Development, Validation, and Utilization of a Social Media Use and Mental Health Questionnaire among Middle Eastern and Western Adults: A Pilot Study from the UAE
Abstract
:1. Introduction
2. Methods
2.1. Development of the Questionnaire
2.2. Participants and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Development and Validation
3.2. Utilization
3.3. Bivariate Analysis
3.4. Multivariable Analysis
4. Discussion
4.1. Platforms and Activity
4.2. Theoretical and Practical Contributions
4.3. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, S. Number of Worldwide Social Network Users 2027|Statista. 26 July 2022. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed on 12 August 2022).
- Barnhart, B. 41 Must-Know Social Media Marketing Statistics for 2022|Sprout Social. 22 March 2022. Available online: https://sproutsocial.com/insights/social-media-statistics/ (accessed on 12 August 2022).
- Grajales, F.J.; Sheps, S.; Ho, K.; Novak-Lauscher, H.; Eysenbach, G. Social Media: A Review and Tutorial of Applications in Medicine and Health Care. J. Med. Internet Res. 2014, 16, e13. [Google Scholar] [CrossRef]
- Giustini, D.M.; Ali, S.M.; Fraser, M.; Boulos, M.K. Effective uses of social media in public health and medicine: A systematic review of systematic reviews. Online J. Public Health Inform. 2018, 10, e215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrigan, P.W.; Watson, A.C. Understanding the Impact of Stigma on People with Mental Illness. World Psychiatry 2002, 1, 16. [Google Scholar] [PubMed]
- Corrigan, P.W.; Shapiro, J.R. Measuring the impact of programs that challenge the public stigma of mental illness. Clin. Psychol. Rev. 2010, 30, 907–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.; Robinson, E.; Evans-Lacko, S.; Corker, E.; Rebollo-Mesa, I.; Rose, D.; Thornicroft, G. Public knowledge, attitudes, social distance and reported contact regarding people with mental illness 2009–2015. Acta Psychiatr. Scand. 2016, 134, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, L.; Stjernswärd, S.; Svensson, B. Changes in attitudes, intended behaviour, and mental health literacy in the Swedish population 2009-2014: An evaluation of a national antistigma programme. Acta Psychiatr. Scand. 2016, 134 (Suppl. 446), 71–79. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, R.; Archiati, L.; Buizza, C.; Pasqualetti, P.; Rossi, G.; Pioli, R. Attitude towards psychiatric patients: A pilot study in a northern Italian town. Eur. Psychiatry 2001, 16, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Hackler, A.H. Contact and Stigma toward Mental Illness: Measuring the Effectiveness of Two Video Interventions. 2011. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.975.5736&rep=rep1&type=pdf (accessed on 12 August 2022).
- Angermeyer, M.C.; Dietrich, S. Public beliefs about and attitudes towards people with mental illness: A review of population studies. Acta Psychiatr. Scand. 2006, 113, 163–179. [Google Scholar] [CrossRef]
- Stuber, J.P.; Rocha, A.; Christian, A.; Link, B.G. Conceptions of Mental Illness: Attitudes of Mental Health Professionals and the General Public. Psychiatr. Serv. 2014, 65, 490. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.S.; Coleman, D.; Lee, J.; Squire, P.N.; Friesen, B.J. Children’s stigmatization of childhood depression and ADHD: Magnitude and demographic variation in a national sample. J. Am. Acad. Child Adolesc. Psychiatry 2008, 47, 912–920. [Google Scholar] [CrossRef]
- Perry, B.L.; Pescosolido, B.A.; Martin, J.K.; McLeod, J.D.; Jensen, P.S. Comparison of public attributions, attitudes, and stigma in regard to depression among children and adults. Psychiatr. Serv. 2007, 58, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Pescosolido, B. Behavior ST-J of Health and Social, 2000 Undefined. Of Fear and Loathing: The Role of Disturbing Behavior, Labels, and Causal Attributions in Shaping Public Attitudes toward People with Mental Illness. JSTOR. Available online: https://www.jstor.org/stable/2676306 (accessed on 12 August 2022).
