Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond
Abstract
:1. Introduction
2. Methods
3. Where Are We Now?
4. Where Do We Go from Here?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, A.C.; Stewart, B.; Oliver-Bennetts, S.; McDonald, S.; Ingerson, L.; Anderson, A.; Dickson, G.; Emery, P.; Graetz, F. Contextual Influences and Athlete Attitudes to Drugs in Sport. Sport Manag. Rev. 2010, 13, 181–197. [Google Scholar] [CrossRef]
- Exner, J.; Bitar, R.; Berg, X.; Pichler, E.-M.; Herdener, M.; Seifritz, E.; Claussen, M.C. Use of Psychotropic Substances among Elite Athletes—A Narrative Review. Swiss Med. Wkly. 2021, 151, w20412. [Google Scholar] [CrossRef]
- Charest, J.; Grandner, M.A.; Athey, A.B.; McDuff, D.; Turner, R.W. Substance Use among Collegiate Athletes versus Non-Athletes. Athl. Train. Sport. Health Care 2021, 13, e443–e452. [Google Scholar] [CrossRef]
- Wechsler, H.; Davenport, A.E.; Dowdall, G.W.; Grossman, S.J.; Zanakos, S.I. Binge Drinking, Tobacco, and Illicit Drug Use and Involvement in College Athletics. J. Am. Coll. Health 1997, 45, 195–200. [Google Scholar] [CrossRef]
- Cottler, L.B.; Ben Abdallah, A.; Cummings, S.M.; Barr, J.; Banks, R.; Forchheimer, R. Injury, Pain, and Prescription Opioid Use among Former National Football League (NFL) Players. Drug Alcohol Depend. 2011, 116, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Martens, M.P.; Dams-O’Connor, K.; Beck, N.C. A Systematic Review of College Student-Athlete Drinking: Prevalence Rates, Sport-Related Factors, and Interventions. J. Subst. Abus. Treat. 2006, 31, 305–316. [Google Scholar] [CrossRef]
- Nattiv, A.; Puffer, J.C.; Green, G.A. Lifestyles and Health Risks of Collegiate Athletes. Clin. J. Sport Med. 1997, 7, 262–272. [Google Scholar] [CrossRef]
- Wechsler, H.; Lee, J.E.; Kuo, M.; Seibring, M.; Nelson, T.F.; Lee, H. Trends in College Binge Drinking during a Period of Increased Prevention Efforts: Findings from 4 Harvard School of Public Health College Alcohol Study Surveys: 1993–2001. J. Am. Coll. Health 2002, 50, 203–217. [Google Scholar] [CrossRef]
- Leichliter, J.S.; Meilman, P.W.; Presley, C.A.; Cashin, J.R. Alcohol Use and Related Consequences among Students with Varying Levels of Involvement in College Athletics. J. Am. Coll. Health 1998, 46, 257–262. [Google Scholar] [CrossRef]
- Nelson, T.F.; Wechsler, H. Alcohol and College Athletes. Med. Sci. Sport. Exerc. 2001, 33, 43–47. [Google Scholar] [CrossRef]
- Wilson, G.S.; Pritchard, M.E.; Schaffer, J. Athletic Status and Drinking Behavior in College Students: The Influence of Gender and Coping Styles. J. Am. Coll. Health 2004, 52, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, K.M.; Johnson, D.J.; Bogle, K. Comparison of patterns of alcohol use between high school and college athletes and non-athletes. Coll. Stud. J. 2001, 35, 358–365. [Google Scholar]
- Lisha, N.E.; Sussman, S. Relationship of High School and College Sports Participation with Alcohol, Tobacco, and Illicit Drug Use: A Review. Addict. Behav. 2010, 35, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, M.; Bobko, S.; Faulkner, G.; Donnelly, P.; Cairney, J. Sport Participation and Alcohol and Illicit Drug Use in Adolescents and Young Adults: A Systematic Review of Longitudinal Studies. Addict. Behav. 2014, 39, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Sønderlund, A.L.; O’Brien, K.; Kremer, P.; Rowland, B.; De Groot, F.; Staiger, P.; Zinkiewicz, L.; Miller, P.G. The Association between Sports Participation, Alcohol Use and Aggression and Violence: A Systematic Review. J. Sci. Med. Sport 2014, 17, 2–7. [Google Scholar] [CrossRef]
- Brenner, J.; Swanik, K. High-Risk Drinking Characteristics in Collegiate Athletes. J. Am. Coll. Health 2007, 56, 267–272. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Beck, F.; Legleye, S. Beyond the U-Curve: The Relationship between Sport and Alcohol, Cigarette and Cannabis Use in Adolescents. Addiction 2002, 97, 707–716. [Google Scholar] [CrossRef]
