Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption—A Narrative Review
Abstract
:1. Introduction
2. Definition of Mercury (Hg) and Its Forms in Nature and Fish Bodies
3. Bio-Accumulation, Species-Specific and Geographical Differences in Mercury (Hg) in Fish
3.1. Bio-Accumulation of Hg in Fish through Food Chains
3.2. Species-Specific Difference in Hg in Fish
3.3. Geographical Differences in Hg in Fish
4. Toxic Effects of Mercury (Hg)-Contaminated Fish on Pregnant Women and Fetuses
4.1. Background of the Toxic Effects of Hg Contamination in Fish on Fish and Humans
4.2. Toxic Effects of Hg Contamination in Fish on Pregnant Women and Fetuses
4.3. Interactive Toxic Effects of Hg Contamination in Fish on Pregnant Women and Fetuses
5. Recommended Fish Diet for Pregnant Women Based on Toxic Effects of Hg Contamination in Fish
6. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, A.; Zahid, A.; Latif, A.; Amir, R.M.; Suleria, H.A.R. Marine foods: Nutritional significance and their industrial applications. In Technological Processes for Marine Foods, From Water to Fork; Goyal, M.R., Suleria, H.A.R., Kirubanandan, S., Eds.; Apple Academic Press: New York, NY, USA, 2019; pp. 289–306. [Google Scholar]
- Pyz-Łukasik, R.; Chałabis-Mazurek, A.; Gondek, M. Basic and functional nutrients in the muscles of fish: A review. Int. J. Food. Prop. 2020, 23, 1941–1950. [Google Scholar] [CrossRef]
- Mendivil, C.O. Dietary fish, fish nutrients, and immune function: A review. Front. Nutr. 2021, 7, 617652. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, C.O. Fish consumption: A review of its effects on metabolic and hormonal health. Nutr. Metab. Insights 2021, 14, 1–6. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomingdale, A.; Guthrie, L.B.; Price, S.; Wright, R.O.; Platek, D.; Haines, J.; Oken, E. A qualitative study of fish consumption during pregnancy. Am. J. Clin. Nutr. 2010, 92, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, H.; Yigiterhan, O.; Al-Ansari, E.M.; Al-Ashwel, A.A.; Elezz, A.A.; Al-Maslamani, I.A. Methylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf). Reg. Stud. Mar. Sci. 2020, 37, 101334. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, I.K. The effect of fish consumption on blood mercury levels of pregnant women. Yonsei Med. J. 2006, 47, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Taylor, A.L.; Collins, C.E.; Patterson, A.J. The relationship between potential contaminant exposure from fish and nutrient intakes in Australian women by pregnancy status. Nutr. Diet. 2014, 71, 229–235. [Google Scholar] [CrossRef]
- Starling, P.; Charlton, K.; McMahon, A.T.; Lucas, C. Fish intake during pregnancy and foetal neurodevelopment-A systematic review of the evidence. Nutrients 2015, 7, 2001–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, C.; Starling, P.; McMahon, A.; Charlton, K. Erring on the side of caution: Pregnant women's perceptions of consuming fish in a risk averse society. J. Hum. Nutr. Diet. 2016, 29, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Shalini, R.; Jeyasekaran, G.; Shakila, R.J.; Sundhar, S.; Arisekar, U.; Jawahar, P.; Aanand, S.; Sivaraman, B.; Malini, A.H.; Surya, T. Dietary intake of trace elements from commercially important fish and shellfish of Thoothukudi along the southeast coast of India and implications for human health risk assessment. Mar. Pollut. Bull. 2021, 173, 113020. [Google Scholar] [CrossRef] [PubMed]
- US Environment Protection Agency (US EPA). Mercury Study Report to Congress; EPA-452/R-97; Office of Research and Development: Washington, DC, USA, 1997.
