Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Classification of Land Use and Land Cover
2.3. Simulation of Ecosystem Services
2.3.1. Grain Production
2.3.2. Water Yield
2.3.3. Carbon Sequestration
2.3.4. Nutrient Delivery Ratio
2.3.5. Habitat Quality
2.4. Correlation and Correlation Analysis
3. Results
3.1. The Dynamics of LULC Types
3.2. The Changes in Ecosystem Services
3.2.1. Crop Production
3.2.2. Water Yield
3.2.3. Carbon Sequestration
3.2.4. Nutrient Delivery Ratio
3.2.5. Habitat Quality
3.3. The Correlation of Ecosystem Services
3.3.1. Ecosystem Service Function Coordination and Balance
3.3.2. Synergy and Tradeoffs between Different LULC Classes and Ecosystem Services
4. Discussion
Analysis of Ecosystem Services
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, T.; Li, X.; Bai, J.; Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 2019, 30, 799–810. [Google Scholar] [CrossRef]
- Wong, B.B.M.; Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 2014, 26, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.M.; Wen, Y.Y.; Liu, X.C.; Wen, D.; Long, Y.X.; Zhao, P.; Liu, P.A.; Zhong, J. Protection Effect and Vacancy of the Ecological Protection Redline: A Case Study in Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2021, 13, 5171. [Google Scholar] [CrossRef]
- Moran-Ordonez, A.; Hermoso, V.; Martinez-Salinas, A. Multi-objective forest restoration planning in Costa Rica: Balancing landscape connectivity and ecosystem service provisioning with sustainable development. J. Environ. Manag. 2022, 310, 114717. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.; Sutton, P. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Cropper, A.; Dasgupta, P.; Hassan, R.; Leemans, R.; May, R.M.; et al. Nature: The many benefits of ecosystem services. Nature 2006, 443, 749. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.L.; Zhang, Y.W.; Choi, Y.; Li, F.Q. A Scientometrics Review on Land Ecosystem Service Research. Sustainability 2020, 12, 2959. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Abbas, Z.; Chen, D.Y.; Zhu, Z.Y.; Guo, H.J.; Zhao, Y.L. The Eco-Environmental Changes in Typical Coastal Zones of Southern China From 1987 to 2020: A Case Study of Guangdong Coastal Counties. Front. Environ. Sci. 2022, 10, 874364. [Google Scholar] [CrossRef]
- Cao, S.X.; Liu, Z.X.; Li, W.M.; Xian, J.L. Balancing ecological conservation with socioeconomic development. Ambio 2021, 50, 1117–1122. [Google Scholar] [CrossRef]
- Chen, B.S.; Zhao, B.; Li, Y.; Yu, Q.Y.; Zhao, B.J.; Tan, J.Y.; Wen, C.H. Spatiotemporal Evolution and Factors Influencing Ecological Civilization Development in Chinese Watersheds. Int. J. Environ. Res. Public Health 2022, 19, 10728. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Song, F.; Su, F.L.; Mi, C.X.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Polasky, S.; Segerson, K. Integrating ecology and economics in the study of ecosystem services: Some lessons learned. Annu. Rev. Resour. Econ. 2009, 1, 409–434. [Google Scholar] [CrossRef] [Green Version]
- Weiskopf, S.R.; Myers, B.J.E.; Arce-Plata, M.I.; Blanchard, J.L.; Ferrier, S.; Fulton, E.A.; Harfoot, M.; Isbell, F.; Johnson, J.A.; Mori, A.S.; et al. A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models. Bioscience 2022, 72, 1062–1073. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Deval, K.; Joshi, P.K. Study of habitat quality assessment using geospatial techniques in Keoladeo National Park, India. Environ. Sci. Pollut. Res. 2021, 28, 14105–14114. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.B.; Liu, K.; Hu, T.; Hu, S. Effects of Land Use Change on Habitat Based on InVEST Model. Arid Zone Res. 2015, 32, 622–629. [Google Scholar]