- Ford, J.A. Substance Use among College Athletes: A Comparison Based on Sport/Team Affiliation. J. Am. Coll. Health 2007, 55, 367–373. [Google Scholar] [CrossRef]
- Eitle, D.; Turner, R.J.; Eitle, T.M. The Deterrence Hypothesis Reexamined: Sports Participation and Substance Use among Young Adults. J. Drug Issues 2003, 33, 193–221. [Google Scholar] [CrossRef]
- Ford, J.A. Nonmedical Prescription Drug Use among College Students: A Comparison between Athletes and Nonathletes. J. Am. Coll. Health 2008, 57, 211–220. [Google Scholar] [CrossRef]
- Ford, J.A.; Pomykacz, C.; Veliz, P.; McCabe, S.E.; Boyd, C.J. Sports Involvement, Injury History, and Non-Medical Use of Prescription Opioids among College Students: An Analysis with a National Sample. Am. J. Addict. 2017, 27, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Veliz, P.; Epstein-Ngo, Q.; Austic, E.; Boyd, C.; McCabe, S.E. Opioid Use among Interscholastic Sports Participants: An Exploratory Study from a Sample of College Students. Res. Q. Exerc. Sport 2014, 86, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veliz, P.; Epstein-Ngo, Q.M.; Meier, E.; Ross-Durow, P.L.; McCabe, S.E.; Boyd, C.J. Painfully Obvious: A Longitudinal Examination of Medical Use and Misuse of Opioid Medication among Adolescent Sports Participants. J. Adolesc. Health 2014, 54, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veliz, P.T.; Boyd, C.; McCabe, S.E. Playing through Pain: Sports Participation and Nonmedical Use of Opioid Medications among Adolescents. Am. J. Public Health 2013, 103, e28–e30. [Google Scholar] [CrossRef]
- Veliz, P.; Boyd, C.J.; McCabe, S.E. Nonmedical Prescription Opioid and Heroin Use among Adolescents Who Engage in Sports and Exercise. Pediatrics 2016, 138, e20160677. [Google Scholar] [CrossRef] [Green Version]
- Ekhtiari, S.; Yusuf, I.; AlMakadma, Y.; MacDonald, A.; Leroux, T.; Khan, M. Opioid Use in Athletes: A Systematic Review. Sport. Health A Multidiscip. Approach 2020, 12, 194173812093354. [Google Scholar] [CrossRef]
- Brisola-Santos, M.B.; Gallinaro, J.G.D.M.E.; Gil, F.; Sampaio-Junior, B.; Marin, M.C.D.; de Andrade, A.G.; Richter, K.P.; Glick, I.D.; Baltieri, D.A.; Castaldelli-Maia, J.M. Prevalence and Correlates of Cannabis Use among Athletes—A Systematic Review. Am. J. Addict. 2016, 25, 518–528. [Google Scholar] [CrossRef]
- Zeiger, J.S.; Silvers, W.S.; Fleegler, E.M.; Zeiger, R.S. Cannabis Use in Active Athletes: Behaviors Related to Subjective Effects. PLoS ONE 2019, 14, e0218998. [Google Scholar] [CrossRef] [Green Version]
- Docter, S.; Khan, M.; Gohal, C.; Ravi, B.; Bhandari, M.; Gandhi, R.; Leroux, T. Cannabis Use and Sport: A Systematic Review. Sport. Health A Multidiscip. Approach 2020, 12, 189–199. [Google Scholar] [CrossRef]
- Reardon, C.; Creado, S. Drug Abuse in Athletes. Subst. Abus. Rehabil. 2014, 5, 95–105. [Google Scholar] [CrossRef] [Green Version]
- McDuff, D.; Stull, T.; Castaldelli-Maia, J.M.; Hitchcock, M.E.; Hainline, B.; Reardon, C.L. Recreational and Ergogenic Substance Use and Substance Use Disorders in Elite Athletes: A Narrative Review. Br. J. Sport. Med. 2019, 53, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Vernec, A.R. The Athlete Biological Passport: An Integral Element of Innovative Strategies in Antidoping. Br. J. Sport. Med. 2014, 48, 817–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devriendt, T.; Chokoshvili, D.; Favaretto, M.; Borry, P. Do Athletes Have a Right to Access Data in Their Athlete Biological Passport? Drug Test. Anal. 2018, 10, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Krumm, B.; Faiss, R. Factors Confounding the Athlete Biological Passport: A Systematic Narrative Review. Sport. Med.—Open 2021, 7, 65. [Google Scholar] [CrossRef]
- Abuse, N.I.D. Comorbidity: Substance Use and Other Mental Disorders. Available online: https://nida.nih.gov/drug-topics/trends-statistics/infographics/comorbidity-substance-use-other-mental-disorders#:~:text=Among%20the%2042.1%20million%20adults (accessed on 26 March 2022).