- Rice, K.M.; Walker, E.M.; Wu, M., Jr.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245, 125586. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Gopalakrishnan, A.V. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: A review. Chemosphere 2021, 271, 129735. [Google Scholar] [CrossRef]
- Díez, S. Human health effects of methylmercury exposure. Rev. Environ. Contam. Toxicol. 2009, 198, 111–132. [Google Scholar]
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Mercury and Health. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 8 October 2022).
- Sakamoto, M.; Nakamura, M.; Murata, K. Mercury as a global pollutant and mercury exposure assessment and health effects. Nihon Eiseigaku Zasshi 2018, 73, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sulaiti, M.M.; Soubra, L.; Al-Ghouti, M.A. The causes and effects of mercury and methylmercury contamination in the marine environment: A review. Curr. Pollut. Rep. 2022, 8, 249–272. [Google Scholar] [CrossRef]
- Kungolos, A.; Aoyama, I.; Muramoto, S. Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae. Ecotoxicol. Environ. Saf. 1999, 43, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Enriron. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Finley, M.L.; Kidd, K.A.; Curry, R.A.; Lescord, G.L.; Clayden, M.G.; O’Driscoll, N.J. A comparison of mercury biomagnification through lacustrine food webs supporting brook trout (Salvelinus fontinalis) and other salmonid fishes. Front. Environ. Sci. 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Hrabik, T.R.; Watras, C.J. Recent declines in mercury concentration in a freshwater fishery: Isolating the effects of de-acidification and decreased atmospheric mercury deposition in Little Rock Lake. Sci. Total Environ. 2002, 297, 229–237. [Google Scholar] [CrossRef]
- Davis, J.A.; Looker, R.E.; Yee, D.; Pasquale, M.M.D.; Grenier, J.L.; Austin, C.M.; McKee, L.J.; Greenfield, B.K.; Brodberg, R.K.; Blum, J.D. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds. Environ. Res. 2012, 119, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, R.A.; Jardine, T.D.; Chumcha, M.M.; Kidd, K.A.; Campbell, L.M. Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environ. Sci. Technol. 2013, 47, 13385–13394. [Google Scholar] [CrossRef]
- Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, C.L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc. Natl. Acad. Sci. USA 2007, 104, 16586–16591. [Google Scholar] [CrossRef] [Green Version]
- Regnell, O.; Watras, C.J. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ. Sci. Technol. 2018, 53, 4–19. [Google Scholar] [CrossRef]
- Wood, J.F.; Kennedy, F.S.; Rosen, C.G. Synthesis of methylmercury compounds by extracts of methanogenic bacterium. Nature 1968, 220, 173–174. [Google Scholar] [CrossRef]
- Fu, D.Y.; Wang, S.H.; Qi, S.H. Environmental factors affecting the biomethylation of mercury. China Environ. Sci. 1982, 4, 49–54. [Google Scholar]
- Scheuhammer, A.M.; Meyer, M.W.; Sandheinrich, M.B.; Murray, M.W. Effects of methylmercury in the environment on wild birds, mammals and fish. Ambio 2007, 36, 11–17. [Google Scholar] [CrossRef]
- Wu, P.; Kainz, M.J.; Bravo, A.G.; Åkerblom, S.; Sonesten, L.; Bishop, K. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Sci. Total Environ. 2019, 646, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Afandi, I.; Talba, S.; Benhra, A.; Benbrahim, S.; Chfiri, R.; Labonne, M.; Masski, H.; Laë, R.; Tito, L.; De Morais, L.T.; et al. Trace metal distribution in pelagic fish species from the north-west African coast (Morocco). Int. Aquat. Res. 2018, 10, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Annibaldi, A.; Truzzi, C.; Carnevali, O.; Pignalosa, P.; Api, M.; Scarponi, G.; Illuminati, S. Determination of Hg in farmed and wild atlantic bluefin tuna (Thunnus thynnus L.) muscle. Molecules 2019, 24, 1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watras, C.J.; Back, R.C.; Halvorsen, S.; Hudson, R.J.M. Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 1998, 219, 183–208. [Google Scholar] [CrossRef] [PubMed]