- Wang, M.; Di, Y.; Wang, J.D. Ecosystem services and trade-offs and synergy analysis in Tianjin under different land use scenarios. J. Beijing For. Univ. 2022, 44, 77–85. [Google Scholar]
- Guo, Y.; Li, P.; Cheng, W.J.; Li, X.W. Evaluation and complex relations analysis of ecosystem services based on spatial-temporal change of land use in Dongting Lake. Acta Sci. Circumstantiae 2022, 42, 121–130. [Google Scholar]
- Wei, P.J.; Wu, M.H.; Jia, Y.L.; Gao, Y.Y. Spatiotemporal variation of water yield in the upstream regions of the Shule River Basin using the InVEST Model. Acta Ecol. Sin. 2022, 13, 1250. [Google Scholar]
- Zhang, T.J.; Zhang, S.P.; Cao, Q.; Wang, H.Y.; Li, Y.L. The spatiotemporal dynamics of ecosystem services bundles and the social-economic-ecological drivers in the Yellow River Delta region. Ecol. Indic. 2022, 135, 108573. [Google Scholar] [CrossRef]
- Yu, Y.H.; Sun, X.Q.; Wang, J.L.; Zhang, J.P. Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China. Peerj 2022, 10, e12804. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Zhu, X.; Cao, G.; Chen, Y.; Zhang, Z.; Wu, D. The impacts of urban land expansion on ecosystem services in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 10635–10648. [Google Scholar] [CrossRef] [PubMed]
- Adelisardou, F.; Jafari, H.R.; Malekmohammadi, B.; Minkina, T.; Zhao, W.; Karbassi, A. Impacts of land use and land cover change on the interactions among multiple soil-dependent ecosystem services (case study: Jiroft plain, Iran). Environ. Geochem. Health 2021, 43, 3977–3996. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Kong, X.; Ke, X.; Yang, B. The impact of cropland balance policy on ecosystem service of water purification—A case study of Wuhan, China. Water 2017, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Nel, L.; Boeni, A.F.; Prohaszka, V.J.; Szilagyi, A.; Kovacs, E.T.; Pasztor, L.; Centeri, C. InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability 2022, 14, 9808. [Google Scholar] [CrossRef]
- Ma, T.; Li, X.; Bai, J.; Ding, S.; Zhou, F.; Cui, B. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Sci. Total Environ. 2019, 655, 741–750. [Google Scholar] [CrossRef]
- Deng, C.X.; Liu, J.Y.; Liu, Y.J.; Li, Z.W.; Nie, X.D.; Hu, X.Q.; Wang, L.X.; Zhang, Y.T.; Zhang, G.Y.; Zhu, D.M.; et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 2021, 288, 112478. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.; Xia, Q.Y.; Dong, J. ”Three line” under the constraints of land use change and its effect on carbon—In wuhan city circle as an example. Acta Ecol. Sin. 2022, 42, 2265–2280. [Google Scholar]
- Ke, X.L.; Tang, L.P. The impact of urban expansion and cultivated land protection coupling on carbon storage in terrestrial ecosystems: Taking Hubei Province as an example. Acta Ecol. Sin. 2019, 39, 672–683. [Google Scholar] [CrossRef]
- Ma, F.Z. Evaluation of Ecosystem Service in the Core Water Source Area of the Middle Route of the South-North Water Diversion Project Based on InVEST Model. Master’s Thesis, Hubei University, Hubei, China, 2021. [Google Scholar]
- Zhou, L.L. Assessment and Multi-Scenario Simulation of Wetland Ecosystem Services in the Upper Reaches of the Yangtze River. Ph.D. Thesis, Chongqing University, Chongqing, China, 2020. [Google Scholar]
