar] [CrossRef] [PubMed]
- Walz, F.; Niederer, P.; Zollinger, U.; Renfer, A. Belted Occupants in Oblique and Side Impacts. In Proceedings of the 3rd International Conference on Impact Trauma, Berlin, Germany, 7–9 September 1977; pp. 194–205. [Google Scholar]
- Thomas, P.; Lanson, S.; Griffiths, D.; Breen, J. An investigation of a representative sample of real world side impacts to cars; EEC Biomechanics Program, Final Report of Contact TRRL/EEC UK; Transport Research Laboratory: Crowthorne, UK, 1981; Volume 73. [Google Scholar]
- Reidelbach, W.; Zeidler, F. What is a realistic lateral impact test? SAE Tech. Pap. 1983, 830460. [Google Scholar] [CrossRef]
- Thomas, C.; Faverjon, G.; Henry, C.; Lecoz, J.Y.; Got, C.; Patel, A. The problem of compatibility in car-to-car collisions. In Proceedings of the 34th Annual Conference of the American Association of Automotive Medicine; Association for the Advancement of Automotive Medicine: Phoenix, AZ, USA, 1990; pp. 253–267. [Google Scholar]
- Higuchi, K. Analysis of side impact airbag performance in nass cds. Int. J. Automot. Eng. 2021, 12, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.; Shaibani, S. A comparison of injury severity and crash severity distributions and their application to standards for occupant protection. In Proceedings of the 7th IRCOBI, Cologne, Germany, 8–10 September 1982; p. 34. [Google Scholar]
- Hallman, J.J.; Yoganandan, N.; Pintar, F.A. Torso side airbag out-of-position evaluation using stationary and dynamic occupants. Biomed. Sci. Instrum. 2008, 44, 123–128. [Google Scholar] [PubMed]
- Brumbelow, M.L.; Mueller, B.C.; Arbelaez, R.A. Occurrence of serious injury in real-world side impacts of vehicles with good side-impact protection ratings. Traffic Inj. Prev. 2015, 16 (Suppl. 1), S125–S132. [Google Scholar] [CrossRef]
- Cummins, J.S.; Koval, K.J.; Cantu, R.V.; Spratt, K.F. Risk of injury associated with the use of seat belts and air bags in motor vehicle crashes. Bull. NYU Hosp. Jt. Dis. 2008, 66, 290–296. [Google Scholar] [PubMed]
- Mcgwin, G.; Modjarrad, K.; Duma, S.; Rue, L.W. Association between upper extremity injuries and side airbag availability. J. Trauma 2008, 64, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 490) | tSAB Deployed (n = 40) | tSAB Undeployed (n = 450) | p-Value |
---|---|---|---|---|
Sex, n (%) | ||||
Male | 301 (61.4) | 24 (60.0) | 277 (61.6) | |
Female | 189 (38.6) | 16 (40.0) | 173 (38.4) | 0.846 |
Age (mean±S.D.) | 44.3 ± 16.3 | 40.1 ± 14.8 | 44.7 ± 16.4 | 0.084 |
Seat position, n (%) | ||||
Driver | 314 (64.1) | 29 (72.5) | 285 (63.3) | |
Passenger | 96 (19.6) | 9 (22.5) | 87 (19.3) | |
2nd-row left passenger | 35 (7.1) | 1 (2.5) | 34 (7.6) | |
2nd-row right passenger | 45 (9.2) | 1 (2.5) | 44 (9.8) | 0.297 |
Seat belt, n (%) | n = 468 | n = 40 | n = 428 | |
Fastened | 319 (65.1) | 35 (87.5) | 284 (66.4) | |
Unfastened | 149 (30.4) | 5(12.5) | 144 (33.3) | 0.006 |
Vehicle type, n (%) | ||||
Sedan | 343 (70.0) | 32 (80.0) | 311 (69.1) | |