- Kojadinovic, J.; Potier, M.; Corre, M.L.; Cosson, R.P.; Bustamantec, P. Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. Sci. Total Environ. 2006, 366, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, W.X. The three ‘B’ of fish mercury in china: Bioaccumulation, biodynamics and biotransformation. Environ. Pollut. 2019, 250, 216–232. [Google Scholar] [CrossRef]
- Backstrom, C.H.; Buckman, K.; Molden, E.; Chen, C.Y. Mercury levels in freshwater fish: Estimating concentration with fish length to determine exposures through fish consumption. Arch. Environ. Contam. Toxicol. 2020, 78, 604–621. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Ross, J.R.M.; Bezalel, S.; Sim, L.; Bonnema, A.; Ichikawa, G.; Heim, W.A.; Schiff, K.; Eagles-Smith, C.A.; Ackerman, J.T. Hg concentrations in fish from coastal waters of California and Western North America. Sci. Total Environ. 2016, 568, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.F.; Pereira, J.P.G.; Oliveira, D.C.; de Oliveira Lima, M. Methylmercury in predatory and non-predatory fish species marketed in the Amazon Triple Frontier. Bull. Environ. Contam. Toxicol. 2020, 104, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Nyholt, K.; Jardine, T.D.; Villamarín, F.; Jacobi, C.M.; Hawes, J.E.; Campos-Silva, J.V.; Srayko, S.; Magnusson, W.E. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs. Sci. Total Environ. 2022, 833, 155161. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, S.J.; Dong, W.; Hua, X.Y.; Li, Y.Y.; Song, X.; Chu, Q.W.; Hou, S.N.; Li, Y. The toxicological effects of mercury exposure in marine fish. Bull. Environ. Contam. Toxicol. 2019, 102, 714–720. [Google Scholar] [CrossRef]
- Parang, H.; Esmaeilbeigi, M. Total mercury concentration in the muscle of four mostly consumed fish and associated human health risks for fishermen and non-fishermen families in the Anzali Wetland, Southern Caspian Sea. Reg. Stud. Mar. Sci. 2022, 52, 102270. [Google Scholar] [CrossRef]
- Buck, D.G.; Evers, D.C.; Adams, E.; DiGangi, J.; Beeler, B.; Samánekm, J.; Petrlikm, J.; Turnquist, M.A.; Speranskaya, O.; Regan, K.; et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 2019, 687, 956–966. [Google Scholar] [CrossRef]
- Zou, C.X.; Yin, D.Q.; Wang, R. Mercury and selenium bioaccumulation in wild commercial fish in the coastal East China Sea: Selenium benefits versus mercury risks. Mar. Pollut. Bull. 2022, 180, 113754. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M.A. Risk to consumers from mercury in Pacific cod (Gadus macrocephalus) from the Aleutians: Fish age and size effects. Environ. Res. 2007, 105, 276–284. [Google Scholar] [CrossRef]
- Vieira, H.C.; Ramirez, M.M.B.; Bordalo, M.D.; Rodrigues, A.C.M.; Soares, A.M.V.M.; Abreu, S.N.; Morgado, F.; Rendón-von Osten, J.R. Total and organic mercury in fish from different geographical areas in the North Atlantic Ocean and health risk assessment. Expos. Health 2021, 13, 361–373. [Google Scholar] [CrossRef]
- Jackson, T.A. Biological and environmental control of mercury accumulation by fish in lakes and reservoirs of Northern Manitoba, Canada. Can. J. Fish Aquat. Sci. 1991, 48, 2449–2470. [Google Scholar] [CrossRef]
- Wiener, J.G.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, M. Ecotoxicology of Mercury. In Handbook of Ecotoxicology; Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairns, J., Jr., Eds.; Lewis Publications: Boca Raton, FL, USA, 2003; pp. 409–463. [Google Scholar]