- Link, B.G.; Phelan, J.C.; Bresnahan, M.; Stueve, A.; Pescosolido, B.A. Public conceptions of mental illness: Labels, causes, dangerousness, and social distance. Am. J. Public Health 1999, 89, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dardas, L.A.; Simmons, L.A. The stigma of mental illness in Arab families: A concept analysis. J. Psychiatr. Ment. Health Nurs. 2015, 22, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Aloud, N.; Rathur, A. Factors affecting attitudes toward seeking and using formal mental health and psychological services among Arab Muslim populations. J. Muslim. Ment. Health 2009, 4, 79–103. [Google Scholar] [CrossRef]
- Youssef, J.; Deane, F.P. Factors influencing mental-health help-seeking in Arabic-speaking communities in Sydney, Australia. Ment. Health Relig. Cult. 2006, 9, 43–66. [Google Scholar] [CrossRef]
- Al-Krenawi, A. Mental health practice in Arab countries. Curr. Opin. Psychiatry 2005, 18, 560–564. [Google Scholar] [CrossRef]
- Naslund, J.A.; Aschbrenner, K.A.; Marsch, L.A.; Bartels, S.J. Feasibility and acceptability of Facebook for health promotion among people with serious mental illness. Digit. Health 2016, 2, 205520761665482. [Google Scholar] [CrossRef] [Green Version]
- Highton-Williamson, E.; Priebe, S.; Giacco, D. Online social networking in people with psychosis: A systematic review. Int. J. Soc. Psychiatry 2015, 61, 92–101. [Google Scholar] [CrossRef]
- Bucci, S.; Schwannauer, M.; Berry, N. The digital revolution and its impact on mental health care. Psychol. Psychother. Theory Res. Pract. 2019, 92, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.S.H.; Rouf, A.; Allman-Farinelli, M. Effectiveness and Behavioral Mechanisms of Social Media Interventions for Positive Nutrition Behaviors in Adolescents: A Systematic Review. J. Adolesc. Health 2018, 63, 531–545. [Google Scholar] [CrossRef]
- Hamm, M.P.; Shulhan, J.; Williams, G.; Milne, A.; Scott, S.D.; Hartling, L. A systematic review of the use and effectiveness of social media in child health. BMC Pediatr. 2014, 14, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybylski, A.K.; Weinstein, N. A Large-Scale Test of the Goldilocks Hypothesis. Psychol. Sci. 2017, 28, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorhead, S.A.; Hazlett, D.E.; Harrison, L.; Carroll, J.K.; Irwin, A.; Hoving, C. A New Dimension of Health Care: Systematic Review of the Uses, Benefits, and Limitations of Social Media for Health Communication. J. Med. Internet Res. 2013, 15, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, F.; Oyewande, A.A.; Abdalla, L.F.; Ehsanullah, R.C.; Khan, S. Social Media Use and Its Connection to Mental Health: A Systematic Review. Cureus 2020, 12, e8627. [Google Scholar] [CrossRef]
- Sport, D.L.; Society, E. “Better understanding about what’s going on”: Young Australians’ use of digital technologies for health and fitness. Sport Educ. Soc. 2018, 25, 1–13. [Google Scholar] [CrossRef]
- Goodyear, V.A.; Armour, K.M.; Wood, H. Young people and their engagement with health-related social media: New perspectives. Sport Educ. Soc. 2019, 24, 673. [Google Scholar] [CrossRef] [Green Version]
- Goodyear, V.A.; Boardley, I.; Chiou, S.Y.; Fenton, S.A.M.; Makopoulou, K.; Stathi, A.; Wallis, G.A.; Veldhuijzen van Zanten, J.J.C.S.; Thompson, J.L. Social media use informing behaviours related to physical activity, diet and quality of life during COVID-19: A mixed methods study. BMC Public Health 2021, 21, 1333. [Google Scholar] [CrossRef]
- Faelens, L.; Hoorelbeke, K.; Soenens, B.; Van Gaeveren, K.; De Marez, L.; De Raedt, R.; Koster, E.H.W. Social media use and well-being: A prospective experience-sampling study. Comput. Hum. Behav. 2021, 114, 106510. [Google Scholar] [CrossRef]
- Arampatzi, E.; Burger, M.J.; Novik, N. Social Network Sites, Individual Social Capital and Happiness. J. Happiness Stud. 2018, 19, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Orben, A.; Dienlin, T.; Przybylski, A.K. Brief Report: Social media’s enduring effect on adolescent life satisfaction. Proc. Natl. Acad. Sci. USA 2019, 116, 10226. [Google Scholar] [CrossRef]
- Orben, A.; Przybylski, A.K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, P.; Turk, D.; Jilka, S.; Cella, M. Measuring attitudes towards mental health using social media: Investigating stigma and trivialisation. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlHamad, N.S.; AlAmri, K. The association between social media use and depressive symptoms among adults in Riyadh, Saudi Arabia. J. Fam. Med. Prim. Care 2021, 10, 3336. [Google Scholar] [CrossRef] [PubMed]
- Malaeb, D.; Salameh, P.; Barbar, S.; Awad, E.; Haddad, C.; Hallit, R.; Sacre, H.; Akel, M.; Obeid, S.; Hallit, S. Problematic social media use and mental health (depression, anxiety, and insomnia) among Lebanese adults: Any mediating effect of stress? Perspect. Psychiatr. Care 2021, 57, 539–549. [Google Scholar] [CrossRef]
- Muñiz-Velázquez, J.A.; Gómez-Baya, D.; Lozano Delmar, J. Exploratory Study of the Relationship Between Happiness and the Rise of Media Consumption During COVID-19 Confinement. Front. Psychol. 2021, 12, 566517. [Google Scholar] [CrossRef]
- Burke, T.A.; Kutok, E.R.; Dunsiger, S.; Nugent, N.R.; Patena, J.V.; Riese, A.; Ranney, M.L. A national snapshot of U.S. adolescents’ mental health and changing technology use during COVID-19. Gen. Hosp. Psychiatry 2021, 71, 147–148. [Google Scholar] [CrossRef]
- Gupta, K.; Vidyapeeth, B.; Dsilva, H.M.; Dsilva, M.H. Proliferation of Social Media during the COVID-19 Pandemic: A Statistical Enquiry. Researchgate.net. Available online: https://www.researchgate.net/profile/Kirti-Gupta/publication/345714490_Proliferation_of_Social_Media_during_the_COVID-19_Pandemic_A_Statistical_Enquiry/links/5fab92d2458515078107c133/Proliferation-of-Social-Media-during-the-COVID-19-Pandemic-A-Statistical-Enquiry.pdf (accessed on 13 August 2022).