- Liu, Y.N.; Kong, L.Q.; Xiao, Y.; Zheng, H. Effects of Landscape Pattern Changes on Ecosystem Water Purification Service in the Yangtze River Basin. Environ. Prot. Sci. 2018, 44, 6–13. [Google Scholar]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Huang, L.Y.; Liu, S.H.; LI, J. Spatial and Temporal Dynamics of Urban Ecological Land Use and Its Related Driving Forces: A Case Study of Wuhan City. Resour. Environ. Yangtze Basin 2019, 28, 1059–1069. [Google Scholar]
- Xia, Y.; Zhang, Y.Y.; Li, E.H.; Cai, X.B. Spatio-temporal Evolution and Prediction of Habitat Quality in Four Lakes Basin of Jianghan Plain. Resour. Environ. Yangtze Basin 2022, 07, 1–14. [Google Scholar]
- Lu, S.; Bai, X.; Li, W.; Wang, N. Impacts of climate change on water resources and grain production. Technol. Forecast. Soc. Chang. 2019, 143, 76–84. [Google Scholar] [CrossRef]
- Yang, X.; Chen, R.S.; Meadows, M.E.; Ji, G.X.; Xu, J.H. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Wei, P.J.; Chen, S.Y.; Wu, M.H.; Deng, Y.F.; Xu, H.J.; Jia, Y.L.; Liu, F. Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Jacobs, S.R.; Breuer, L.; Butterbach-Bahl, K.; Pelster, D.E.; Rufino, M.C. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Sci. Total Environ. 2017, 603, 519–532. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Liu, Y.; Stein, A.; Jiao, L. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting habitat quality of protected dry grasslands using Landsat NDVI phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Science of the Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L. Regional economic transformation in central and western China from the perspective of ecological and environmental protection. J. Environ. Prot. Ecol. 2021, 22, 2003–2011. [Google Scholar]
- Tao, Q.; Gao, G.H.; Xi, H.H.; Wang, F.; Cheng, X.B.; Ou, W.X.; Tao, Y. An integrated evaluation framework for multiscale ecological protection and restoration based on multi-scenario trade-offs of ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2022, 140, 108962. [Google Scholar] [CrossRef]
- Zhang, H. Research on the construction of Zhaoqing urban ecological infrastructure based on ecological security. Appl. Ecol. Environ. Res. 2019, 17, 9159–9169. [Google Scholar] [CrossRef]
Classification | The Primary Classification | Reclassify |
---|---|---|
The land use of productive ecosystem (LUPE) | Cropland | Paddy field |
Dry land | ||
Fishery land | Fishery land | |
The land use of natural ecosystem (LUNE) | Forestland | forestland |
Shrubland | ||
open woodland | ||
other woodland | ||
Grassland | Grassland with high coverage | |
Grassland with moderate coverage | ||
Grassland with low coverage | ||
Wetlands | Lakes | |
Reservoir | ||
Swag | ||
Graff | ||
The land use of socio-economic ecosystem (LUSE) | Construction land | Urban land |
Village land | ||
Other construction land |
Data | Method | Source |
---|---|---|
Administrative boundaries | Using Arcgis for tailoring | Resources and Environment Science and Data Center offers Chinese municipal and county-level administrative boundary data |
Average annual precipitation | Kriging method | National meteorological science data center of Wuhan city and the surrounding 16 weather stations from 1980 to 2020 the day precipitation, average temperature, and daily maximum and minimum temperature data |
Soil | Using Arcgis for extraction | Chinese soil data set based on world soil database (hwsd) (v1.1) This data is from: National Cryosphere Desert Data Center |
Average annual reference evapotranspiration | Modified—Hargreaves formula | Extraterrestrial top radiation from the sun radiation value data from FAO # 56 irrigation water file attachment 2 |