- Costa, F.; Coelho, J.P.; Baptista, J.; Martinho, F.; Pereira, M.E.; Pardal, M.A. Mercury accumulation in fish species along the Portuguese coast: Are there potential risks to human health? Mar. Pollut. Bull. 2020, 150, 110740. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Wang, W.X. Why mercury concentration increases with fish size? Environ. Pollut. 2012, 163, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Z.; Wang, W.X. Inter-species differences of total mercury and methylmercury in farmed fish in Southern China: Does feed matter? Sci. Total Environ. 2019, 651, 1857–1866. [Google Scholar] [CrossRef]
- Madenjian, C.P.; Rediske, R.R.; Krabbenhoft, D.P.; Stapanian, M.A.; Chernyak, S.M.; O’Keefe, J.P. Sex differences in contaminant concentrations of fish: A synthesis. Biol. Sex Differ. 2016, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Renzoni, A.; Zino, F.; Franchi, E. Mercury levels along the food chain and risk for exposed populations. Environ. Res. 1998, 77, 68–72. [Google Scholar] [CrossRef]
- Mok, W.J.; Seoka, M.; Tsukamasa, Y.; Kawasaki, K.; Ando, M. Mercury levels of small fishes: Influence of size and catch area. Fish. Sci. 2011, 77, 823. [Google Scholar] [CrossRef]
- Depew, D.C.; Burgess, N.M.; Anderson, M.; Baker, R.; Bhavsar, S.P.; Bodaly, R.A.; Eckley, C.S.; Evans, M.S.; Gantner, N.; Graydon, J.A.; et al. An overview of mercury concentrations in freshwater fish species: A national fish mercury dataset for Canada. Can. J. Fish. Aquat. Sci. 2013, 70, 436–451. [Google Scholar] [CrossRef]
- Llull, R.M.; Gari, M.; Canals, M.; Rey-Maquieira, T.; Grimalt, J.O. Mercury concentrations in lean fish from the Western Mediterranean Sea: Dietary exposure and risk assessment in the population of the Balearic Islands. Environ. Res. 2017, 158, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Bank, M.S.; Chesney, E.; Shine, J.P.; Maage, A.; Senn, D.B. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecol. Appl. 2007, 17, 2100–2110. [Google Scholar] [CrossRef]
- Piraino, M.N.; Taylor, D.L. Bioaccumulation and trophic transfer of mercury in striped bass (Morone saxatilis) and tautog (Tautoga onitis) from the Narragansett Bay (Rhode Island, USA). Mar. Environ. Res. 2009, 67, 117–128. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Li, Y.W.; Liu, Z.H.; Chen, Q.L. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamc-pituitary-gonadal axis. Aquat. Toxicol. 2016, 177, 417–424. [Google Scholar] [CrossRef]
- Morcillo, P.; Esteban, M.A.; Cuesta, A. Mercury and its toxic effects on fish. AIMS Environ. Sci. 2017, 4, 386–402. [Google Scholar] [CrossRef]
- Crowe, W.; Allsopp, P.J.; Watson, G.E.; Magee, P.; Strain, J.J.; Armstrong, D.J.; Ball, E.; McSorley, E.M. Mercury as an environmental stimulus in the development of autoimmunity-A systematic review. Autoimmun. Rev. 2017, 16, 72–80. [Google Scholar] [CrossRef]
- Kimáková, T.; Kuzmová, L.; Nevolná, Z.; Bencko, V. Fish and fish products as risk factors of mercury exposure. Ann. Agr. Env. Med. 2018, 25, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Morrissette, J.; Takser, L.; St-Amour, G.; Smargiassi, A.; Lafond, J.; Mergler, D. Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St. Lawrence River. Environ. Res. 2004, 95, 363–734. [Google Scholar] [CrossRef]
- Takahashi, T.; Shimohata, T. Vascular dysfunction induced by mercury exposure. Int. J. Mol. Sci. 2019, 20, 2435. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Methylmercury—Environmental Health Criteria 101. 1990. Available online: https://wedocs.unep.org/handle/20.500.11822/29413 (accessed on 8 October 2022).