- Gulliver, A.; Griffiths, K.M.; Mackinnon, A.; Batterham, P.J.; Stanimirovic, R. The Mental Health of Australian Elite Athletes. J. Sci. Med. Sport 2015, 18, 255–261. [Google Scholar] [CrossRef]
- Gouttebarge, V.; Frings-Dresen, M.H.W.; Sluiter, J.K. Mental and Psychosocial Health among Current and Former Professional Footballers. Occup. Med. 2015, 65, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Hammond, T.; Gialloreto, C.; Kubas, H.; Hap Davis, H., 4th. The Prevalence of Failure-Based Depression among Elite Athletes. Clin. J. Sport Med. 2013, 23, 273–277. [Google Scholar] [CrossRef]
- Walsh, M.M.; Hilton, J.F.; Masouredis, C.M.; Gee, L.; Chesney, M.A.; Ernster, V.L. Smokeless Tobacco Cessation Intervention for College Athletes: Results after 1 Year. Am. J. Public Health 1999, 89, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Cimini, M.D.; Monserrat, J.M.; Sokolowski, K.L.; Dewitt-Parker, J.Y.; Rivero, E.M.; McElroy, L.A. Reducing High-Risk Drinking among Student-Athletes: The Effects of a Targeted Athlete-Specific Brief Intervention. J. Am. Coll. Health 2015, 63, 343–352. [Google Scholar] [CrossRef]
- Martens, M.P.; Kilmer, J.R.; Beck, N.C.; Zamboanga, B.L. The Efficacy of a Targeted Personalized Drinking Feedback Intervention among Intercollegiate Athletes: A Randomized Controlled Trial. Psychol. Addict. Behav. 2010, 24, 660–669. [Google Scholar] [CrossRef]
- Doumas, D.M.; Haustveit, T.; Coll, K.M. Reducing Heavy Drinking among First Year Intercollegiate Athletes: A Randomized Controlled Trial of Web-Based Normative Feedback. J. Appl. Sport Psychol. 2010, 22, 247–261. [Google Scholar] [CrossRef]
- Fearnow-Kenney, M.; Wyrick, D.L.; Milroy, J.J.; Reifsteck, E.J.; Day, T.; Kelly, S.E. The Effects of a Web-Based Alcohol Prevention Program on Social Norms, Expectancies, and Intentions to Prevent Harm among College Student-Athletes. Sport Psychol. 2016, 30, 113–122. [Google Scholar] [CrossRef]
- Baron, D.A.; Reardon, C.L.; Baron, S.H. (Eds.) Contemporary Issues in Sports Psychiatry: A Global Perspective; John Wiley & Sons: Chichester, UK, 2013; pp. 3–12. [Google Scholar]
- Mahoney, J.J.; Hanlon, C.A.; Marshalek, P.J.; Rezai, A.R.; Krinke, L. Transcranial Magnetic Stimulation, Deep Brain Stimulation, and Other Forms of Neuromodulation for Substance Use Disorders: Review of Modalities and Implications for Treatment. J. Neurol. Sci. 2020, 418, 117149. [Google Scholar] [CrossRef]
- Reardon, C.L.; Hainline, B.; Aron, C.M.; Baron, D.; Baum, A.L.; Bindra, A.; Budgett, R.; Campriani, N.; Castaldelli-Maia, J.M.; Currie, A.; et al. Mental Health in Elite Athletes: International Olympic Committee Consensus Statement (2019). Br. J. Sport. Med. 2019, 53, 667–699. [Google Scholar] [CrossRef] [Green Version]
- Steele, V.R. Transcranial Magnetic Stimulation as an Interventional Tool for Addiction. Front. Neurosci. 2020, 14, 592343. [Google Scholar] [CrossRef]
- Examining the Benefits of TMS. Available online: https://www.psychiatrictimes.com/view/examining-the-benefits-of-tms (accessed on 20 February 2022).
