Determination of Waste Management Workers’ Physical and Psychological Load: A Cross-Sectional Study Using Biometric Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Hypotheses
2.3. Ethical Approval
2.4. Measurement Tools
2.5. Participants
2.6. Protocols
2.7. Analysis Tools and Statistical Tests
2.8. Body Temperature and HR
2.9. HRV Metrics
2.10. Workload (Percentage HR Reserve) and PA
3. Results
3.1. Data Collection
3.2. Descriptive Statistics and Intergroup Comparisons
3.3. Relationship of Workers’ Characteristics, Body Load, and HRV Index with Body Surface Temperature
3.4. Indexes of Physical and Psychological Load
3.5. Relationship to Workload %HRR and Psychological Load LF/HF
4. Discussion
4.1. Principal Findings
4.2. Physical and Psychological Load in Waste Management Workplaces
4.3. Approaches to Worker Stress Reduction and Worker Management
4.4. Theoretical and Practical Contributions
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Measurements | Equipment Model (Name of the Manufacturer) | Sampling Frequency | Interval | Note |
---|---|---|---|---|
Physical workload | ||||
ECG (Sensing clothing) | COCOMI (TOYOBO Co., Ltd.) | − | − | Stretchable conductive film |
Heart rate sensor | WHS-2 (Union Tool Co., Ltd.) | 1 kHz | Per beat | Analysis of RRI |
3-axis acceleration | 31.25 Hz | Per beat | Capacitive sense | |
Infrastructure | ||||
Data acquisition time | CC2650 and ThinkPad (Texas Instruments and Lenovo Co., Ltd.) | 1 msec. | Per beat | Synchronized time with server |
Data transfer | Raspberry Pi Zero W (Raspberry Pi Foundation) | − | − | IEEE802.11 b/g/n (Wireless LAN) Bluetooth 4.1 |
Appendix B
Appendix C
Measurement Parameter | Method | Unit |
---|---|---|
HRworking | average heart rate in 5 min during working hours | bpm |
HRresting | average heart rate in 5 min during the rest hours | bpm |
HRmax | 208 − 0.7 × age | bpm |
%HRR | % | |
ACC | mG |
Appendix D
Data ID# | Data Collection Dates | Duration of Data Collection (min) | Scheduled Resting (min) | Number of Data * (Sets) | Main Job Tasks |
---|---|---|---|---|---|
A1 | 3 September 2019 | 360 | 70 | 72 | Crushing, classifying and transshipping of industrial waste |
A2 | 445 | 60 | 89 | ||
A3 | 4 September 2019 | 330 | 70 | 66 | |
A4 | 325 | 60 | 65 | ||
A5 | 5 September 2019 | 175 | 10 | 35 | |
A6 | 480 | 40 | 96 | ||
A7 | 6 September 2019 | 455 | 70 | 91 | |
A8 | 24 August 2020 | 190 | 10 | 38 | |
A9 | 190 | 30 | 38 | ||
A10 | 25 August 2020 | 415 | 30 | 83 | |
A11 | 26 August 2020 | 455 | 70 | 91 | |
A12 | 3 September 2019 | 395 | 70 | 79 | |
A13 | 315 | 60 | 63 | ||
A14 | 4 September 2019 | 480 | 60 | 96 | |
A15 | 480 | 60 | 96 | ||
A16 | 5 September 2019 | 430 | 60 | 86 | |
A17 | 385 | 60 | 77 | ||
A18 | 6 September 2019 | 255 | 60 | 51 | |
A19 | 330 | 70 | 66 | ||
A20 | 24 August 2020 | 190 | 20 | 38 | |
A21 | 25 August 2020 | 405 | 30 | 81 | |
A22 | 26 August 2020 | 450 | 90 | 90 | |
B1 | 24 August 2019 | 190 | 10 | 38 | Maintenance and repair of equipment and facilities, and vehicle guidance |
B2 | 185 | 10 | 37 | ||
B3 | 25 August 2029 | 455 | 90 | 91 | |
B4 | 195 | 70 | 39 | ||
B5 | 310 | 70 | 62 | ||
B6 | 26 August 2020 | 270 | 20 | 54 | |
B7 | 190 | 10 | 38 |
Appendix E
Data ID# | Estimated HRmax (bpm) | Estimated HRresting (bpm) | HRworking Ave. ± SD (bpm) | %HRR Ave. ± SD (%) | P.A. Ave. ± SD (mG) | B.S. TEMP (mG) |
---|---|---|---|---|---|---|
A1 | 191.2 | 67.4 | 82.7 ± 6.91 | 12.3 ± 6.91 | 144.2 ± 91.7 | 31.0 ± 1.90 |
A2 | 163.9 | 72.3 | 101.8 ± 11.0 | 35.2 ± 12.0 | 271.3 ± 10.6 | 32.4 ± 1.49 |
A3 | 191.2 | 63.3 | 87.2 ± 11.7 | 18.7 ± 9.13 | 188.2 ± 130.0 | 31.7 ± 1.82 |
A4 | 163.9 | 67.6 | 90.0 ± 9.29 | 23.2 ± 9.65 | 244.9 ± 91.5 | 31.7 ± 1.92 |
A5 | 194.0 | 61.5 | 79.6 ± 9.43 | 13.6 ± 7.11 | 246.3 ± 106.3 | 30.2 ± 1.51 |
A6 | 163.9 | 66.5 | 93.0 ± 9.79 | 27.2 ± 10.1 | 210.9 ± 125.0 | 30.9 ± 1.18 |
A7 | 163.9 | 66.0 | 94.2 ± 12.5 | 28.7 ± 12.8 | 174.0 ± 99.2 | 32.2 ± 1.14 |
A8 | 164.6 | 62.9 | 124.4 ± 9.18 | 60.4 ± 9.03 | 274.8 ± 65.0 | 32.9 ± 0.45 |