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.F.; Singh, K.; Chan, H.M. Mercury exposure, blood pressure, and hypertension: A systematic review and dose-response meta-analysis. Environ. Health Perspect. 2018, 126, 076002. [Google Scholar] [CrossRef] [Green Version]
- Guzzi, G.P.; La Porta, C.A.M. Molecular mechanisms triggered by mercury. Toxicology 2008, 244, 1–12. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Mechanisms involved in the transport of mercuric ions in target tissues. Arch. Toxicol. 2017, 91, 63–81. [Google Scholar] [PubMed] [Green Version]
- Wikipedia Mechanism (Creative Commons). Mercury Toxicity—Mechanism. 2022. Available online: https://www.liquisearch.com/mercury_toxicity/mechanism (accessed on 24 November 2022).
- Simpson, J.L.; Bailey, L.B.; Pietrzik, K.; Shane, B.; Holzgreve, W. Micronutrients and women of reproductive potential: Required dietary intake and consequences of dietary deficiency or excess. Part I—Folate, vitamin B12, vitamin B6. J. Maternal-Fetal Neonatal. Med. 2010, 23, 1323–1343. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L.; Bailey, L.B.; Pietrzik, K.; Shane, B.; Holzgreve, W. Micronutrients and women of reproductive potential: Required dietary intake and consequences of dietary deficienty or excess. Part II—Vitamin D, vitamin A, Iron, Zinc, Iodine, Essential Fatty Acids. J. Maternal-Fetal Neonatal. Med. 2011, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Hansen, J.C. Organochlorines and heavy metals in pregnant women from the Disko Bay area in Greenland. Sci. Total Environ. 2000, 245, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.F. Commentary: Mercury, PCB, and now eicosapentaenoic acid: Still another reason why pregnant women should be concerned about eating seafood? Int. J. Epidemiol. 2001, 30, 1279–1280. [Google Scholar] [CrossRef] [Green Version]
- Solan, T.D.; Lindow, S.W. Mercury exposure in pregnancy: A review. J. Perinat. Med. 2014, 42, 725–729. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chirumbolo, S.; Dadar, M.; Pivina, L.; Lindh, U.; Butnariu, M.; Aaseth, J. Mercury exposure and its effects on fertility and pregnancy outcome. Basic Clin. Pharmacol. Toxicol. 2019, 125, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; SØRENSEN, N.; Dahl, R.; Jjørgensen, P. Cognitive deficit in 7-year-old children with prenatal exposure to methyl mercury. Neurotoxicol. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Steuerwald, U.; Weihe, P.; Jorgensen, P.J.; Bjerve, K.; Brock, J.; Heinzow, B.; Budtz-Jørgensen, E.; Grandjean, P. Maternal seafood diet methylmercury exposure‚and neonatal neurologic function. J. Pediatr. 2000, 136, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.W.; Myers, G.J.; Cox, C.; Axtell, C.; Shamlaye, C.; Sloane-Reeves, J.; Cernichiari, E.; Needham, L.; Choi, A.; Wang, Y.; et al. Effects of prenatal and postnatal methymercury exposure from fish consumption on neurodevelopment: Outcomes at 66 months of age in the Seychelles Child Development Study. JAMA 1998, 280, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, D.R.; Cox, C.; Davidson, P.W.; Myers, G.W.; Choi, A.; Shamlaye, C.; Sloane-Reeves, J.; Cernichiari, E.; Clarkson, T.W. Association between prenatal exposure to methylmercury and cognitive functioning in Seychellois children: A reanalysis of the McCarthy Scales of Children’s Ability from the main corhort study. Environ. Res. 2000, 84, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, Z. Effects of mercury exposure during pregnancy on pregnancy outcome and related factors. Hainan Med. J. 2010, 21, 25–28. [Google Scholar]