- Cole, E.J.; Stimpson, K.H.; Bentzley, B.S.; Gulser, M.; Cherian, K.; Tischler, C.; Nejad, R.; Pankow, H.; Choi, E.; Aaron, H.; et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am. J. Psychiatry 2020, 177, 716–726. [Google Scholar] [CrossRef]
- Davis, N.J. Neurodoping: Brain Stimulation as a Performance-Enhancing Measure. Sport. Med. 2013, 43, 649–653. [Google Scholar] [CrossRef]
- Gazerani, P. Performance Enhancement by Brain Stimulation. J. Sport. Sci. Med. 2017, 16, 438–439. [Google Scholar]
- Antonelli, M.; Fattore, L.; Sestito, L.; Di Giuda, D.; Diana, M.; Addolorato, G. Transcranial Magnetic Stimulation: A Review about Its Efficacy in the Treatment of Alcohol, Tobacco and Cocaine Addiction. Addict. Behav. 2021, 114, 106760. [Google Scholar] [CrossRef]
- Mishra, B.R.; Nizamie, S.H.; Das, B.; Praharaj, S.K. Efficacy of Repetitive Transcranial Magnetic Stimulation in Alcohol Dependence: A Sham-Controlled Study. Addiction 2010, 105, 49–55. [Google Scholar] [CrossRef]
- Ceccanti, M.; Inghilleri, M.; Attilia, M.L.; Raccah, R.; Fiore, M.; Zangen, A.; Ceccanti, M. Deep TMS on Alcoholics: Effects on Cortisolemia and Dopamine Pathway Modulation. A Pilot Study. Can. J. Physiol. Pharmacol. 2015, 93, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herremans, S.C.; Van Schuerbeek, P.; De Raedt, R.; Matthys, F.; Buyl, R.; De Mey, J.; Baeken, C. The Impact of Accelerated Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation (RTMS) on Cue-Reactivity: An FMRI Study on Craving in Recently Detoxified Alcohol-Dependent Patients. PLoS ONE 2015, 10, e0136182. [Google Scholar] [CrossRef]
- Herremans, S.C.; Baeken, C.; Vanderbruggen, N.; Vanderhasselt, M.A.; Zeeuws, D.; Santermans, L.; De Raedt, R. No Influence of One Right-Sided Prefrontal HF-RTMS Session on Alcohol Craving in Recently Detoxified Alcohol-Dependent Patients: Results of a Naturalistic Study. Drug Alcohol Depend. 2012, 120, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herremans, S.C.; Vanderhasselt, M.-A.; De Raedt, R.; Baeken, C. Reduced Intra-Individual Reaction Time Variability during a Go–NoGo Task in Detoxified Alcohol-Dependent Patients after One Right-Sided Dorsolateral Prefrontal HF-RTMS Session. Alcohol Alcohol. 2013, 48, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Sestito, L.; Vassallo, G.A.; Rando, M.M.; Tarli, C.; Mosoni, C.; Mirijello, A.; Ferulli, A.; Di Giuda, D.; Diana, M.; et al. Deep Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex in Alcohol Use Disorder Patients: Effects on Dopamine Transporter Availability and Alcohol Intake. Dig. Liver Dis. 2017, 49, e240. [Google Scholar] [CrossRef]
- Del Felice, A.; Bellamoli, E.; Formaggio, E.; Manganotti, P.; Masiero, S.; Cuoghi, G.; Rimondo, C.; Genetti, B.; Sperotto, M.; Corso, F.; et al. Neurophysiological, Psychological and Behavioural Correlates of RTMS Treatment in Alcohol Dependence. Drug Alcohol Depend. 2016, 158, 147–153. [Google Scholar] [CrossRef]