SUV | 105 (21.4) | 7 (17.5) | 98 (21.8) | |
Van | 42 (8.6) | 1 (2.5) | 41 (9.1) | 0.245 |
Product year, n (%) | n = 297 | n = 27 | n = 270 | |
1996–1999 | 12 (4.0) | 0 (0.0) | 12 (4.4) | |
2000–2004 | 59 (19.9) | 0 (0.0) | 59 (21.9) | |
2005–2009 | 101 (34.0) | 2 (7.4) | 99 (36.7) | |
2010–2014 | 95 (32.0) | 16 (59.3) | 79 (29.3) | |
2015+ | 30 (10.1) | 9 (33.3) | 21 (7.8) | <0.001 |
Collide partner, n (%) | n = 418 | n = 39 | n = 379 | |
Movable | 354 (84.7) | 32 (82.1) | 322 (85.0) | |
Fixed | 64 (15.3) | 7 (17.9) | 57 (15.0) | 0.631 |
PDOF | ||||
Perpendicular | 203 (41.4) | 20 (50.0) | 183 (40.7) | |
Oblique | 287 (58.6) | 20 (50.0) | 267 (59.3) | 0.251 |
Impact direction, n (%) | ||||
Near-side impact | 256 (52.2) | 29 (72.5) | 227 (50.4) | |
Far-side impact | 234 (47.8) | 11 (27.5) | 223 (49.6) | 0.007 |
Crush extent, n (%) | ||||
CE1 (1–2) | 260 (53.1) | 19 (47.5) | 241 (53.6) | |
CE2 (3–4) | 213 (43.5) | 17 (42.5) | 196 (43.6) | |
CE3 (5–6) | 11 (2.2) | 3 (7.5) | 8 (1.8) | |
CE4 (7–9) | 6 (1.2) | 1 (2.5) | 5 (1.1) | 0.087 |
AIS2, n (%) | ||||
AIS<2 | 366 (74.7) | 25 (62.5) | 341 (75.8) | |
AIS≥2 | 124 (25.3) | 15 (37.5) | 109 (24.2) | 0.086 |
MAIS, median (IQR) | 2 (1–3) | 2 (1–3) | 2 (1–3) | 0.712 |
ISS, median (IQR) | 5 (2–0) | 5 (2–10) | 4 (2–9) | 0.931 |
Variables | Unadjusted ORs (95% CI) | p-Value | Adjusted ORs (95% CI) | p-Value |
---|---|---|---|---|
a. Overall side impacts | ||||
Age group (elderly) | 1.76 (0.99–3.13) | 0.055 | 2.96 (1.33–6.73) | 0.008 |
Seat belt (fastened) | 0.84 (0.54–1.30) | 0.431 | 0.64 (0.34–1.20) | 0.163 |
tSAB (deployed) | 1.88 (0.96–3.69) | 0.068 | 1.65 (0.73–3.73) | 0.231 |
Seat position (driver) | 1.40 (0.85–2.33) | 0.190 | 1.32 (0.69–2.51) | 0.400 |
Side impact (near) | 2.88 (1.86–4.47) | < 0.001 | 4.30 (2.33–7.94) | < 0.001 |
Collide partner (fixed) | 2.88 (1.66–4.99) | < 0.001 | 2.57 (1.26–5.26) | 0.010 |
Impact direction (oblique) | 0.44 (0.29–0.67) | < 0.001 | 0.43 (0.25–0.76) | 0.004 |
Crush extent (CE2+) | 3.86 (2.48–5.99) | < 0.001 | 4.85 (2.69–8.74) | < 0.001 |
b. Near-side impact | ||||
Age group (elderly) | 1.54 (0.71–3.34)) | 0.274 | 3.41 (1.12–10.36) | 0.030 |
Seat belt (fastened) | 0.93 (0.53–1.62) | 0.787 | 0.53 (0.23–1.19) | 0.124 |
tSAB (deployed) | 1.65 (0.75–3.60) | 0.211 | 1.70 (0.67–4.31) | 0.265 |
Seat position (driver) | 0.91 (0.49–1.72) | 0.781 | 0.77 (0.35–11.71) | 0.525 |
Collide partner (fixed) | 3.13 (1.54–6.37) | 0.002 | 2.95 (1.24–7.02) | 0.015 |
Impact direction (oblique) | 0.46 (0.27–0.78) | 0.004 | 0.42 (0.26–0.84) | 0.014 |
Crush extent (CE2+) | 3.96 (2.29–6.86) | < 0.001 | 4.58 (2.27–9.21) | <0.001 |
c. Far-side impacts | ||||
Age group (elderly) | 2.41 (0.97–5.97) | 0.057 | 3.56 (0.99–12.75) | 0.051 |
Seat belt (fastened) | 0.70 (0.33–1.49) | 0.352 | 0.71 (0.24–2.07) | 0.527 |
tSAB (deployed) | 1.24 (0.26–5.97) | 0.793 | 2.25 (0.38–13.16) | 0.370 |
Seat position (driver) | 2.57 (1.05–6.34) | 0.040 | 4.27 (1.36–13.47) | 0.013 |