A9 | 189.1 | 73.6 | 96.6 ± 10.5 | 19.9 ± 9.13 | 257.9 ± 124.6 | 32.7 ± 1.27 |
A10 | 189.1 | 68.4 | 96.3 ± 11.3 | 23.2 ± 9.39 | 253.1 ± 111.5 | 31.6 ± 1.12 |
A11 | 189.1 | 67.9 | 93.2 ± 10.5 | 20.9 ± 8.62 | 185.6 ± 109.1 | 31.8 ± 0.97 |
A12 | 191.2 | 65.5 | 93.6 ± 13.1 | 21.8 ± 10.5 | 272.9 ± 134.4 | 31.9 ± 1.81 |
A13 | 191.9 | 73.8 | 89.1 ± 10.2 | 13.0 ± 8.63 | 182.9 ± 98.9 | 30.8 ± 2.22 |
A14 | 168.1 | 63.2 | 81.2 ± 9.20 | 17.1 ± 8.77 | 217.5 ± 87.7 | 29.7 ± 2.07 |
A15 | 191.9 | 78.3 | 94.7 ± 8.00 | 14.5 ± 7.04 | 208.8 ± 102.7 | 30.0 ± 2.36 |
A16 | 191.2 | 68.2 | 85.6 ± 11.2 | 14.2 ± 9.14 | 168.8 ± 101.8 | 31.2 ± 1.57 |
A17 | 191.9 | 85.2 | 98.7 ± 7.50 | 12.6 ± 7.03 | 201.3 ± 95.1 | 30.8 ± 1.50 |
A18 | 188.4 | 72.7 | 96.0 ± 13.4 | 20.1 ± 11.6 | 214.7 ± 110.0 | 30.9 ± 1.83 |
A19 | 191.9 | 79.0 | 95.9 ± 9.81 | 15.0 ± 8.69 | 180.4 ± 94.4 | 31.1 ± 1.88 |
A20 | 186.3 | 80.7 | 106.9 ± 9.16 | 24.8 ± 8.68 | 275.3 ± 119.0 | 33.5 ± 1.39 |
A21 | 186.3 | 72.7 | 103.9 ± 11.4 | 27.5 ± 10.0 | 273.4 ± 110.4 | 32.4 ± 1.77 |
A22 | 186.3 | 73.5 | 101.0 ± 10.7 | 24.4 ± 9.50 | 293.2 ± 142.6 | 31.0 ± 1.45 |
B1 | 187.7 | 79.9 | 95.8 ± 10.8 | 14.8 ± 10.0 | 214.8 ± 119.7 | 31.3 ± 1.47 |
B2 | 188.4 | 70.1 | 87.5 ± 8.75 | 14.7 ± 7.39 | 305.0 ± 98.6 | 32.6 ± 6.59 |
B3 | 164.6 | 62.9 | 93.5 ± 14.7 | 30.1 ± 14.5 | 278.0 ± 117.6 | 32.8 ± 1.13 |
B4 | 187.7 | 74.2 | 108.8 ± 23.9 | 30.5 ± 21.1 | 186.5 ± 120.3 | 31.1 ± 3.21 |
B5 | 188.4 | 59.3 | 87.6 ± 14.7 | 21.9 ± 11.4 | 259.8 ± 144.4 | 31.3 ± 2.35 |
B6 | 188.7 | 70.3 | 91.0 ± 11.1 | 17.7 ± 9.47 | 249.1 ± 111.4 | 31.8 ± 1.27 |
B7 | 188.4 | 71.8 | 101.6 ± 16.5 | 25.6 ± 14.2 | 321.7 ± 123.3 | 32.1 ± 2.43 |
Total | 183.5 ± 11.0 | 70.3 ± 6.30 | 92.9 ± 17.4 | 21.8 ± 13.0 | 228.7 ± 119.3 | 31.5 ± 2.15 |
Appendix F
Operation Type | ID | HR [bpm] | %HRR [%] | P.A. [G] | B.S TEMP [℃] | RRI [msec.] | SDNN | CVRR | NN50 | pNN50 | RMSSD | LFpow | HFpow | LF/HF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A. Crushing, classifying and transshipping of Industrial waste. | A-1 | 82.67 | 12.32 | 0.144 | 30.97 | 733.2 | 26.88 | 0.037 | 35.58 | 0.100 | 28.29 | 612.5 | 248.1 | 2.75 |
A-2 | 101.78 | 32.22 | 0.271 | 32.39 | 597.1 | 24.43 | 0.041 | 10.19 | 0.033 | 17.10 | 568.5 | 216.8 | 2.26 | |
A-3 | 93.64 | 21.80 | 0.273 | 31.93 | 653.3 | 25.63 | 0.039 | 26.33 | 0.067 | 23.22 | 553.7 | 210.1 | 5.37 | |
A-4 | 89.11 | 12.95 | 0.184 | 30.78 | 681.8 | 26.13 | 0.038 | 31.79 | 0.091 | 27.17 | 871.2 | 328.1 | 3.22 | |
A-5 | 87.18 | 18.66 | 0.188 | 31.69 | 702.2 | 27.10 | 0.037 | 34.12 | 0.095 | 27.85 | 336.1 | 179.1 | 2.39 | |
A-6 | 89.96 | 23.22 | 0.245 | 31.64 | 674.3 | 26.05 | 0.038 | 32.11 | 0.082 | 25.87 | 283.0 | 292.7 | 1.29 | |
A-7 | 81.19 | 17.13 | 0.217 | 29.69 | 748.1 | 27.55 | 0.036 | 18.13 | 0.052 | 21.76 | 300.3 | 187.5 | 1.83 | |
A-8 | 94.71 | 14.45 | 0.209 | 30.00 | 638.2 | 25.32 | 0.040 | 21.77 | 0.069 | 24.06 | 1874.1 | 345.1 | 4.32 | |
A-9 | 79.56 | 13.62 | 0.246 | 32.23 | 765.1 | 27.74 | 0.036 | 69.03 | 0.197 | 37.52 | 290.6 | 346.4 | 1.09 | |
A-10 | 93.02 | 27.22 | 0.211 | 30.87 | 652.8 | 25.61 | 0.039 | 18.47 | 0.058 | 22.72 | 1303.2 | 337.6 | 3.87 | |
A-11 | 85.60 | 14.10 | 0.170 | 31.20 | 712.0 | 25.53 | 0.039 | 17.98 | 0.059 | 22.73 | 411.9 | 445.0 | 1.65 | |
A-12 | 98.70 | 12.64 | 0.201 | 30.80 | 611.2 | 24.77 | 0.040 | 15.58 | 0.050 | 21.94 | 1299.0 | 297.6 | 4.25 | |
A-13 | 94.18 | 28.77 | 0.174 | 32.16 | 649.1 | 25.52 | 0.039 | 18.52 | 0.047 | 20.54 | 205.0 | 196.1 | 1.31 | |
A-14 | 95.97 | 20.11 | 0.215 | 31.11 | 637.2 | 25.20 | 0.040 | 6.69 | 0.016 | 16.64 | 221.7 | 114.2 | 2.27 | |
A-15 | 95.52 | 14.99 | 0.180 | 31.12 | 632.2 | 25.20 | 0.040 | 20.59 | 0.065 | 23.46 | 1361.8 | 293.6 | 4.82 | |
A-16 | 124.37 | 60.44 | 0.275 | 32.94 | 485.0 | 21.93 | 0.046 | 4.82 | 0.008 | 11.19 | 202.9 | 234.7 | 0.96 | |
A-17 | 96.61 | 19.92 | 0.258 | 32.70 | 629.0 | 25.09 | 0.040 | 21.61 | 0.053 | 19.66 | 380.0 | 180.8 | 2.70 | |
A-18 | 106.88 | 24.77 | 0.275 | 33.46 | 566.0 | 23.68 | 0.042 | 7.18 | 0.019 | 13.17 | 959.8 | 229.4 | 6.06 | |