- Dudarev, A.; Odland, J.O.; Reiersen, L.O. The Russian arctic mother-child cohort—The first results of a follow up study of persistent toxic substances (PTS) blood levels. Epidemiology 2009, 20, S253. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zhang, B.Y.; Lu, J.M.; Liu, J.; Guan, H.H.; Liu, Z.J.; Guo, S.W.; Zhao, S.M. Methylation of mercury and methylmercury metabolism in fish body. J. Fish. China 1994, 18, 326–329. [Google Scholar]
- Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; et al. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev. 2020, 417, 213343. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.G.; Ji, Y.J.; Chang, Y.X. Environmental Chemical Poison Control Manual; Chemical Industrial Press: Beijing, China, 2004; p. 1280. [Google Scholar]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W.; Magos, L.; Myers., G.J. The toxicology of mercury--current exposures and clinical manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Carocci, A.; Rovito, N.; Sinicropi., M.S.; Genchi., G. Mercury toxicity and neurodegenerative effects. Rev. Environ. Contam. Toxicol 2014, 229, 1–18. [Google Scholar]
- Ramon, R.; Murcia, M.; Ballester, F.; Rebagliato, M.; Lacasaña, M.; Vioque, J.; Llop, S.; Amurrio, A.; Aguinagalde, X.; Marco, A.; et al. Prenatal exposure to mercury in a prospective mother-infant cohort study in a Mediterranean area, Valencia, Spain. Sci. Total Environ. 2008, 392, 69–78. [Google Scholar] [CrossRef]
- Caserta, D.; Graziano, A.; Monte, G.L.; Bordi, G.; Moscarini, M. Heavy metals and placental fetal-maternal barrier: A mini-review on the major concerns. Eur. Rev. Med. Pharmaco. 2013, 17, 2198–2206. [Google Scholar]
- Gilbertson, M. Male cerebral palsy hospitalization as a potential indicator of neurological effects of methylmercury exposure in Great Lakes communities. Environ. Res. 2004, 95, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.M.; Egeland, G.M. Fish consumption, mercury exposure, and heart disease. Nutr. Rev. 2004, 62, 68–72. [Google Scholar]
- Stern, A.H. A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment. Environ. Res. 2005, 98, 133–142. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury exposure and heart diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koos, B.J.; Longo, L.D. Mercury toxicity in the pregnant woman, fetus, and newborn infant. A review. Am. J. Obstet. Gynecol. 1976, 126, 390–409. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Quaedackers, J.S.; Guan, J.; Heineman, E.; Bennet, L. The premature fetus: Not as defenseless as we thought, but still paradoxically vulnerable? Dev. Neurosci. 2001, 23, 175–179. [Google Scholar] [CrossRef]
- Stephen, J.G. To sea or not to sea: Benefits and risks of gestational fish consumption. Reprod. Toxicol. 2008, 26, 81–85. [Google Scholar]
- Guan, M.; Zhang, L.; Zhang, G.R.; Le, J.; Guan, C.N.; Yue, H.Y.; Yu, G.Y. Determination and study of methylmercury content in five organs of fetuses at different gestational ages. Chinese J. Public Health 1997, 16, 87–89. [Google Scholar]
- Sakamoto, M.; Kubota, M.; Liu, X.J.; Murata, K.; Nakai, K.; Satoh, H. Maternal and fetal mercury and n-3 polyunsaturated fatty acids as a risk and benefit of fish consumption to fetus. Environ. Sci. Technol. 2004, 38, 3860–3863. [Google Scholar] [CrossRef]
- Zeilmaker, M.J.; Hoekstra, J.; van Eijkeren, J.C.H.; de Jong, N.; Hart, A.; Kennedy, M.; Owen, H.; Gunnlaugsdottir, H. Fish consumption during child bearing age: A quantitative risk-benefit analysis on neurodevelopment. Food Chem. Toxicol. 2013, 54, 30–34. [Google Scholar] [CrossRef]