- Klauss, J.; Pinheiro, L.C.P.; Merlo, B.L.S.; Santos, G.D.A.C.; Fregni, F.; Nitsche, M.A.; Nakamura-Palacios, E.M. A Randomized Controlled Trial of Targeted Prefrontal Cortex Modulation with TDCS in Patients with Alcohol Dependence. Int. J. Neuropsychopharmacol. 2014, 17, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Klauss, J.; Anders, Q.S.; Felippe, L.V.; Nitsche, M.A.; Nakamura-Palacios, E.M. Multiple Sessions of Transcranial Direct Current Stimulation (TDCS) Reduced Craving and Relapses for Alcohol Use: A Randomized Placebo-Controlled Trial in Alcohol Use Disorder. Front. Pharmacol. 2018, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, C.A.; Dowdle, L.T.; Correia, B.; Mithoefer, O.; Kearney-Ramos, T.; Lench, D.; Griffin, M.; Anton, R.F.; George, M.S. Left Frontal Pole Theta Burst Stimulation Decreases Orbitofrontal and Insula Activity in Cocaine Users and Alcohol Users. Drug Alcohol Depend. 2017, 178, 310–317. [Google Scholar] [CrossRef]
- McNeill, A.; Monk, R.L.; Qureshi, A.W.; Makris, S.; Heim, D. Continuous Theta Burst Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Impairs Inhibitory Control and Increases Alcohol Consumption. Cogn. Affect. Behav. Neurosci. 2018, 18, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kang, N. Bilateral Transcranial Direct Current Stimulation Attenuated Symptoms of Alcohol Use Disorder: A Systematic Review and Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 108, 110160. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, S.-A.; Khaleghi, A.; Mohammadi, M.R. Noninvasive Brain Stimulation in Alcohol Craving: A Systematic Review and Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 101, 109938. [Google Scholar] [CrossRef] [PubMed]
- Dubuson, M.; Kornreich, C.; Vanderhasselt, M.-A.; Baeken, C.; Wyckmans, F.; Dousset, C.; Hanak, C.; Veeser, J.; Campanella, S.; Chatard, A.; et al. Transcranial Direct Current Stimulation Combined with Alcohol Cue Inhibitory Control Training Reduces the Risk of Early Alcohol Relapse: A Randomized Placebo-Controlled Clinical Trial. Brain Stimul. 2021, 14, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Eichhammer, P.; Johann, M.; Kharraz, A.; Binder, H.; Pittrow, D.; Wodarz, N.; Hajak, G. High-Frequency Repetitive Transcranial Magnetic Stimulation Decreases Cigarette Smoking. J. Clin. Psychiatry 2003, 64, 951–953. [Google Scholar] [CrossRef]
- Amiaz, R.; Levy, D.; Vainiger, D.; Grunhaus, L.; Zangen, A. Repeated High-Frequency Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex Reduces Cigarette Craving and Consumption. Addiction 2009, 104, 653–660. [Google Scholar] [CrossRef]
- Wing, V.C.; Bacher, I.; Wu, B.S.; Daskalakis, Z.J.; George, T.P. High Frequency Repetitive Transcranial Magnetic Stimulation Reduces Tobacco Craving in Schizophrenia. Schizophr. Res. 2012, 139, 264–266. [Google Scholar] [CrossRef]
- Dinur-Klein, L.; Dannon, P.; Hadar, A.; Rosenberg, O.; Roth, Y.; Kotler, M.; Zangen, A. Smoking Cessation Induced by Deep Repetitive Transcranial Magnetic Stimulation of the Prefrontal and Insular Cortices: A Prospective, Randomized Controlled Trial. Biol. Psychiatry 2014, 76, 742–749. [Google Scholar] [CrossRef]
- Kozak, K.; Sharif-Razi, M.; Morozova, M.; Gaudette, E.V.; Barr, M.S.; Daskalakis, Z.J.; Blumberger, D.M.; George, T.P. Effects of Short-Term, High-Frequency Repetitive Transcranial Magnetic Stimulation to Bilateral Dorsolateral Prefrontal Cortex on Smoking Behavior and Cognition in Patients with Schizophrenia and Non-Psychiatric Controls. Schizophr. Res. 2018, 197, 441–443. [Google Scholar] [CrossRef]
- Sheffer, C.E.; Bickel, W.K.; Brandon, T.H.; Franck, C.T.; Deen, D.; Panissidi, L.; Abdali, S.A.; Pittman, J.C.; Lunden, S.E.; Prashad, N.; et al. Preventing Relapse to Smoking with Transcranial Magnetic Stimulation: Feasibility and Potential Efficacy. Drug Alcohol Depend. 2018, 182, 8–18. [Google Scholar] [CrossRef]