A-19 | 96.34 | 23.17 | 0.253 | 31.58 | 631.9 | 25.18 | 0.040 | 17.37 | 0.060 | 23.20 | 2149.0 | 279.7 | 8.98 | |
A-20 | 103.85 | 27.45 | 0.273 | 32.43 | 585.7 | 24.11 | 0.042 | 7.12 | 0.023 | 14.63 | 7250.1 | 541.9 | 10.07 | |
A-21 | 93.15 | 20.85 | 0.186 | 31.83 | 653.0 | 25.57 | 0.039 | 18.98 | 0.046 | 19.70 | 455.4 | 224.4 | 2.66 | |
A-22 | 101.00 | 24.41 | 0.293 | 31.03 | 601.4 | 24.22 | 0.041 | 10.41 | 0.026 | 16.11 | 0.309 | 0.084 | 5.60 | |
B. Maintenance and repair of facility. | B-1 | 95.84 | 14.79 | 0.215 | 31.25 | 633.8 | 25.19 | 0.040 | 16.76 | 0.038 | 19.29 | 470.0 | 353.0 | 1.89 |
B-2 | 87.48 | 14.72 | 0.306 | 32.64 | 629.7 | 26.46 | 0.038 | 62.46 | 0.153 | 33.19 | 457.6 | 3898.3 | 1.05 | |
B-3 | 93.51 | 30.07 | 0.278 | 32.78 | 657.2 | 25.53 | 0.039 | 12.12 | 0.033 | 18.30 | 509.3 | 433.2 | 2.26 | |
B-4 | 108.80 | 30.49 | 0.186 | 31.07 | 577.6 | 23.91 | 0.042 | 9.69 | 0.039 | 18.57 | 1853.8 | 320.4 | 5.60 | |
B-5 | 87.58 | 21.88 | 0.260 | 31.29 | 705.0 | 26.62 | 0.038 | 63.68 | 0.169 | 33.65 | 331.7 | 298.2 | 1.21 | |
B-6 | 90.99 | 17.65 | 0.249 | 31.75 | 669.2 | 25.86 | 0.039 | 26.98 | 0.089 | 26.39 | 1130.2 | 498.1 | 3.19 | |
B-7 | 102.44 | 26.29 | 0.328 | 32.19 | 599.0 | 24.58 | 0.041 | 28.84 | 0.073 | 22.17 | 378.5 | 274.9 | 1.90 |
Appendix G
Parameters | Kolmogorov-Smirnov | Shapiro-Wilk | Normality Test Result | ||
---|---|---|---|---|---|
Statistics | Significant * | Statistics | Significant * | ||
AGE | 0.322 | <0.001 | 0.707 | <0.001 | non-parametric |
EXP | 0.173 | <0.001 | 0.903 | <0.001 | non-parametric |
BMI | 0.216 | <0.001 | 0.882 | <0.001 | non-parametric |
HR | 0.0174 | 0.162 | 0.0272 | 0.0506 | parametric |
%HRR | 0.0468 | <0.001 | 0.961 | <0.001 | non-parametric |
PA | 0.0464 | <0.001 | 0.981 | <0.001 | non-parametric |
B.S.TEMP | 0.0976 | <0.001 | 0.832 | <0.001 | non-parametric |
WBGT | 0.0684 | <0.001 | 0.956 | <0.001 | non-parametric |
RRI | 0.322 | <0.001 | 0.707 | <0.001 | non-parametric |
SDRR | 0.0482 | <0.001 | 0.948 | <0.001 | non-parametric |
CVRR | 0.0292 | <0.001 | 0.951 | <0.001 | non-parametric |
NN50 | 0.171 | <0.001 | 0.792 | <0.001 | non-parametric |
pNN50 | 0.170 | <0.001 | 0.789 | <0.001 | non-parametric |
RMSSD | 0.0572 | <0.001 | 0.957 | <0.001 | non-parametric |
LF power | 0.449 | <0.001 | 0.0542 | <0.001 | non-parametric |
HF power | 0.454 | <0.001 | 0.0302 | <0.001 | non-parametric |
LF/HF | 0.289 | <0.001 | 0.441 | <0.001 | non-parametric |
Appendix H
%HRR | percent heart rate |
B | slope (coefficient) of regression equation |
BMI | body mass index |
BS TEMP | body surface temperature |
CVRR | coefficient of variation of heart–beat interval |
EXP | experience |
Group A | waste treatment workers |
Group B | non–waste treatment workers |
HF | high frequency |
HR | heart rate |
HRV | heart rate variability |
HRV | heart rate variability |
LF | low frequency |
NN50 | index of difference between adjacent normal heart rate intervals greater than 50 ms |
PA | physical activity |
pNN50 | index of the percentage of the difference between adjacent normal heart rate intervals greater than 50 ms |
RMSSD | root mean square successive difference |
RRI | heart–beat interval |
SDRR | standard deviation of heart–beat interval |
WBGT | wet bulb globe temperature |
References
- Dao-Tuan, A.; Nguyen-Thi-Ngoc, A.; Nguyen-Trong, K.; Bui-Tuan, A.; Dinh-Thi-Hai, V. Optimizing Vehicle Routing with Path & Carbon Dioxide Emission for Municipal Solid Wastes Collection in Ha Giang, Vietnam. In Industrial Networks & Intelligent Systems; Springer: Cham, Switzerland, 2018; pp. 212–227. [Google Scholar] [CrossRef]
- Chinaza, G.A.; Awuchi, C.G.; Amagwula, I.O.; Igwe, S.V. Industrial and community waste management: Global perspective. Am. J. Phys. Sci. 2020, 1, 1–16. [Google Scholar]
- Zolnikov, T.R.; da Silva, R.C.; Tuesta, A.A.; Marques, C.P.; Cruvinel, V.R.N. Ineffective waste site closures in Brazil: A systematic review on continuing health conditions and occupational hazards of waste collectors. Waste Manag. 2018, 80, 26–39. [Google Scholar] [CrossRef]