Collide partner (fixed) | 2.20 (0.84–5.79) | 0.110 | 1.74 (0.43–7.08) | 0.441 |
Impact direction (oblique) | 0.37 (0.18–0.77) | 0.008 | 0.45 (0.16–1.23) | 0.119 |
Crush extent (CE2+) | 4.85 (2.10–11.18) | < 0.001 | 6.15 (1.87–20.25) | 0.003 |
Variables | Total (n = 490) | tSAB Deployed (n = 40) | tSAB Undeployed (n = 450) | p-Value |
---|---|---|---|---|
Diaphragm laceration/rupture | ||||
Yes | 4 (0.8) | 0 (0.0) | 4 (0.9) | |
No | 486 (99.2) | 40 (100.0) | 446 (99.1) | 1.000 |
Lung contusion/laceration | ||||
Yes | 47 (9.6) | 8 (20.0) | 39 (8.7) | |
No | 443 (90.4) | 32 (80.0) | 411 (91.3) | 0.020 |
Hemo-/Pneumothorax | ||||
Yes | 59 (12.0) | 8 (20.0) | 51 (11.3) | |
No | 431 (88.0) | 32 (80.0) | 399 (88.7) | 0.107 |
Rib fracture | ||||
Yes | 99 (20.2) | 14 (35.0) | 85 (18.9) | |
No | 391 (79.8) | 26 (65.0) | 365 (81.1) | 0.015 |
Sternum fracture | ||||
Yes | 8 (1.6) | 2 (5.0) | 6 (1.3) | |
No | 482 (98.4) | 38 (95.0) | 444 (98.7) | 0.133 |
Variables | Adjusted ORs (95% CI) | p-Value | Adjusted ORs (95% CI) | p-Value |
---|---|---|---|---|
a. Lung Contusion/Laceration | b. Rib Fractures | |||
Age group (elderly) | 2.22 (0.86–5.71) | 0.100 | 1.54 (0.63–3.74) | 0.334 |
Seat belt (fastened) | 0.90 (0.40–2.06) | 0.809 | 0.74 (0.37–1.49) | 0.396 |
tSABs (deployed) | 2.35 (0.92–6.03) | 0.075 | 1.99 (0.85–4.67) | 0.115 |
Side impact (near-side) | 1.86 (0.86–4.01) | 0.114 | 2.97 (1.51–5.85) | 0.002 |
Seat position (driver) | 1.40 (0.63–3.10) | 0.408 | 1.12 (0.55–2.28) | 0.753 |
Collide partner (fixed) | 1.42 (0.57–3.51) | 0.451 | 1.17 (0.52–2.60) | 0.707 |
Impact direction (oblique) | 0.62 (0.30–1.28) | 0.194 | 0.46 (0.25–0.86) | 0.015 |
Crush extent (CE2+) | 3.50 (1.56–7.85) | 0.002 | 5.07 (2.50–10.28) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.S.; Lee, K.H.; Kang, C.Y.; Choi, D.; Kim, O.H. Preventive Effectiveness of Thoracic Side Airbags in Side-Impact Crashes Based on Korea In-Depth Accident Study (KIDAS) Database. Int. J. Environ. Res. Public Health 2022, 19, 15757. https://doi.org/10.3390/ijerph192315757
Kong JS, Lee KH, Kang CY, Choi D, Kim OH. Preventive Effectiveness of Thoracic Side Airbags in Side-Impact Crashes Based on Korea In-Depth Accident Study (KIDAS) Database. International Journal of Environmental Research and Public Health. 2022; 19(23):15757. https://doi.org/10.3390/ijerph192315757
Chicago/Turabian StyleKong, Joon Seok, Kang Hyun Lee, Chan Young Kang, Dooruh Choi, and Oh Hyun Kim. 2022. "Preventive Effectiveness of Thoracic Side Airbags in Side-Impact Crashes Based on Korea In-Depth Accident Study (KIDAS) Database" International Journal of Environmental Research and Public Health 19, no. 23: 15757. https://doi.org/10.3390/ijerph192315757
APA StyleKong, J. S., Lee, K. H., Kang, C. Y., Choi, D., & Kim, O. H. (2022). Preventive Effectiveness of Thoracic Side Airbags in Side-Impact Crashes Based on Korea In-Depth Accident Study (KIDAS) Database. International Journal of Environmental Research and Public Health, 19(23), 15757. https://doi.org/10.3390/ijerph192315757