Effect of Whole-Body Vibration on Serum Levels of Brain Derived Neurotrophic Factor and Cortisol in Young, Healthy Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods
2.2.1. Anthropometric Measurements
2.2.2. Blood Collection Method and Biochemical Determinations
2.2.3. Whole-Body Vibration
- 1–4 weeks: Duration of each exercise—1 min; break time between exercises—1 min; vibration parameters—frequency 40 Hz, amplitude 2 mm;
- 5–8 weeks: Duration of each exercise—1 min; break time between exercises—1 min; vibration parameters—frequency 45 Hz, amplitude 2 mm;
- 9–12 weeks: Duration of each exercise—1 min; break time between exercises—1 min; vibration parameters—frequency 50 Hz, amplitude 2 mm.
2.2.4. Ethics Approval and Consent to Participate
2.2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Study Limitations
4.2. Study Strengths
4.3. Research Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochrane, D.J. Vibration Exercise: The Potential Benefits. Int. J. Sports Med. 2011, 32, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Van Heuvelen, M.J.G.; Rittweger, J.; Judex, S.; Sañudo, B.; Seixas, A.; Fuermaier, A.B.M.; Tucha, O.; Nyakas, C.; Marín, P.J.; Taiar, R.; et al. Reporting Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A Consensus Statement from an International Group of Experts. Biology 2021, 10, 965. [Google Scholar] [CrossRef]
- Thompson, W.R.; Yen, S.S.; Rubin, J. Vibration Therapy. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Erskine, J.; Smillie, I.; Leiper, J.; Ball, D.; Cardinale, M. Neuromuscular and Hormonal Responses to a Single Session of Whole Body Vibration Exercise in Healthy Young Men. Clin. Physiol. Funct. Imaging 2007, 27, 242–248. [Google Scholar] [CrossRef]
- Laisa, L.D.; Paula, M.G.; Dulciane, N.P.; Nasser, R.A.; Pedro, J.M.; Mario, B.F. Alterations on the Plasma Concentration of Hormonal and Non Hormonal Biomarkers in Human Beings Submitted to Whole Body Vibration Exercises. Sci. Res. Essays 2015, 10, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Jaques, S.A.; Burke, F.J. Vibration White Finger. Br. Dent. J. 1994, 177, 279. [Google Scholar] [CrossRef]
- Pope, M.; Magnusson, M.; Lundström, R.; Hulshof, C.; Verbeek, J.; Bovenzi, M. Guidelines for Whole-Body Vibration Health Surveillance. J. Sound Vib. 2002, 253, 131–167. [Google Scholar] [CrossRef] [Green Version]
- Rehn, B.; Nilsson, T.; Lundström, R.; Hagberg, M.; Burström, L. Neck Pain Combined with Arm Pain among Professional Drivers of Forest Machines and the Association with Whole-Body Vibration Exposure. Ergonomics 2009, 52, 1240–1247. [Google Scholar] [CrossRef]
- Solecki, L. Complaints of Low Back Pain among Private Farmers Exposed to Whole Body Vibration. Med. Pr. 2014, 65, 55–64. [Google Scholar] [CrossRef]
- Sińczuk-Walczak, H.; Siedlecka, J.; Szymczak, W.; Gadzicka, E.; Walczak, A.; Kowalczyk, G.; Dania, M.; Bortkiewicz, A. Neurological Symptoms and Syndromes in Municipal Transport Drivers. Med. Pr. 2015, 66, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity – Exercise-Induced Response of Peripheral Brain-Derived Neurotrophic Factor. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef] [PubMed]
- Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.-M. Decreased Serum Brain-Derived Neurotrophic Factor Levels in Major Depressed Patients. Psychiatry Res. 2002, 109, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.B.M.; Frey, B.N.; Andreazza, A.C.; Goi, J.D.; Rosa, A.R.; Gonçalves, C.A.; Santin, A.; Kapczinski, F. Serum Brain-Derived Neurotrophic Factor Is Decreased in Bipolar Disorder during Depressive and Manic Episodes. Neurosci. Lett. 2006, 398, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Nieto, R.R.; Carrasco, A.; Corral, S.; Castillo, R.; Gaspar, P.A.; Bustamante, M.L.; Silva, H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front. Psychiatry 2021, 12, 662407. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, D.; Hernández-Martínez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of Physical Exercise on Plasma Brain-Derived Neurotrophic Factor in Neurodegenerative Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neurosci. Biobehav. Rev. 2021, 128, 394–405. [Google Scholar] [CrossRef]
- Björkholm, C.; Monteggia, L.M. BDNF—A Key Transducer of Antidepressant Effects. Neuropharmacology 2016, 102, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, A.W. Role of Physical Activity in Preventing Cognitive Disorders. Aktual. Neurol. 2014, 14, 175–180. [Google Scholar] [CrossRef]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chan, S.; Lanctôt, K.L. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef] [Green Version]