- Heat Stress. In OSHA Technical Manual. Available online: http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html (accessed on 12 October 2022).
- Japan Federation of Industrial Waste Management and Recycling Associations. Occurrence of Occupational Accidents in the Industrial Waste Treatment Industry 2021. 2021. Available online: https://www.zensanpairen.or.jp/wp/wp-content/themes/sanpai/assets/pdf/disposal/safety_saigaihasei.pdf (accessed on 12 October 2022).
- JCOSHA. Available online: https://www.kensaibou.or.jp/eng/index.html (accessed on 12 October 2022).
- Okamoto, S.; Kamitsuru, Y.; Hashiguchi, N.; Kodama, K.; Hashimoto, S. Advanced safety management at a waste treatment facility using Smartwear. Soc. Environ. Instrum. Control Autom. 2022, 25, 1–7. (In Japanese) [Google Scholar]
- Salahuddin, L.; Cho, J.; Jeong, M.G.; Kim, D. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. In Proceedings of the 9th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4656–4659. [Google Scholar]
- Landreani, F.; Martin-Yebra, A.; Casellato, C.; Frigo, C.; Pavan, E.; Migeotte, P.F. Beat-to-beat heart rate detection by smartphone accelerometers: Validation with ECG. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 525–528. [Google Scholar]
- Hashiguchi, N.; Kodama, K.; Lim, Y.; Che, C.; Kuroishi, S.; Miyazaki, Y. Practical judgment of workload based on physical activity, work conditions, and worker’s age in construction site. Sensors 2020, 20, 3786. [Google Scholar] [CrossRef] [PubMed]
- Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, H.; Mukaino, M.; Otaka, Y.; Kagaya, H.; Aoshima, Y.; Suzuki, T. Validity of simplified, calibration-less exercise intensity measurement using resting heart rate during sleep: A method-comparison study with respiratory gas analysis. BMC Sports Sci. Med. Rehabil. 2019, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Albuquerque, I.; Parent, M.; Gagnon, J.F.; Lafond, D.; Tremblay, S.; Falk, T.H. Multi-Scale Heart Beat Entropy measures for mental workload assessment of ambulant users. Entropy 2019, 21, 783. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Lee, S. Wristband-type wearable health devices to measure construction workers’ physical demands. Autom. Constr. 2017, 83, 330–340. [Google Scholar] [CrossRef]
- Jebelli, H.; Choi, B.; Kim, H.; Lee, S. Feasibility study of a wristband-type wearable sensor to understand construction workers’ physical and mental status. In Proceedings of the Construction Research Congress, New Orleans, LA, USA, 2–4 April 2018; pp. 40–50. [Google Scholar] [CrossRef]
- Alomari, A.; Alfgih, M.; Ibrahim, A.A. Wet bulb globe temperature (WBGT) among solid waste collection workers at Al Leith municipal. IOSR J. Environ. Sci. Toxicol. Food Technol. 2020, 14, 28–36. [Google Scholar]
- Son, T.W.; Ramli, D.A.; Aziz, A.A. Wearable heat stroke detection system in IoT-based Environment. In Proceedings of the 25th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems Procedia Computer Science, Virtual, 8–10 September 2021; pp. 3686–3695. [Google Scholar]
- Niedermann, R.; Wyss, E.; Annaheim, S.; Psikuta, A.; Davey, S.; Rossi, R.M. Prediction of human core body temperature using non-invasive measurement methods. Int. J. Biometeorol. 2014, 58, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, D.; Rischall, M.; Durgin, K.; Donoghue, M.; Pham, T.; Wyatt, T. Non-invasive zero-heat-flux technology compared with traditional core temperature measurements in the emergency department. Am. J. Emerg. Med. 2020, 38, 2383–2386. [Google Scholar] [CrossRef] [PubMed]
- Department of Occupational Safety and Health. Guidelines on Heat Stress Management at Workplace 2016. 2016. Available online: https://www.dosh.gov.my/index.php/legislation/guidelines/industrial-hygiene-1/2017-guidelines-heat-stress-management-at-workplace/file/ (accessed on 18 March 2022).