- Islam, M.S.; Sujan, M.S.H.; Tasnim, R.; Mohona, R.A.; Ferdous, M.Z.; Kamruzzaman, S.K.; Toma, T.Y.; Sakib, M.N.; Pinky, K.N.; Islam, M.R.; et al. Problematic Smartphone and Social Media Use Among Bangladeshi College and University Students Amid COVID-19: The Role of Psychological Well-Being and Pandemic Related Factors. Front. Psychiatry 2021, 12, 647386. [Google Scholar] [CrossRef]
- Golemis, A.; Voitsidis, P.; Parlapani, E.; Nikopoulou, V.A.; Tsipropoulou, V.; Karamouzi, P.; Giazkoulidou, A.; Dimitriadou, A.; Kafetzopoulou, C.; Holeva, V.; et al. Young adults’ coping strategies against loneliness during theCOVID-19-related quarantine in Greece. Health Promot. Int. 2022, 37, 1–13. [Google Scholar] [CrossRef]
- Geirdal, A.Ø.; Ruffolo, M.; Leung, J.; Thygesen, H.; Price, D.; Bonsaksen, T.; Schoultz, M. Mental health, quality of life, wellbeing, loneliness and use of social media in a time of social distancing during the COVID-19 outbreak. A cross-country comparative study. J. Ment. Health 2021, 30, 148–155. [Google Scholar] [CrossRef]
- Lee, Y.; Jeon, Y.J.; Kang, S.; Shin, J.I.; Jung, Y.-C.; Jung, S.J. Social media use and mental health during the COVID-19 pandemic in young adults: A meta-analysis of 14 cross-sectional studies. BMC Public Health 2022, 22, 1–8. [Google Scholar] [CrossRef]
- Coyne, S.M.; Rogers, A.A.; Zurcher, J.D.; Stockdale, L.; Booth, M. Does time spent using social media impact mental health?: An eight year longitudinal study. Comput. Hum. Behav. 2020, 104, 106160. [Google Scholar] [CrossRef]
- Naslund, J.A.; Gonsalves, P.P.; Gruebner, O.; Pendse, S.R.; Smith, S.L.; Sharma, A.; Raviola, G. Digital Innovations for Global Mental Health: Opportunities for Data Science, Task Sharing, and Early Intervention. Curr. Treat. Opt. Psychiatry 2019, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Andersson, G.; Carlbring, P.; Rozental, A. Response and Remission Rates in Internet-Based Cognitive Behavior Therapy: An Individual Patient Data Meta-Analysis. Front. Psychiatry 2019, 10, 749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairburn, C.G.; Patel, V. The impact of digital technology on psychological treatments and their dissemination. Behav. Res. Ther. 2017, 88, 19. [Google Scholar] [CrossRef] [PubMed]
- Batterham, P.J.; Calear, A.L. Preferences for Internet-Based Mental Health Interventions in an Adult Online Sample: Findings From an Online Community Survey. JMIR Ment. Health 2017, 4, e26. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Chen, E.; Wood, D.; Ysseldyk, R. Online Social Networking and Mental Health among Older Adults: A Scoping Review. Can. J. Aging Rev. Can. Vieil. 2022, 41, 26–39. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Meier, A.; Beyens, I. Social media use and its impact on adolescent mental health: An umbrella review of the evidence. Curr. Opin. Psychol. 2022, 44, 58–68. [Google Scholar] [CrossRef]
- Evans-Lacko, S.; Little, K.; Meltzer, H.; Rose, D.; Rhydderch, D.; Henderson, C.; Thornicroft, G. Development and psychometric properties of the Mental Health Knowledge Schedule. Can. J. Psychiatry 2010, 55, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.M.; Dear, M.J. Scaling community attitudes toward the mentally ill. Schizophr. Bull. 1981, 7, 225–240. [Google Scholar] [CrossRef]
- Evans-Lacko, S.; Rose, D.; Little, K.; Flach, C.; Rhydderch, D.; Henderson, C.; Thornicroft, G. Development and psychometric properties of the reported and intended behaviour scale (RIBS): A stigma-related behaviour measure. Epidemiol. Psychiatr. Sci. 2011, 20, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Santos, A.; Reynaldo, J. Cronbach’s Alpha: A Tool for Assessing the Reliability of Scales. J. Ext. 1999, 37. Available online: https://archives.joe.org/joe/1999april/tt3.php (accessed on 13 August 2022).
- Jacobs, P.; Viechtbauer, W. Estimation of the biserial correlation and its sampling variance for use in meta-analysis. Res. Synth. Methods 2017, 8, 161–180. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D.D. On the practice of dichotomization of quantitative variables. Psychol. Methods 2002, 7, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Abolfotouh, M.A.; Almutairi, A.F.; Almutairi, Z.; Salam, M.; Alhashem, A.; Adlan, A.A.; Modayfer, O. Attitudes toward mental illness, mentally ill persons, and help-seeking among the Saudi public and sociodemographic correlates. Psychol. Res. Behav. Manag. 2019, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Eapen, V.; Ghubash, R. Help-seeking for mental health problems of children: Preferences and attitudes in the United Arab Emirates. Psychol. Rep. 2004, 94, 663–667. [Google Scholar] [CrossRef]
- Coker, E.M. Selfhood and social distance: Toward a cultural understanding of psychiatric stigma in Egypt. Soc. Sci. Med. 2005, 61, 920–930. [Google Scholar] [CrossRef]
- Shahrour, T.M.; Rehmani, R.S. Testing psychiatric stigma in a general hospital in Saudi Arabia. Saudi Med. J. 2009, 30, 1336–1339. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19838444 (accessed on 17 August 2022).