- Trojak, B.; Meille, V.; Achab, S.; Lalanne, L.; Poquet, H.; Ponavoy, E.; Blaise, E.; Bonin, B.; Chauvet-Gelinier, J.-C. Transcranial Magnetic Stimulation Combined with Nicotine Replacement Therapy for Smoking Cessation: A Randomized Controlled Trial. Brain Stimul. 2015, 8, 1168–1174. [Google Scholar] [CrossRef]
- Zangen, A.; Moshe, H.; Martinez, D.; Barnea-Ygael, N.; Vapnik, T.; Bystritsky, A.; Duffy, W.; Toder, D.; Casuto, L.; Grosz, M.L.; et al. Repetitive Transcranial Magnetic Stimulation for Smoking Cessation: A Pivotal Multicenter Double-Blind Randomized Controlled Trial. World Psychiatry 2021, 20, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Dieler, A.C.; Dresler, T.; Joachim, K.; Deckert, J.; Herrmann, M.J.; Fallgatter, A.J. Can Intermittent Theta Burst Stimulation as Add-on to Psychotherapy Improve Nicotine Abstinence? Results from a Pilot Study. Eur. Addict. Res. 2014, 20, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Kim, R.K.; Kim, H.J. Effects of Transcranial Direct Current Stimulation on Symptoms of Nicotine Dependence: A Systematic Review and Meta-Analysis. Addict. Behav. 2019, 96, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Perri, R.L.; Perrotta, D. Transcranial Direct Current Stimulation of the Prefrontal Cortex Reduces Cigarette Craving in Not Motivated to Quit Smokers: A Randomized, Sham-Controlled Study. Addict. Behav. 2021, 120, 106956. [Google Scholar] [CrossRef] [PubMed]
- Camprodon, J.A.; Martínez-Raga, J.; Alonso-Alonso, M.; Shih, M.-C.; Pascual-Leone, A. One Session of High Frequency Repetitive Transcranial Magnetic Stimulation (RTMS) to the Right Prefrontal Cortex Transiently Reduces Cocaine Craving. Drug Alcohol Depend. 2007, 86, 91–94. [Google Scholar] [CrossRef]
- Politi, E.; Fauci, E.; Santoro, A.; Smeraldi, E. Daily Sessions of Transcranial Magnetic Stimulation to the Left Prefrontal Cortex Gradually Reduce Cocaine Craving. Am. J. Addict. 2008, 17, 345–346. [Google Scholar] [CrossRef]
- Rapinesi, C.; Del Casale, A.; Di Pietro, S.; Ferri, V.R.; Piacentino, D.; Sani, G.; Raccah, R.N.; Zangen, A.; Ferracuti, S.; Vento, A.E.; et al. Add-on High Frequency Deep Transcranial Magnetic Stimulation (DTMS) to Bilateral Prefrontal Cortex Reduces Cocaine Craving in Patients with Cocaine Use Disorder. Neurosci. Lett. 2016, 629, 43–47. [Google Scholar] [CrossRef]
- Terraneo, A.; Leggio, L.; Saladini, M.; Ermani, M.; Bonci, A.; Gallimberti, L. Transcranial Magnetic Stimulation of Dorsolateral Prefrontal Cortex Reduces Cocaine Use: A Pilot Study. Eur. Neuropsychopharmacol. 2016, 26, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Pettorruso, M.; Spagnolo, P.A.; Leggio, L.; Janiri, L.; Di Giannantonio, M.; Gallimberti, L.; Bonci, A.; Martinotti, G. Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex May Improve Symptoms of Anhedonia in Individuals with Cocaine Use Disorder: A Pilot Study. Brain Stimul. 2018, 11, 1195–1197. [Google Scholar] [CrossRef]
- Sanna, A.; Fattore, L.; Badas, P.; Corona, G.; Cocco, V.; Diana, M. Intermittent Theta Burst Stimulation of the Prefrontal Cortex in Cocaine Use Disorder: A Pilot Study. Front. Neurosci. 2019, 13, 765. [Google Scholar] [CrossRef] [Green Version]