- Ahmed Bhuiyan, R.A.; Ahmed, N.; Amiruzzaman, M.; Islam, M.R. A robust feature extraction model for human activity characterization using 3-axis accelerometer and gyroscope data. Sensors 2020, 20, 6990. [Google Scholar] [CrossRef]
- ACGIH. Heat Stress and Heat Strain. In TLVs and BEIs. Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2015; pp. 218–227. [Google Scholar]
- Park, J.; Kim, Y.; Oh, I. Factors affecting heat-related diseases in outdoor workers exposed to extreme heat. Ann. Occup. Environ. Med. 2017, 29, 30. [Google Scholar] [CrossRef]
- Choi, J.H.; Loftness, V.; Lee, D.W. Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Build. Environ. 2012, 50, 165–175. [Google Scholar] [CrossRef]
- Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781–798. [Google Scholar] [CrossRef]
- Yao, R.; Li, Y.; Du, C.; Li, B. A ‘heart rate’-based model (PHSHR) for predicting personal heat stress in dynamic working environments. Build. Environ. 2018, 135, 318–329. [Google Scholar] [CrossRef] [Green Version]
- McGarr, G.W.; Saci, S.; King, K.E.; Topshee, S.; Richards, B.J.; Gemae, M.R. Heat strain in children during unstructured outdoor physical activity in a continental summer climate. Temperature 2020, 8, 80–89. [Google Scholar] [CrossRef]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Bürgisser, M.; Rossi, R.M.; Annaheim, S. Prediction of Core Body temperature based on skin temperature, heat flux, and heart rate under different exercise and clothing conditions in the heat in young adult males. Front. Physiol. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Parkova, I.; Vilumsone, A. Microclimate of smart garment. Sci. J. Riga Tech. Univ. 2011, 6, 99–103. [Google Scholar]
- Özdemir, H. Thermal comfort properties of clothing fabrics woven with polyester/cotton blend yarns. Autex Res. J. 2017, 17, 135–141. [Google Scholar] [CrossRef]
- Spelic, I.; Rogale, D.; Bogdanic, A.M. The study on effects of walking on the thermal properties of clothing and subjective comfort. Autex Res. J. 2020, 20, 22–243. [Google Scholar] [CrossRef]
- Patel, M.; Lal, S.K.L.; Kavanagh, D.; Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. 2011, 38, 7235–7242. [Google Scholar] [CrossRef]
- Ernst, G. Heart-rate variability-more than heart beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Lip, G.Y.H.; Shantsila, A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. 2019, 49, e13174. [Google Scholar] [CrossRef] [Green Version]
- Mccraty, R.; Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Orsila, R.; Virtanen, M.; Lukala, T.; Tarvainen, M.; Karjalainen, P.; Viik, J. Perceived mental stress and reactions in heart rate variability—A pilot study among employees of an electronics company. Int. J. Occup. Saf. Ergon. 2008, 14, 275–283. [Google Scholar] [CrossRef]
- Nwaogu, J.M.; Chan, A.P.C. Work-related stress, psychophysiological strain, and recovery among on-site construction personnel. Autom. Constr. 2021, 125, 103629. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. In IFMBE, Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1366–1369. [Google Scholar] [CrossRef]
- Amirian, I.; Toftegård Andersen, L.; Rosenberg, J.; Gögenur, I. Decreased heart rate variability in surgeons during night shifts. Can. J. Surg. 2014, 57, 300–304. [Google Scholar] [CrossRef] [Green Version]
- Dalmeida, K.M.; Masala, G.L. HRV features as viable physiological markers for stress detection using wearable devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.A.; Jeste, D.V.; Lee, E.E.; Wu, T.C.; Tu, X.; Kim, H.C.; Depp, C.A. Associations between heart rate variability measured with a wrist-worn sensor and older adults’ physical function: Observational study. JMIR mHealth uHealth 2019, 7, e13757. [Google Scholar] [CrossRef] [PubMed]
- Rieger, A.; Stoll, R.; Kreuzfeld, S.; Behrens, K.; Weippert, M. Heart rate and heart rate variability as indirect markers of surgeons’ intraoperative stress. Int. Arch. Occup. Environ. Health 2014, 87, 165–174. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.M.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Cosmo, C.; Seligowski, A.V.; Aiken, E.M.; Wout-Frank, M.; Philip, M.S. Heart Rate Variability features as predictors of Intermittent Theta-Burst Stimulation Response in Posttraumatic Stress Disorder. Neuromodul. Technol. Neural Interface 2022, 25, 588–595. [Google Scholar] [CrossRef]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giummarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Parvaneh, S.; Swartz, T.; Haider, A.A.; Hassan, A.; Kulvatunyou, N. Stress among surgical attending physicians and trainees: A quantitative assessment during trauma activation and emergency surgeries. J. Trauma Acute Care Surg. 2016, 81, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, N.; Cao, J.; Lim, Y.; Kuroishi, S.; Miyazaki, Y.; Kitahara, S. Psychological effects of heart rate and physical vibration on the operation of construction machines: Experimental study. JMIR mHealth uHealth 2021, 9, e31637. [Google Scholar] [CrossRef]