- Dalky, H.F. Perception and coping with stigma of mental illness: Arab families’ perspectives. Issues Ment. Health Nurs. 2012, 33, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Beldie, A.; den Boer, J.A.; Brain, C.; Constant, E.; Figueira, M.L.; Filipcic, I.; Gillain, B.; Jakovljevic, M.; Jarema, M.; Jelenova, D.; et al. Fighting stigma of mental illness in midsize European countries. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47 (Suppl. 1), 1–38. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.B.; Foster, J.L.H. A Call to Action. A Critical Review of Mental Health Related Anti-stigma Campaigns. Front. Public Health 2020, 8, 569539. [Google Scholar] [CrossRef] [PubMed]
- Angermeyer, M.C.; Millier, A.; Rémuzat, C.; Refaï, T.; Toumi, M. Attitudes and beliefs of the French public about schizophrenia and major depression: Results from a vignette-based population survey. BMC Psychiatry 2013, 13, 313. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Kassam, A.; Leese, M.; Butler, G.; Thornicroft, G. Public attitudes towards people with mental illness in England and Scotland, 1994–2003. Br. J. Psychiatry 2009, 194, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Doumit, C.A.; Haddad, C.; Sacre, H.; Salameh, P.; Akel, M.; Obeid, S.; Akiki, M.; Mattar, E.; Hilal, N.; Hallit, S.; et al. Knowledge, attitude and behaviors towards patients with mental illness: Results from a national Lebanese study. PLoS ONE 2019, 14, e0222172. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Baruah, A. Awareness about Mental Illness among the Family Members of Persons with Mental Illness in a Selected District of Assam. Indian Soc. Psychiatry 2017, 33, 171–176. Available online: https://www.indjsp.org/article.asp?issn=0971-9962;year=2017;volume=33;issue=2;spage=171;epage=176;aulast=Ahmed (accessed on 17 August 2022). [CrossRef]
- Subramaniam, M.; Abdin, E.; Picco, L.; Pang, S.; Shafie, S.; Vaingankar, J.A.; Kwok, K.W.; Verma, K.; Chong, S.A. Stigma towards people with mental disorders and its components – a perspective from multi-ethnic Singapore. Epidemiol. Psychiatr. Sci. 2017, 26, 371. [Google Scholar] [CrossRef] [Green Version]
- Ewalds-Kvist, B.; Högberg, T.; Lützén, K. Impact of gender and age on attitudes towards mental illness in Sweden. Nord. J. Psychiatry 2013, 67, 360–368. [Google Scholar] [CrossRef]
- Buizza, C.; Ghilardi, A.; Ferrari, C. Beliefs and Prejudices Versus Knowledge and Awareness: How to Cope Stigma Against Mental Illness. A College Staff E-survey. Community Ment. Health J. 2017, 53, 589–597. [Google Scholar] [CrossRef]
- Pierce, M.L. Stigma and Knowledge: A Questionnaire and Literature Review. 2012. Available online: https://rave.ohiolink.edu/etdc/view?acc_num=csu1354753668 (accessed on 17 August 2022).
- Arkar, H.; Eker, D. Influence of having a hospitalized mentally ill member in the family on attitudes toward mental patients in Turkey. Soc. Psychiatry Psychiatr. Epidemiol. 1992, 27, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Torous, J.; Ernala, S.K.; Rizuto, C.; Stafford, A.; De Choudhury, M. A computational study of mental health awareness campaigns on social media. Transl. Behav. Med. 2019, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Chandra Guntuku, S.; Yaden, D.B.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Detecting Depression and Mental Illness on Social Media: An Integrative Review. Curr. Opin. Behav. Sci. 2017, 18, 43–49. [Google Scholar] [CrossRef]
- Berger, M.; Wagner, T.; Baker, L.C. Internet Use and Stigmatized Illness. Soc. Sci. Med. 2005, 61, 1821–1827. Available online: https://www.sciencedirect.com/science/article/pii/S0277953605001206 (accessed on 17 August 2022). [CrossRef]
- Baker, D.A.; Algorta, G.P. The Relationship between Online Social Networking and Depression: A Systematic Review of Quantitative Studies. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.A.; Ton, A.; Selkie, E.; Evans, Y. Secret Society 123: Understanding the Language of Self-Harm on Instagram. J. Adolesc. Health 2016, 58, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.L.; Giles, L.M.; Primack, B.A. Association between social media use and depression among US young adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Lis, E.; Wood, M.A.; Chiniara, C.; Biskin, R.; Montoro, R. Psychiatrists’ Perceptions of Facebook and Other Social Media. Psychiatr. Q. 2015, 86, 597–602. [Google Scholar] [CrossRef]