- Taylor, C.M.; Emmett, P.M.; Emond, A.M.; Golding, J. A review of guidance on fish consumption in pregnancy: Is it fit for purpose? Public Health Nutr. 2018, 21, 2149–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, N.; Abotorabi, S.; Lalooha, F.; Oveisi, S. Effects of fish oil supplementation on pregnancy outcomes in pregnant women referred to Kosar Hospital. Iran. J. Pharm. Res. 2020, 19, 241–247. [Google Scholar] [PubMed]
- Dunstan, J.A.; Prescott, S.L. Does fish oil supplementation in pregnancy reduce the risk of allergic disease in infants? Curr. Opin. Allergy. Clin. Immunol. 2005, 5, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Strøm, M.; Maslova, E.; Dahl, R.; Hoffmann, H.J.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Granström, C.; Halldorsson, T.I.; et al. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J. Allergy Clin. Immunol. 2017, 139, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Onwude, J.L.; Lilford, R.J.; Hjartardottir, H.; Staines, A.; Tuffnell, D. A randomised double blind placebo controlled trial of fish oil in high risk pregnancy. Br. J. Obstet. Gynaecol. 1995, 102, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Olafsdottir, A.S.; Skuladottir, G.V.; Thorsdottir, I.; Hauksson, A.; Thorgeirsdottir, H.; Steingrimsdottir, L. Relationship between high consumption of marine fatty acids in early pregnancy and hypertensive disorders in pregnancy. Br. J. Obstet. Gynaecol. 2006, 113, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.J.; Yelland, L.; McPhee, A.J.; Quinlivan, J.; Gibson, R.A.; Makrides, M. Fish-oil supplementation in pregnancy does not reduce the risk of gestational diabetes or preeclampsia. Am. J. Clin. Nutr. 2012, 95, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- Wakita, Y. Hypertension induced by methyl mercury in rats. Toxicol. Appl. Pharmacol. 1987, 89, 144–147. [Google Scholar] [CrossRef]
- Moreira, E.L.G.; Farina, M. An unsolved puzzle: The complex interplay between methylmercury and fish oil-derived fatty acids within the cardiovascular system. Toxicol. Res. 2014, 3, 300–310. [Google Scholar] [CrossRef]
- Merkle, S.; Giese, E.; Rohn, S.; Karl, H.; Lehmann, I.; Wohltmann, A.; Fritsch, J. Impact of fish species and processing technology on minor fish oil components. Food Control 2017, 73, 1379–1387. [Google Scholar] [CrossRef]
- Silbernagel, S.M.; Carpenter, D.O.; Gilbert, S.G.; Gochfeld, M.; Groth, E.; Hightower, J.M.; Schiavone, F.M. Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: Information for physicians. J. Toxicol. 2011, 2011, 983072. [Google Scholar] [CrossRef] [PubMed]
- Hsi, H.C.; Hsu, Y.W.; Chang, T.C.; Chien, L.C. Methylmercury concentration in fish and risk-benefit assessment of fish intake among pregnant versus infertile women in Taiwan. PLoS ONE 2016, 11, e0155704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaghi, H.; Tinker, S.C. Seafood consumption among pregnant and non-pregnant women of childbearing age in the United States, NHANES 1999–2006. Food Nutr. Res. 2019, 58, 23287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schober, S.E.; Sinks, T.H.; Jones, R.L.; Bolger, P.M.; McDowell, M.; Osterloh, J.; Garrett, E.S.; Canady, R.A.; Dillon, C.F.; Sun, Y.; et al. Blood mercury levels in US children and women of childbearing age. 1999–2000. JAMA 2003, 289, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Children’s Exposure to Mercury Compounds. 2010. Available online: https://www.who.int/publications/i/item/9789241500456 (accessed on 8 October 2022).