- Peters, G.A.; Wong, M.L.; Joseph, J.W.; Sanchez, L.D. Pulse rate variability in emergency physicians during shifts: Pilot cross-sectional study. JMIR mHealth uHealth 2019, 7, e13909. [Google Scholar] [CrossRef]
- Fuentes-García, J.P.; Villafaina, S.; Collado-Mateo, D.; de la Vega, R.; Olivares, P.R.; Clemente-Suárez, V.J. Differences between high vs. low performance chess players in Heart Rate Variability during chess problems. Front. Psychol. 2019, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.D.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuusela, T. Methodological aspects of heart rate variability analysis. In Heart Rate Variability (HRV). Signal Analysis; Kamath, M.V., Watanabe, M.A., Upton, A.R.M., Eds.; CRC Press: Boca Raton, FL, USA, 2013; p. 9. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lu, W.A.; Pagaduan, J.C.; Kuo, C.D. A novel smartphone app for the measurement of ultra-short-term and short-term heart rate variability: Validity and reliability study. JMIR mHealth uHealth 2020, 8, e18761. [Google Scholar] [CrossRef]
- Behar, J.A.; Rosenberg, A.A.; Weiser-Bitoun, I.; Shemla, O.; Alexandrovich, A.; Konyukhov, E.; Yaniv, Y. PhysioZoo: A novel open access platform for heart rate variability analysis of mammalian electrocardiographic data. Front. Physiol. 2018, 9, 1390. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.D.; Goldberger, A.L. Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series. Entropy 2015, 17, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Smeeton, N.J. Attentional and perceptual capabilities are affected by high physical load in a simulated soccer decision-making task. Sports Exerc. Perform. Psychol. 2021, 10, 205–216. [Google Scholar] [CrossRef]
- Norton, K.; Norton, L.; Sadgrove, D. Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 2010, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Coenen, P.; Korshøj, M.; Hallman, D.M.; Huysmans, M.A.; van der Beek, A.J.; Straker, L.M.; Holtermann, A. Differences in heart rate reserve of similar physical activities during work and in leisure time—A study among Danish blue-collar workers. Physiol. Behav. 2018, 186, 45–51. [Google Scholar] [CrossRef]
- Menai, M.; van Hees, V.T.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A.; Sabia, S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: Results from the Whitehall II study. Sci. Rep. 2017, 8, 45772. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, S.; Zhao, X.; Yang, Z. Research on construction workers’ activity recognition based on smartphone. Sensors 2018, 18, 2667. [Google Scholar] [CrossRef]
- McCarney, R.; Warner, J.; Iliffe, S.; van Haselen, R.; Griffin, M.; Fisher, P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darko, A.; Chan, A.P.C. Strategies to promote green building technologies adoption in developing countries: The case of Ghana. Build. Environ. 2018, 130, 74–84. [Google Scholar] [CrossRef]
- Nachar, N. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Sandrone, G.; Rimoldi, O.; Malfatto, G.; Cerutti, S.; Malliani, A. Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. J. Hypertens. Suppl. 1984, 2, S383–S385. [Google Scholar]
- Zare, S.; Hasheminejad, N.; Ahmadi, S.; Bateni, M.; Baneshi, M.R.; Hemmatjo, R. A comparison of the correlation between ESI and other thermal indices (WBGT, WBDT, TWL, HI, SET, PET, PSI, and PSIHR): A field study. Health Scope 2018, 8, e63827. [Google Scholar] [CrossRef] [Green Version]
- Hoorfarasat, G.; Jafari, M.J.; Omidi, L.; Salehpour, S.; Khodakarim, S.; Haydarnezhad, N. Correlation between heat strain score index and WBGT index with physiological parameters in a glass manufacturing plant. Int. J. Occup. Hyg. 2015, 7, 201–208. [Google Scholar]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Jarosław, J.; Furgała, A.; Winiarska, A.; Kaczmarczyk, M.; Poniatowski, A. Cardiovascular response to different types of acute stress stimulations. Folia Med. Crac. 2019, 59, 95–110. [Google Scholar] [CrossRef]