- Budhwani, H.; Sun, R. Creating COVID-19 Stigma by Referencing the Novel Coronavirus as the ‘Chinese virus’ on Twitter: Quantitative Analysis of Social Media Data. J. Med. Internet Res. 2020, 22, e19301. [Google Scholar] [CrossRef]
- Gruebner, O.; Lowe, S.R.; Sykora, M.; Shankardass, K.; Subramanian, S.V.; Galea, S. A novel surveillance approach for disaster mental health. PLoS ONE 2017, 12, e0181233. [Google Scholar] [CrossRef] [Green Version]
- Cavazos-Rehg, P.A.; Krauss, M.J.; Sowles, S.; Connolly, S.; Rosas, C.; Bharadwaj, M.; Bierut, L.J. A content analysis of depression-related tweets. Comput. Hum. Behav. 2016, 54, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reavley, N.J.; Pilkington, P.D. Use of Twitter to monitor attitudes toward depression and schizophrenia: An exploratory study. PeerJ 2014, 2014, e647. [Google Scholar] [CrossRef] [PubMed]
- Berry, N.; Lobban, F.; Belousov, M.; Emsley, R.; Nenadic, G.; Bucci, S. # WhyWeTweetMH: Understanding why people use Twitter to discuss mental health problems. J. Med. Internet Res. 2017, 19, e107. Available online: https://www.jmir.org/2017/4/e107/ (accessed on 17 August 2022). [PubMed]
Variables | N (%) |
---|---|
Origin | |
The Middle East and North Africa (MENA) | 496 (49.6) |
Westerners | 505 (50.4) |
Gender | |
Female | 611 (61.0) |
Male | 390 (39.0) |
Age | |
18 to 29 years old | 612 (61.1) |
30+ years old | 389 (38.9) |
Highest level of education | |
Highschool | 264 (26.4) |
Undergraduate degree | 384 (38.4) |
Postgraduate degree | 353 (35.3) |
Social media use in a day | |
Light use (less than an hour) | 136 (13.6) |
Moderate use (1 to 5 h) | 595 (59.4) |
Severe use (6+ h) | 270 (27) |
An active member in which communities? a | |
Active Facebook communities | 244 (20.7) |
Active in video games communities | 161 (13.7) |
Other communities | 260 (22.1) |
Not active on any online community | 511 (43.5) |
Have you heard of online support groups? | |
No | 277 (27.7) |
Yes | 724 (72.3) |
Does a relative, friend, or anyone you know suffer from a mental illness? | |
No | 438 (43.8) |
Yes | 563 (56.2) |
Social media platforms used a | |
425 (12) | |
648 (18.3) | |
262 (7.4) | |
128 (3.6) | |
TikTok | 315 (8.9) |
228 (6.4) | |
Snapchat | 240 (6.8) |
YouTube | 547 (15.5) |
Discord | 115 (3.3) |
163 (4.6) | |
406 (11.5) | |
Other | 40 (1.1) |
None | 20 (0.6) |
How many people do you think are underdiagnosed with depression? b | |
6% | 62 (6.2) |
11% | 132 (13.2) |
20% | 336 (33.6) |
35% | 471 (47.1) |
Item | Factor a | ||
---|---|---|---|
1 | 2 | 3 | |
| * | 0.721 | * |
| * | 0.458 | * |
| * | 0.756 | * |
| * | 0.613 | * |
| * | 0..505 | * |
| * | 0.520 | * |
| * | 0.699 | * |
| 0.545 | * | * |
| 0.761 | * | * |
| 0.778 | * | * |
| 0.705 | * | * |
| * | * | 0.570 |
| * | * | 0.690 |
| * | * | 0.740 |
| * | * | 0.627 |
| * | * | 0.704 |
| * | * | 0.599 |
Factors and Items | Item Mean | Factor Mean | SD | Alpha |
---|---|---|---|---|
Intolerance | 2.68 | 0.79 | 0.81 | |
Mental illness is a state of mind and not a physical condition. | 3.09 | |||
People with mental illness cannot take care of themselves and must be hospitalized. | 2.52 | |||
There is something about mentally ill people’s behavior online that makes it easy to tell them from ordinary people. | 2.80 | |||
People who develop signs of mental disorders should be limited from using social media or outright forbidden. | 2.45 | |||
Mentally ill people are hostile or aggressive. | 2.40 | |||
Anyone with a history of mental disorders should be excluded from having any role with authority over others (e.g., admins) in an online community. | 2.36 | |||
People develop mental disorders due to heavier, emotional interactions with online communities and social media. | 3.10 | |||
Acceptance | 4.04 | 0.68 | 0.71 | |
Mental disorders are health conditions like any other. | 4.13 | |||
I would continue being an online friend to someone after discovering their mental disorder. | 4.15 | |||
I would be willing to engage in a relationship with someone that has a controlled mental disorder. | 3.85 | |||