- Madeo, G.; Terraneo, A.; Cardullo, S.; Gómez Pérez, L.J.; Cellini, N.; Sarlo, M.; Bonci, A.; Gallimberti, L. Long-Term Outcome of Repetitive Transcranial Magnetic Stimulation in a Large Cohort of Patients with Cocaine-Use Disorder: An Observational Study. Front. Psychiatry 2020, 11, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, V.; Maxwell, A.; Ross, T.; Salmeron, B.; Stein, E. Preliminary Evidence for Accelerated Intermittent Theta-Burst Stimulation as a Treatment for Cocaine Use Disorder. Brain Stimul. 2019, 12, 574. [Google Scholar] [CrossRef]
- Ward, H.B.; Mosquera, M.J.; Suzuki, J.; Mariano, T.Y. A Systematic Review of Noninvasive Brain Stimulation for Opioid Use Disorder. Neuromodul. Technol. Neural Interface 2020, 23, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cao, X.; Tan, T.; Shan, C.; Wang, Y.; Pan, J.; He, H.; Yuan, T.-F. 10-Hz Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex Reduces Heroin Cue Craving in Long-Term Addicts. Biol. Psychiatry 2016, 80, e13–e14. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Cao, X.; Shan, C.; Pan, J.; He, H.; Ma, Y.; Yuan, T.-F. Transcranial Direct Current Stimulation of the Frontal-Parietal-Temporal Area Attenuates Cue-Induced Craving for Heroin. J. Psychiatr. Res. 2016, 79, 1–3. [Google Scholar] [CrossRef]
- Sahlem, G.L.; Breedlove, J.; Taylor, J.J.; Badran, B.A.; Lauer, A.; George, M.S.; Brady, K.T.; Borckardt, J.J.; Back, S.E.; Hanlon, C.A. Dorsolateral Prefrontal Cortex Transcranial Magnetic Stimulation as a Tool to Decrease Pain and Craving in Opiate Dependent Individuals: A Pilot Study of Feasibility and Effect Size. Brain Stimul. 2017, 10, 482. [Google Scholar] [CrossRef]
- Borckardt, J.J.; Reeves, S.T.; Milliken, C.; Carter, B.; Epperson, T.I.; Gunselman, R.J.; Madan, A.; Del Schutte, H.; Demos, H.A.; George, M.S. Prefrontal versus Motor Cortex Transcranial Direct Current Stimulation (TDCS) Effects on Post-Surgical Opioid Use. Brain Stimul. 2017, 10, 1096–1101. [Google Scholar] [CrossRef]
- Khedr, E.M.; Sharkawy, E.S.A.; Attia, A.M.A.; Ibrahim Osman, N.M.; Sayed, Z.M. Role of Transcranial Direct Current Stimulation on Reduction of Postsurgical Opioid Consumption and Pain in Total Knee Arthroplasty: Double Randomized Clinical Trial. Eur. J. Pain 2017, 21, 1355–1365. [Google Scholar] [CrossRef]
- Sahlem, G.; Caruso, M.; Malcolm, R.; George, M.; McRae-Clark, A. A Case Series Exploring the Effect of Twenty Sessions of Repetitive Transcranial Magnetic Stimulation (RTMS) on Cannabis Use and Craving. Brain Stimul. 2019, 12, 441. [Google Scholar] [CrossRef]
- Sahlem, G.L.; Baker, N.L.; George, M.S.; Malcolm, R.J.; McRae-Clark, A.L. Repetitive Transcranial Magnetic Stimulation (RTMS) Administration to Heavy Cannabis Users. Am. J. Drug Alcohol Abus. 2017, 44, 47–55. [Google Scholar] [CrossRef]
- Boggio, P.S.; Zaghi, S.; Villani, A.B.; Fecteau, S.; Pascual-Leone, A.; Fregni, F. Modulation of Risk-Taking in Marijuana Users by Transcranial Direct Current Stimulation (TDCS) of the Dorsolateral Prefrontal Cortex (DLPFC). Drug Alcohol Depend. 2010, 112, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant Effects of Ketamine in Depressed Patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A Randomized Trial of an N-Methyl-D-Aspartate Antagonist in Treatment-Resistant Major Depression. Arch. Gen. Psychiatry 2006, 63, 856. [Google Scholar] [CrossRef] [PubMed]
- Jelen, L.A.; Young, A.H.; Stone, J.M. Ketamine: A Tale of Two Enantiomers. J. Psychopharmacol. 2021, 35, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Zanos, P.; Gould, T.D. Mechanisms of Ketamine Action as an Antidepressant. Mol. Psychiatry 2018, 23, 801–811. [Google Scholar] [CrossRef]