- Uemae, T.; Uemae, M.; Kamijo, M. Evaluation of Psychological and Physiological Responses under Gradual Change of Thermal of Conditions with Aim to Create Index to Evaluate Thermal Comfort of Clothes. In Proceedings of the 7th International Conference on Kansei Engineering and Emotion Research (KEER), Kuching, Malaysia, 19–22 March 2018; pp. 495–503. [Google Scholar]
- Quendler, E.; Trieb, K.; Nimmerichter, A. Validation of automated detection of physical and mental stress during work in a Huhnermobil 225. Ann. Agric. Environ. Med. 2017, 24, 329–331. [Google Scholar] [CrossRef]
- Yasmeen, S.; Liu, H.; Wu, Y.; Li, B. Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China. J. Build. Eng. 2020, 30, 101281. [Google Scholar] [CrossRef]
- Garza, J.L.; Cavallari, J.M.; Eijckelhof, B.H.W.; Huysmans, M.A.; Thamsuwan, O.; Johnson, P.W. Office workers with high effort–reward imbalance and overcommitment have greater decreases in heart rate variability over a 2-h working period. Int. Arch. Occup. Environ. Health 2015, 88, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Järvelin-Pasanen, S.; Sinikallio, S.; Tarvainen, M.P. Heart rate variability and occupational stress-systematic review. Ind. Health 2018, 56, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Cheema, S.; Maisonneuve, P.; Abraham, A.; Chaabna, K.; Tom, A.; Ibrahim, H. Factors associated with perceived stress in Middle Eastern university students. J. Am. Coll. Health 2022, 70, 2462–2469. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Nguyen, B.V.; Do, H.T.T.; Nguyen, B.N.; Nguyen, V.T.; Vu, S.T.; Tran, T.T.T. Psychological stress and associated factors among municipal solid waste collectors in Hanoi, Vietnam: A cross-sectional study. PLoS ONE 2021, 16, e0254355. [Google Scholar] [CrossRef] [PubMed]
- Kêdoté, N.M.; Sopoh, G.E.; Tobada, S.B. Perceived stress at work and associated factors among E-waste workers in French-speaking west Africa. 2022. Int. J. Environ. Res. Public Health 2020, 19, 851. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, Y.; Xu, H.; O’Brien, W.H. Age differences in stress and coping: Problem-focused strategies mediate the relationship between age and positive affect. Int. J. Aging Hum. Dev. 2018, 86, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Mayor, E. Gender roles and traits in stress and health. Front. Psychol. 2015, 6, 779. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Moneghetti, K.J.; Christle, J.W.; Hadley, D.; Plews, D.; Froelicher, V. Heart Rate Variability: An old metric with new meaning in the era of using mhealth technologies for health and exercise training guidance. Part one: Physiology and methods. Arrhythm. Electrophysiol. Rev. 2018, 7, 193–198. [Google Scholar] [CrossRef]
Parameters (Unit) | Workers in Waste Management Facility | p-Value between Groups | |
---|---|---|---|
1. Group A | 2. Group B | ||
Workers’ characteristics | |||
Age (years) | 35.5 ± 16.8 | 33.3 ± 12.7 | 0.38 |
EXP (years) | 7.23 ± 4.6 | 9.29 ± 1.9 | 0.07 |
BMI (%) | 21.2 ± 3.5 | 22.6 ± 1.4 | 0.23 |
Physical and environmental | |||
HR (bpm) | 94.2 ± 13.2 | 94.3 ± 16.2 | 0.21 |
%HRR (%) | 21.6 ± 12.7 | 23.2 ± 14.5 | 0.15 |
PA (mG) | 222.4 ± 116.3 | 261.8 ± 126.2 | <0.001 |
BS TEMP (°C) | 31.4 ± 1.86 | 31.9 ± 2.02 | <0.001 |
WBGT (°C) | 30.0 ± 0.72 | 31.2 ± 0.57 | <0.001 |
HRV time-domain | |||
RRI (ms) | 650.3 ± 94.5 | 653.8 ± 106.6 | 0.21 |
SDRR (ms) | 15.4 ± 16.2 | 25.6 ± 16.2 | 0.13 |
CVRR | 0.039 ± 0.003 | 0.039 ± 0.039 | 0.14 |
NN50 | 20.2 ± 20.8 | 30.5 ± 30.2 | <0.001 |
pNN50 (%) | 0.058 ± 0.058 | 0.083 ± 0.087 | <0.001 |
RMSSD (ms) | 21.7 ± 8.00 | 24.3 ± 9.87 | <0.001 |
HRV frequency-domain | |||
LF power (ms2) | 1070.5 ± 8853 | 695.6 ± 1120 | <0.001 |
HF power (ms2) | 263.0 ± 537.6 | 740.6 ± 695.6 | <0.001 |
LF/HF | 3.74 ± 7.58 | 2.38 ± 2.65 | <0.001 |
Independent Variable | Dependent Variable: BS TEMP | |||
---|---|---|---|---|
Β | S.E. | Std. β | p-Value | |
AGE | 0.011 | 0.0037 | 0.0962 | 0.02 |
EXP | −0.011 | 0.012 | −0.0249 | 0.36 |
BMI | −0.0853 | 0.0649 | −0.0572 | 0.19 |
HR | 0.060 | 0.0085 | 0.412 | <0.0001 |
PA | 1.78 | 0.398 | 0.111 | <0.0001 |
WBGT | 0.335 | 0.062 | 0.120 | <0.0001 |
SDNN | −0.0016 | 0.0382 | −0.0017 | 0.97 |
CVRR | 12.8 | 24.6 | 0.0212 | 0.60 |