Mentally ill people can live normally within a community. | 4.03 | |||
Digital care sentiment | 3.23 | 0.61 | 0.74 | |
An online support community or an online therapist would be safer for people in an actual community. | 3.05 | |||
Communities on social media can have a therapy-like effect on people with mental illness. | 3.28 | |||
Online support groups have a meaningful impact on one’s mental health. | 3.60 | |||
An online therapist or an online support group would be more convenient for my confidentiality. | 3.12 | |||
I would be comfortable sharing personal stories with members of an online support group. | 3.06 | |||
Online therapists can replace face-to-face interaction with therapists or counselors. | 2.68 |
Variable | N (%) | Mean Scores ± SD | ||
---|---|---|---|---|
MENA | WE | MENA | WE | |
Intolerance | 3.08 ± 0.64 | 2.28 ± 0.73 | ||
Low | 41 (8.3) | 229 (45.3) | ||
Medium | 96 (19.4) | 155 (30.7) | ||
High | 359 (72.4) | 121 (24.0) | ||
Acceptance | 3.87± 0.71 | 4.21 ± 0.61 | ||
Low | 178 (35.9) | 79 (15.6) | ||
Medium | 144 (29.0) | 139 (27.5) | ||
High | 174 (35.1) | 287 (56.8) | ||
Digital care sentiment | 3.18 ± 0.69 | 3.08 ± 0.62 | ||
Low | 158 (31.9) | 184 (36.4) | ||
Medium | 108 (21.8) | 128 (25.3) | ||
High | 230 (46.4) | 193 (38.2) |
Variable | Intolerance | Acceptance | Digital Care Sentiment | |||
---|---|---|---|---|---|---|
MENA | WE | MENA | WE | MENA | WE | |
Gender | ||||||
Male | 3.23 ± 0.57 | 2.42 ± 0.72 | 3.78 ± 0.64 | 4.15 ± 0.55 | 3.24 ± 0.67 | 3.01 ± 0.66 |
Female | 2.95 ± 0.66 | 2.21 ± 0.72 | 3.93 ± 0.77 | 4.24 ± 0.63 | 3.13 ± 0.70 | 3.12 ± 0.59 |
p-value | <0.001 | 0.001 | 0.009 | 0.046 | 0.034 | 0.038 |
Age categories | ||||||
18–29 years old | 3.05 ± 0.64 | 2.19 ± 0.70 | 3.96 ± 0.72 | 4.32 ± 0.59 | 3.19 ± 0.71 | 3.09 ± 0.56 |
30+ years old | 3.15 ± 0.62 | 2.38 ± 0.75 | 3.65 ± 0.67 | 4.10 ± 0.60 | 3.15 ± 0.64 | 3.07 ± 0.67 |
p-value | 0.045 | 0.002 | <0.001 | <0.001 | 0.290 | 0.374 |
Education level | ||||||
Highschool | 3.15 ± 0.54 | 2.25 ± 0.69 | 3.80 ± 0.72 | 4.23 ± 0.70 | 3.28 ± 0.64 | 3.10 ± 0.64 |
Undergraduate degree | 3.07 ± 0.63 | 2.30 ± 0.73 | 4.01 ± 0.72 | 4.19 ± 0.61 | 3.14 ± 0.73 | 3.07 ± 0.61 |
Postgraduate degree | 3.01 ± 0.74 | 2.28 ± 0.75 | 3.75 ± 0.66 | 4.23 ± 0.55 | 3.11 ± 0.68 | 3.09 ± 0.62 |
p-value | 0.145 | 0.843 | 0.002 | 0.761 | 0.052 | 0.882 |
Hours of use | ||||||
Light use | 3.06 ± 0.62 | 2.36 ± 0.76 | 3.71 ± 0.65 | 4.05 ± 0.60 | 3.09 ± 0.60 | 2.95 ± 0.74 |
Moderate use | 3.01 ± 0.65 | 2.21 ± 0.70 | 3.92 ± 0.75 | 4.28 ± 0.59 | 3.08 ± 0.73 | 3.05 ± 0.56 |
Severe use | 3.19 ± 0.59 | 2.41 ± 0.77 | 3.81 ± 0.66 | 4.16 ± 0.63 | 3.36 ± 0.60 | 3.27 ± 0.57 |
p-value | 0.013 | 0.028 | 0.103 | 0.003 | <0.001 | <0.001 |
Familiarity with online support groups | ||||||
No | 3.24 ± 0.53 | 2.40 ± 0.79 | 3.62 ± 0.68 | 3.98 ± 0.67 | 3.22 ± 0.64 | 2.96 ± 0.70 |
Yes | 2.97 ± 0.68 | 2.26 ± 0.72 | 4.02 ± 0.69 | 4.26 ± 0.58 | 3.15 ± 0.72 | 3.11 ± 0.60 |
p-value | <0.001 | 0.045 | <0.001 | <0.001 | 0.142 | 0.024 |
Familiarity with someone with a mental illness | ||||||
No | 3.18 ± 0.58 | 2.52 ± 0.69 | 3.67 ± 0.68 | 3.91 ± 0.66 | 3.21 ± 0.66 | 3.08 ± 0.64 |
Yes | 2.92 ± 0.68 | 2.19 ± 0.72 | 4.15 ± 0.67 | 4.33 ± 0.54 | 3.13 ± 0.74 | 3.08 ± 0.61 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.126 | 0.447 |
Variable | Intolerance | Acceptance | Digital Care Sentiment | ||||
---|---|---|---|---|---|---|---|
MENA | WE | MENA | WE | MENA | WE | ||
Active Facebook communities | r | 0.066 | 0.068 | −0.080 | −0.007 | 0.137 | 0.122 |
p-value | 0.141 | 0.124 | 0.076 | 0.874 | 0.002 | 0.006 | |
Active video games communities | r | 0.049 | 0.088 | −0.025 | 0.009 | 0.113 | 0.128 |
p-value | 0.279 | 0.048 | 0.580 | 0.836 | 0.012 | 0.004 | |
Not active on any online community | r | −0.133 | −0.098 | 0.142 | 0.042 | −0.236 | −0.205 |
p-value | 0.003 | 0.028 | 0.001 | 0.347 | <0.001 | <0.001 | |
r | 0.035 | −0.031 | −0.164 | 0.013 | 0.037 | 0.055 | |
p-value | 0.438 | 0.485 | <0.001 | 0.762 | 0.410 | 0.221 | |
r | −0.139 | 0.063 | 0.082 | 0.019 | 0.004 | 0.071 | |
p-value | 0.002 | 0.158 | 0.067 | 0.677 | 0.929 | 0.111 | |
r | −0.210 | 0.110 | −0.015 | −0.048 | −0.041 | 0.019 | |