Plant available water content | SPAW software to calculate | National Cryosphere Desert Data Center |
Z parameter | Manual debugging | Water resources in Wuhan city gazette in 2016–2020 |
Serial Number | LULC (Mg/hm2) | Carbon Stored in Aboveground Biomass (Mg/hm2) | Carbon Stored in Belowground Biomass (Mg/hm2) | Carbon Stored in Soil (Mg/hm2) | Carbon Stored in Dead Organic Matter (Mg/hm2) |
---|---|---|---|---|---|
11 | Paddy field | 6.17 | 6.48 | 76.35 | 1.07 |
12 | Dry land | 6.19 | 6.28 | 68.26 | 1.07 |
21 | Forestland | 23.73 | 32.1 | 93.81 | 18.12 |
22 | Shrubland | 19.5 | 8.23 | 59.66 | 1.87 |
23 | Open woodland | 22.04 | 19.05 | 88.37 | 9.37 |
24 | Other woodland | 22.14 | 8.93 | 85.2 | 2.82 |
31 | Grassland with high coverage | 6.82 | 8.78 | 52.83 | 4 |
32 | Grassland with moderate coverage | 6.98 | 8.78 | 52.83 | 3.2 |
33 | Grassland with low coverage | 6.28 | 8.78 | 63.39 | 5 |
41 | Graff | 1.88 | 4.14 | 34.5 | 3.98 |
51 | Urban land | 3.21 | 2.98 | 28.91 | 0 |
52 | Village land | 1.61 | 2.98 | 29.16 | 0 |
53 | Other construction land | 3.21 | 2.98 | 29.41 | 0 |
401 | Reservoir | 1.88 | 4.14 | 36.17 | 3.98 |
402 | Lakes | 1.88 | 4.14 | 36.5 | 3.98 |
403 | Swag | 2.79 | 0.37 | 36.83 | 3.98 |
404 | Fishery | 2.79 | 0.37 | 37.17 | 3.98 |
Serial Number | LULC | Habitat | Paddy Field | Dry Land | Rural Residential Areas | Construction Land | Urban Land |
---|---|---|---|---|---|---|---|
11 | Paddy field | 0.4 | 0 | 1 | 0.35 | 0.1 | 0.5 |
12 | Dry land | 0.3 | 1 | 0 | 0.7 | 0.1 | 0.5 |
21 | Forestland | 1 | 1 | 1 | 0.7 | 0.6 | 0.9 |
22 | Shrubland | 0.7 | 0.7 | 0.9 | 0.4 | 0.2 | 0.6 |
23 | Open woodland | 0.6 | 0.8 | 0.5 | 0.6 | 0.65 | 0.8 |
24 | Other woodland | 0.4 | 0.8 | 0.5 | 0.6 | 0.7 | 0.8 |
31 | Grassland with high coverage | 0.65 | 0.8 | 0.8 | 0.5 | 0.25 | 0.8 |
32 | Grassland with moderate coverage | 0.55 | 0.8 | 0.8 | 0.55 | 0.3 | 0.7 |
33 | Grassland with low coverage | 0.35 | 0.8 | 0.8 | 0.65 | 0.35 | 0.75 |
41 | Graff | 1 | 0.3 | 0.2 | 0.6 | 0.5 | 0.8 |
51 | Urban land | 0 | 0 | 0 | 0 | 0 | 0 |
52 | Village land | 0 | 0 | 0 | 0 | 0 | 0 |
53 | Other construction land | 0 | 0 | 0 | 0 | 0 | 0 |
401 | Reservoir | 1 | 0.9 | 0.2 | 0.7 | 0.5 | 0.8 |
402 | Lakes | 0.6 | 0.7 | 0.2 | 0.5 | 0.1 | 0.3 |
403 | Swag | 0.5 | 0.2 | 0.2 | 0.5 | 0.1 | 0.3 |
404 | Fishery | 0.6 | 0.3 | 0.2 | 0.5 | 0.1 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Hu, Q.; Wang, C.; Lv, J.; Mi, C.; Shi, R.; Wang, X.; Yang, Y.; Wu, W. Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees. Int. J. Environ. Res. Public Health 2022, 19, 16105. https://doi.org/10.3390/ijerph192316105
Ma T, Hu Q, Wang C, Lv J, Mi C, Shi R, Wang X, Yang Y, Wu W. Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees. International Journal of Environmental Research and Public Health. 2022; 19(23):16105. https://doi.org/10.3390/ijerph192316105
Chicago/Turabian StyleMa, Tiantian, Qingbai Hu, Changle Wang, Jungang Lv, Changhong Mi, Rongguang Shi, Xiaoli Wang, Yanying Yang, and Wenhao Wu. 2022. "Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees" International Journal of Environmental Research and Public Health 19, no. 23: 16105. https://doi.org/10.3390/ijerph192316105
APA StyleMa, T., Hu, Q., Wang, C., Lv, J., Mi, C., Shi, R., Wang, X., Yang, Y., & Wu, W. (2022). Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees. International Journal of Environmental Research and Public Health, 19(23), 16105. https://doi.org/10.3390/ijerph192316105