RMSSD | −0.0067 | 0.0072 | −0.030 | 0.35 |
LF power | 0.00001 | 0.00001 | 0.0096 | 0.69 |
HF power | 0.00001 | 0.00001 | −0.0210 | 0.34 |
LF/HF | 0.012 | 0.0065 | −0.0341 | 0.17 |
(a) Effect of Independent Variable (HR) on BS TEMP | ||||
Independent Variable | Dependent Variable: BS TEMP | |||
Estimated | S.E. | t-Value | p-Value | |
HR | 0.0686 | 0.0029 | 23.7 | <0.001 |
(Intercept) | 30.0 | 0.0738 | 406.8 | <0.001 |
Adjusted R2 | 0.223 | |||
F static value | 559.9 | <0.001 | ||
(b) Effect of Independent Variable (PA) on BS TEMP | ||||
Independent Variable | Dependent Variable: BS TEMP | |||
Estimated | S.E. | t-Value | p-Value | |
PA | 4.96 | 0.342 | 14.5 | <0.001 |
(Intercept) | 30.4 | 0.088 | 344.6 | <0.001 |
Adjusted R2 | 0.198 | |||
F static value | 210.8 | <0.001 | ||
(c) Effect of Independent Variable (WBGT) on BS TEMP | ||||
Independent Variable | Dependent Variable: BS TEMP | |||
Estimated | S.E. | t-Value | p-Value | |
WBGT | 0.596 | 0.066 | 9.10 | <0.001 |
(Intercept) | 13.5 | 1.98 | 6.83 | <0.001 |
Multiple R2 | 0.048 | |||
F static value | 82.9 | <0.001 | ||
(d) Effect of Independent Variable (AGE) on BS TEMP | ||||
Independent Variable | Dependent Variable: BS TEMP | |||
Estimated | S.E. | t-Value | p-Value | |
AGE | 0.0094 | 0.0026 | 3.61 | <0.001 |
(Intercept) | 31.8 | 0.104 | 298.63 | <0.001 |
Multiple R2 | 0.0062 | |||
F static value | 813.1 | <0.001 |
Independent Variables | Dependent Variables | |||||
---|---|---|---|---|---|---|
%HRR | LF/HF | |||||
B | S.E. | p-Value | B | S.E. | p-Value | |
BMI | −0.099 | 0.145 | 0.50 | |||
RRI | −0.0089 | 0.0014 | <0.001 | |||
PA | 12.5 | 1.26 | <0.001 | −2.25 | 1.07 | 0.04 |
BS TEMP | 0.772 | 0.080 | <0.001 | −0.163 | 0.0646 | 0.01 |
AGE | 0.270 | 0.0082 | <0.001 | 0.0046 | 0.0085 | 0.59 |
EXP | 0.008 | 0.045 | 0.86 | −0.218 | 0.0324 | <0.001 |
LF power | 0.00001 | 0.0001 | 0.61 | 0.0003 | 0.00001 | <0.001 |
Independent Variable | Dependent Variable: %HRR | VIF | ||||
---|---|---|---|---|---|---|
Partial β | S.E. | Standard β | t-Value | p-Value | ||
PA | 37.1 | 1.94 | 0.340 | 19.2 | <0.001 | 1.11 |
B.S. TEMP | 2.34 | 0.122 | 0.339 | 19.1 | <0.001 | 1.11 |
AGE | 0.269 | 0.0134 | 0.339 | 20.0 | <0.001 | 1.01 |
(Intercept) | −70.1 | 3.75 | − | −18.7 | <0.001 | − |
Adjusted R2 | 0.449 | |||||
F static value | 529.0 | |||||
Sig. | <0.001 |
Independent Variable | Dependent Variable: LF/HF | VIF | ||||
---|---|---|---|---|---|---|
Partial β | S.E. | Standard β | t-Value | p-Value | ||
RRI | −0.0065 | 0.0012 | −0.147 | −6.11 | <0.001 | 1.27 |
B.S. TEMP | 0.186 | 0.0549 | 0.088 | 2.74 | 0.006 | 1.26 |
LF power | 0.0003 | 0.00001 | 0.561 | 18.3 | <0.001 | 1.01 |
EXP | −0.205 | 0.0425 | −0.018 | −8.11 | <0.001 | 1.01 |
(Intercept) | 12.9 | 2.22 | − | 5.81 | <0.001 | − |
Adjusted R2 | 0.356 | |||||
F static value | 156.6 | |||||
Sig. | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kageyama, I.; Hashiguchi, N.; Cao, J.; Niwa, M.; Lim, Y.; Tsutsumi, M.; Yu, J.; Sengoku, S.; Okamoto, S.; Hashimoto, S.; et al. Determination of Waste Management Workers’ Physical and Psychological Load: A Cross-Sectional Study Using Biometric Data. Int. J. Environ. Res. Public Health 2022, 19, 15964. https://doi.org/10.3390/ijerph192315964
Kageyama I, Hashiguchi N, Cao J, Niwa M, Lim Y, Tsutsumi M, Yu J, Sengoku S, Okamoto S, Hashimoto S, et al. Determination of Waste Management Workers’ Physical and Psychological Load: A Cross-Sectional Study Using Biometric Data. International Journal of Environmental Research and Public Health. 2022; 19(23):15964. https://doi.org/10.3390/ijerph192315964
Chicago/Turabian StyleKageyama, Itsuki, Nobuki Hashiguchi, Jianfei Cao, Makoto Niwa, Yeongjoo Lim, Masanori Tsutsumi, Jiakan Yu, Shintaro Sengoku, Soichiro Okamoto, Seiji Hashimoto, and et al. 2022. "Determination of Waste Management Workers’ Physical and Psychological Load: A Cross-Sectional Study Using Biometric Data" International Journal of Environmental Research and Public Health 19, no. 23: 15964. https://doi.org/10.3390/ijerph192315964
APA StyleKageyama, I., Hashiguchi, N., Cao, J., Niwa, M., Lim, Y., Tsutsumi, M., Yu, J., Sengoku, S., Okamoto, S., Hashimoto, S., & Kodama, K. (2022). Determination of Waste Management Workers’ Physical and Psychological Load: A Cross-Sectional Study Using Biometric Data. International Journal of Environmental Research and Public Health, 19(23), 15964. https://doi.org/10.3390/ijerph192315964