p-value | <0.001 | 0.013 | 0.744 | 0.284 | 0.365 | 0.675 | |
r | −0.069 | 0.000 | −0.024 | 0.051 | −0.112 | 0.093 | |
p-value | 0.124 | 0.994 | 0.587 | 0.250 | 0.012 | 0.037 | |
TikTok | r | 0.035 | 0.036 | 0.116 | 0.055 | 0.023 | 0.107 |
p-value | 0.442 | 0.423 | 0.009 | 0.214 | 0.608 | 0.017 | |
r | −0.007 | 0.007 | 0.007 | 0.108 | 0.007 | 0.183 | |
p-value | 0.872 | 0.874 | 0.876 | 0.015 | 0.880 | <0.001 | |
Snapchat | r | −0.003 | −0.014 | 0.092 | 0.066 | 0.020 | −0.022 |
p-value | 0.946 | 0.760 | 0.040 | 0.137 | 0.657 | 0.617 | |
YouTube | r | −0.110 | 0.070 | 0.057 | −0.005 | 0.046 | −0.005 |
p-value | 0.014 | 0.118 | 0.204 | 0.903 | 0.302 | 0.904 | |
Discord | r | −0.020 | −0.044 | 0.048 | 0.114 | 0.134 | 0.087 |
p-value | 0.660 | 0.323 | 0.283 | 0.010 | 0.003 | 0.051 | |
r | −0.081 | −0.216 | 0.060 | 0.233 | 0.078 | 0.097 | |
p-value | 0.071 | <0.001 | 0.182 | <0.001 | 0.081 | 0.029 | |
r | −0.127 | 0.017 | 0.169 | 0.001 | −0.099 | −0.104 | |
p-value | 0.004 | 0.705 | <0.001 | 0.981 | 0.028 | 0.019 | |
Other | r | −0.030 | −0.047 | −0.043 | 0.030 | −0.002 | 0.092 |
p-value | 0.512 | 0.288 | 0.337 | 0.501 | 0.972 | 0.038 | |
None | r | 0.042 | −0.029 | −0.032 | −0.081 | −0.122 | −0.088 |
p-value | 0.350 | 0.510 | 0.477 | 0.068 | 0.006 | 0.049 |
Model 1: Linear Regression Taking the Intolerance Subscale as the Dependent Variable. | |||||
---|---|---|---|---|---|
Unstandardized Beta | Standardized Beta | p-Value | Confidence Interval | ||
Lower Bound | Upper Bound | ||||
Males Compared to females | 0.546 | 0.267 | <0.001 | 0.431 | 0.660 |
Age 30 years and above compared to 18–29 years | 0.501 | 0.219 | <0.001 | 0.383 | 0.620 |
6+ h of social media use compared with 1 to 5 h | 0.514 | 0.385 | <0.001 | 0.434 | 0.595 |
Knowledge of online support groups (no vs. yes) | 0.213 | 0.114 | <0.001 | 0.104 | 0.323 |
Familiarity with people with mental illness (no vs. yes) | 0.148 | 0.070 | 0.011 | 0.034 | 0.262 |
Using LinkedIn compared to not using LinkedIn | −0.268 | −0.034 | 0.002 | −0.434 | −0.102 |
Using YouTube compared to not using YouTube | −0.165 | −0.037 | 0.010 | −0.290 | −0.040 |
Variables entered: gender, age, hours of social media use, knowledge of online support groups, familiarity with people who have a mental illness, and the use of LinkedIn, and YouTube. | |||||
Model 2: Linear Regression Taking the Acceptance Subscale as the Dependent Variable. | |||||
Unstandardized Beta | Standardized Beta | p-Value | Confidence interval | ||
Lower Bound | Upper Bound | ||||
Age 30 years and above compared to 18–29 years | 0.239 | 0.084 | 0.002 | 0.090 | 0.388 |
Males Compared to females | 0.505 | 0.197 | <0.001 | 0.385 | 0.624 |
Education level | 0.123 | 0.066 | 0.010 | 0.030 | 0.216 |
Knowledge of online support groups (yes vs. no) | 0.755 | 0.323 | <0.001 | 0.633 | 0.877 |
Familiarity with people with mental illness (yes vs. no) | 0.761 | 0.288 | <0.001 | 0.632 | 0.891 |
Using TikTok compared to not using TikTok | 0.234 | 0.035 | 0.002 | 0.083 | 0.386 |
Using Snapchat compared to not using Snapchat | 0.280 | 0.037 | 0.001 | 0.119 | 0.441 |
Using WhatsApp compared to not using WhatsApp | 0.272 | 0.038 | <0.001 | 0.122 | 0.423 |
Variables entered: gender, age, education level, knowledge of online support groups, familiarity with people who have a mental illness, the use of TikTok, Snapchat, and WhatsApp. | |||||
Model 3: Linear Regression Taking the Digital Care Sentiment Subscale as the Dependent Variable. | |||||
Unstandardized Beta | Standardized Beta | p-Value | Confidence Interval | ||
Lower Bound | Upper Bound | ||||
Males Compared to females | 0.184 | 0.087 | 0.006 | 0.052 | 0.316 |
Education level | 0.169 | 0.110 | <0.001 | 0.096 | 0.243 |
Hours of social media use | 0.457 | 0.330 | <0.001 | 0.364 | 0.550 |
Active on Facebook communities compared to inactivity on Facebook communities | 0.196 | 0.023 | 0.035 | 0.013 | 0.378 |
Higher Intolerance score (Intolerant attitudes) | 0.470 | 0.454 | <0.001 | 0.382 | 0.557 |
Using Discord compared to not using Discord | 0.225 | 0.023 | 0.039 | 0.011 | 0.439 |
Variables entered: gender, education level, hours of social media use, being active on Facebook communities, intolerance score, and the use of Discord. |