- Food Standards Australia New Zealand (FSANZ). Mercury in Fish; Viewed December 2020. Available online: https://www.foodstandards.gov.au/consumer/chemicals/mercury/Pages/default.aspx (accessed on 8 October 2022).
- Shimshack, J.P.; Ward, M.B.; Beatty, T.K. Mercury advisories: Information, education, and fish consumption. J. Environ. Econ. Manag. 2007, 53, 158–179. [Google Scholar] [CrossRef] [Green Version]
- Lando, A.M.; Zhang, Y.T. Awareness and knowledge of methylmercury in fish in the United States. Environ. Res. 2011, 111, 442–450. [Google Scholar] [CrossRef]
- Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.; Rich-Edwards, J.W.; Gillman, M.W. Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ. Health Perspect 2005, 113, 1376–1380. [Google Scholar] [CrossRef]
- Gale, C.R.; Robinson, S.M.; Godfrey, K.M.; Law, C.M.; Schlotz, W.; O’Callaghan, F.J. Oily fish intake during pregnancy—Association with lower hyperactivity but not with higher full-scale IQ in offspring. J. Child Psychol. Psychiatry 2008, 49, 1061–1068. [Google Scholar] [CrossRef]
- Amy, M.L.; Sara, B.F.; Conrad, J.C. Awareness of methylmercury in fish and fish consumption among pregnant and postpartum women and women of childbearing age in the United States. Environ. Res 2012, 116, 85–92. [Google Scholar]
- Frithsen, I.; Goodnight, W. Awareness and implications of fish consumption advisories in a women's health setting. J. Reprod. Med. 2009, 54, 267–272. [Google Scholar]
- Schmidt, L.; Bizzi, C.A.; Duarte, F.A.; Muller, E.I.; Krupp, E.; Feldmann, J.; Flores, E.M.M. Evaluation of Hg species after culinary treatments of fish. Food Control 2015, 47, 413–419. [Google Scholar] [CrossRef]
- Welshons, W.V.; Thayer, K.A.; Judy, B.M.; Taylor, J.A.; Curran, E.M.; vom Saal, F.S. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ. Health Perspect 2003, 111, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration (US FDA). Draft Risk and Benefit Report: Section V Scientific Basis for Risk and Benefit Assessment. 2009. Available online: http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/Seafood/FoodbornePathogensContaminants/Methylmercury/ucm088758.htmS (accessed on 8 October 2022).
Choices | Level of Hg Contamination | Types of Fish | Species of Fish | Cited References |
---|---|---|---|---|
Right | Low Hg/MeHg | Freshwater fish, herbivorous fish, small fish, etc. | Anchovy, Arctic char, Atlantic mackerel, catfish, cod, haddock, herring, perch, pollock, salmon, sardines, shellfish, tilapia, trout, tuna, etc. | [42,43,44,45,46,47,49,50,51,52,53,107,118,119] |
Wrong | High Hg/MeHg | Marine fish, piscivores and carnivores, benthic fishes, large fish, predatory fish, etc. | Bluefish, croaker, eel, king mackerel, shark, swordfish, tilefish, weakfish, etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Dong, S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption—A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 15929. https://doi.org/10.3390/ijerph192315929
Chen B, Dong S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption—A Narrative Review. International Journal of Environmental Research and Public Health. 2022; 19(23):15929. https://doi.org/10.3390/ijerph192315929
Chicago/Turabian StyleChen, Bojian, and Shiyuan Dong. 2022. "Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption—A Narrative Review" International Journal of Environmental Research and Public Health 19, no. 23: 15929. https://doi.org/10.3390/ijerph192315929
APA StyleChen, B., & Dong, S. (2022). Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption—A Narrative Review. International Journal of Environmental Research and Public Health, 19(23), 15929. https://doi.org/10.3390/ijerph192315929