- Dakwar, E.; Levin, F.; Hart, C.L.; Basaraba, C.; Choi, J.; Pavlicova, M.; Nunes, E.V. A Single Ketamine Infusion Combined with Motivational Enhancement Therapy for Alcohol Use Disorder: A Randomized Midazolam-Controlled Pilot Trial. Am. J. Psychiatry 2019, 177, 125–133. [Google Scholar] [CrossRef]
- Yoon, G.; Petrakis, I.L.; Krystal, J.H. Association of Combined Naltrexone and Ketamine with Depressive Symptoms in a Case Series of Patients with Depression and Alcohol Use Disorder. JAMA Psychiatry 2019, 76, 337–338. [Google Scholar] [CrossRef]
- Grabski, M.; McAndrew, A.; Lawn, W.; Marsh, B.; Raymen, L.; Stevens, T.; Hardy, L.; Warren, F.; Bloomfield, M.; Borissova, A.; et al. Adjunctive Ketamine with Relapse Prevention–Based Psychological Therapy in the Treatment of Alcohol Use Disorder. Am. J. Psychiatry 2022, 179, 152–162. [Google Scholar] [CrossRef]
- Das, R.; Gale, G.; Walsh, K.; Hennessy, V.; Iskandar, G.; Mordecai, L.; Brandner, B.; Kindt, M.; Curran, V.; Kamboj, S. Ketamine Can Reduce Harmful Drinking by Pharmacologically Rewriting Drinking Memories. Biol. Psychiatry 2020, 87, S191. [Google Scholar] [CrossRef]
- Worrell, S.D.; Gould, T.J. Therapeutic Potential of Ketamine for Alcohol Use Disorder. Neurosci. Biobehav. Rev. 2021, 126, 573–589. [Google Scholar] [CrossRef]
- Dakwar, E.; Levin, F.; Foltin, R.W.; Nunes, E.V.; Hart, C.L. The Effects of Subanesthetic Ketamine Infusions on Motivation to Quit and Cue-Induced Craving in Cocaine-Dependent Research Volunteers. Biol. Psychiatry 2014, 76, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakwar, E.; Nunes, E.V.; Hart, C.L.; Hu, M.C.; Foltin, R.W.; Levin, F.R. A Sub-Set of Psychoactive Effects May Be Critical to the Behavioral Impact of Ketamine on Cocaine Use Disorder: Results from a Randomized, Controlled Laboratory Study. Neuropharmacology 2018, 142, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Dakwar, E.; Nunes, E.V.; Hart, C.L.; Foltin, R.W.; Mathew, S.J.; Carpenter, K.M.; Jean Choi, C.J.; Basaraba, C.N.; Pavlicova, M.; Levin, F.R. A Single Ketamine Infusion Combined with Mindfulness-Based Behavioral Modification to Treat Cocaine Dependence: A Randomized Clinical Trial. Am. J. Psychiatry 2019, 176, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Azhari, N.; Hu, H.; O’Malley, K.Y.; Blocker, M.E.; Levin, F.R.; Dakwar, E. Ketamine-Facilitated Behavioral Treatment for Cannabis Use Disorder: A Proof of Concept Study. Am. J. Drug Alcohol Abus. 2020, 47, 92–97. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougherty, J.W., III; Baron, D. Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond. Int. J. Environ. Res. Public Health 2022, 19, 16082. https://doi.org/10.3390/ijerph192316082
Dougherty JW III, Baron D. Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond. International Journal of Environmental Research and Public Health. 2022; 19(23):16082. https://doi.org/10.3390/ijerph192316082
Chicago/Turabian StyleDougherty, John W., III, and David Baron. 2022. "Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond" International Journal of Environmental Research and Public Health 19, no. 23: 16082. https://doi.org/10.3390/ijerph192316082
APA StyleDougherty, J. W., III, & Baron, D. (2022). Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond. International Journal of Environmental Research and Public Health, 19(23), 16082. https://doi.org/10.3390/ijerph192316082