Model 1: Linear Regression Taking the Intolerance Subscale as the Dependent Variable. | |||||
---|---|---|---|---|---|
Unstandardized Beta | Standardized Beta | p-Value | Confidence Interval | ||
Lower Bound | Upper Bound | ||||
Age 30 years and above compared to 18–29 years | 0.380 | 0.248 | <0.001 | 0.263 | 0.496 |
Males Compared to females | 0.464 | 0.273 | <0.001 | 0.339 | 0.589 |
Hours of social media use | 0.322 | 0.282 | <0.001 | 0.232 | 0.411 |
Knowledge of online support groups (no vs. yes) | 0.254 | 0.199 | <0.001 | 0.123 | 0.385 |
Using LinkedIn compared to not using LinkedIn | 0.198 | 0.050 | 0.003 | 0.067 | 0.329 |
Using Reddit compared to not using Reddit | −0.432 | −0.090 | <0.001 | −0.583 | −0.281 |
Variables entered: gender, age, hours of social media use, knowledge of online support groups, and the use of LinkedIn, and Reddit. | |||||
Model 2: Linear Regression Taking the Acceptance Subscale as the Dependent Variable. | |||||
Unstandardized Beta | Standardized Beta | p-Value | Confidence interval | ||
Lower Bound | Upper Bound | ||||
Age 30 years and above compared to 18–29 years | 0.194 | 0.071 | 0.001 | 0.080 | 0.307 |
Males Compared to females | 0.321 | 0.106 | <0.001 | 0.200 | 0.442 |
Hours of social media use | 0.347 | 0.171 | <0.001 | 0.259 | 0.435 |
Knowledge of online support groups (yes vs. no) | 0.769 | 0.338 | <0.001 | 0.625 | 0.913 |
Familiarity with people with mental illness (yes vs. no) | 0.761 | 0.318 | <0.001 | 0.634 | 0.887 |
Using Reddit compared to not using Reddit | 0.147 | 0.017 | 0.049 | 0.001 | 0.293 |
Variables entered: gender, age, hours of social media use, knowledge of online support groups, familiarity with people who have a mental illness, and the use of Reddit. | |||||
Model 3: Linear Regression Taking the Digital Care Sentiment Subscale as the Dependent Variable. | |||||
Unstandardized Beta | Standardized Beta | p-Value | Confidence interval | ||
Lower Bound | Upper Bound | ||||
Males Compared to females | 0.123 | 0.055 | 0.032 | 0.011 | 0.235 |
Hours of social media use | 0.349 | 0.233 | <0.001 | 0.268 | 0.431 |
Knowledge of online support groups (yes vs. no) | 0.695 | 0.415 | <0.001 | 0.586 | 0.803 |
Active on Facebook communities compared to inactivity on Facebook communities | 0.103 | 0.019 | 0.094 | −0.017 | 0.224 |
Intolerance scores | 0.382 | 0.291 | <0.001 | 0.309 | 0.454 |
Variables entered: gender, hours of social media use, knowledge of online support groups, being active on Facebook communities, and intolerance score. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegazi, O.; Alalalmeh, S.; Alfaresi, A.; Dashtinezhad, S.; Bahada, A.; Shahwan, M.; Jairoun, A.A.; Babalola, T.K.; Yasin, H. Development, Validation, and Utilization of a Social Media Use and Mental Health Questionnaire among Middle Eastern and Western Adults: A Pilot Study from the UAE. Int. J. Environ. Res. Public Health 2022, 19, 16063. https://doi.org/10.3390/ijerph192316063
Hegazi O, Alalalmeh S, Alfaresi A, Dashtinezhad S, Bahada A, Shahwan M, Jairoun AA, Babalola TK, Yasin H. Development, Validation, and Utilization of a Social Media Use and Mental Health Questionnaire among Middle Eastern and Western Adults: A Pilot Study from the UAE. International Journal of Environmental Research and Public Health. 2022; 19(23):16063. https://doi.org/10.3390/ijerph192316063
Chicago/Turabian StyleHegazi, Omar, Samer Alalalmeh, Ahmad Alfaresi, Soheil Dashtinezhad, Ahmed Bahada, Moyad Shahwan, Ammar Abdulrahman Jairoun, Tesleem K. Babalola, and Haya Yasin. 2022. "Development, Validation, and Utilization of a Social Media Use and Mental Health Questionnaire among Middle Eastern and Western Adults: A Pilot Study from the UAE" International Journal of Environmental Research and Public Health 19, no. 23: 16063. https://doi.org/10.3390/ijerph192316063
APA StyleHegazi, O., Alalalmeh, S., Alfaresi, A., Dashtinezhad, S., Bahada, A., Shahwan, M., Jairoun, A. A., Babalola, T. K., & Yasin, H. (2022). Development, Validation, and Utilization of a Social Media Use and Mental Health Questionnaire among Middle Eastern and Western Adults: A Pilot Study from the UAE. International Journal of Environmental Research and Public Health, 19(23), 16063. https://doi.org/10.3390/ijerph192316063