- Dziurkowska, E.; Wesolowski, M. Cortisol as a Biomarker of Mental Disorder Severity. J. Clin. Med. 2021, 10, 5204. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, E.; Choi, M.H. Technical and Clinical Aspects of Cortisol as a Biochemical Marker of Chronic Stress. BMB Rep. 2015, 48, 209–216. [Google Scholar] [CrossRef]
- Law, R.; Clow, A. Stress, the Cortisol Awakening Response and Cognitive Function. In International Review of Neurobiology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 150, pp. 187–217. ISBN 9780128167526. [Google Scholar]
- Mastorakos, G.; Pavlatou, M.; Diamanti-Kandarakis, E.; Chrousos, G.P. Exercise and the Stress System. Hormones 2005, 4, 73–89. [Google Scholar] [PubMed]
- Peeters, G.M.E.E.; van Schoor, N.M.; Visser, M.; Knol, D.L.; Eekhoff, E.M.W.; de Ronde, W.; Lips, P. Relationship between Cortisol and Physical Performance in Older Persons. Clin. Endocrinol. 2007, 67, 398–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, D.; Schiller, H.H. Discharge Pattern of Single Motor Units in the Tonic Vibration Reflex of Human Triceps Surae. J. Neurol. Neurosurg. Psychiatry 1976, 39, 729–741. [Google Scholar] [CrossRef] [Green Version]
- Collado-Boira, E.; Baliño, P.; Boldó-Roda, A.; Martínez-Navarro, I.; Hernando, B.; Recacha-Ponce, P.; Hernando, C.; Muriach, M. Influence of Female Sex Hormones on Ultra-Running Performance and Post-Race Recovery: Role of Testosterone. Int. J. Environ. Res. Public Health 2021, 18, 10403. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M. Female Hormones: Do They Influence Muscle and Tendon Protein Metabolism? Proc. Nutr. Soc. 2018, 77, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M. Normy Żywienia Dla Populacji Polski; Instytut Żywności i Żywienia: Warszawa, Poland, 2017; ISBN 9788386060894. [Google Scholar]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. Międzynarodowy Kwestionariusz Aktywności Fizycznej (IPAQ)—Wersja Polska. Wych. Fiz. Sport 2007, 51, 47–54. [Google Scholar]
- Cardinale, M.; Erskine, J.A. Vibration Training in Elite Sport: Effective Training Solution or Just Another Fad? Int. J. Sports Physiol. Perform. 2008, 3, 232–239. [Google Scholar] [CrossRef]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Wuestefeld, A.; Fuermaier, A.B.M.; Bernardo-Filho, M.; da Cunha de Sá-Caputo, D.; Rittweger, J.; Schoenau, E.; Stark, C.; Marin, P.J.; Seixas, A.; Judex, S.; et al. Towards Reporting Guidelines of Research Using Whole-Body Vibration as Training or Treatment Regimen in Human Subjects—A Delphi Consensus Study. PLoS ONE 2020, 15, e0235905. [Google Scholar] [CrossRef]
- Begliuomini, S.; Casarosa, E.; Pluchino, N.; Lenzi, E.; Centofanti, M.; Freschi, L.; Pieri, M.; Genazzani, A.D.; Luisi, S.; Genazzani, A.R. Influence of Endogenous and Exogenous Sex Hormones on Plasma Brain-Derived Neurotrophic Factor. Hum. Reprod. 2007, 22, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Atherton, N.; Bridle, C.; Brown, D.; Collins, H.; Dosanjh, S.; Griffiths, F.; Hennings, S.; Khan, K.; Lall, R.; Lyle, S.; et al. Dementia and Physical Activity (DAPA)—An Exercise Intervention to Improve Cognition in People with Mild to Moderate Dementia: Study Protocol for a Randomized Controlled Trial. Trials 2016, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, V.G.C.; Lacerda, A.C.R.; Santos, J.M.; Coelho-oliveira, A.C.; Fonseca, S.F.; Prates, A.C.N.; Flor, J.; Garcia, B.C.C.; Tossige-gomes, R.; Leite, R.; et al. Efficacy of Whole-Body Vibration Training on Brain-Derived Neurotrophic Factor, Clinical and Functional Outcomes, and Quality of Life in Women with Fibromyalgia Syndrome: A Randomized Controlled Trial. J. Healthc. Eng. 2021, 2021, 7593802. [Google Scholar] [CrossRef] [PubMed]
- Bemben, M.G.; Cristina, A.; Lacerda, R.; Danielle, C.; Neves, C. Whole Body Vibration Training on Muscle Strength and Brain-Derived Neurotrophic Factor Levels in Elderly Woman with Knee Osteoarthritis: A Randomized Clinical Trial Study. Front. Physiol. 2019, 10, 756. [Google Scholar] [CrossRef] [Green Version]
- Kvorning, T.; Bagger, M.; Caserotti, P.; Madsen, K. Effects of Vibration and Resistance Training on Neuromuscular and Hormonal Measures. Eur. J. Appl. Physiol. 2006, 96, 615–625. [Google Scholar] [CrossRef] [PubMed]
|
EG | AC | CG | |
---|---|---|---|
Age [years] | 21.65 ± 1.8 | 20.17 ± 1.75 | 19.53 ± 0.72 |
p > 0.05 | |||
Height [cm] | 162.76 ± 7.51 | 164.67 ± 5.94 | 167.24 ± 4.56 |
p > 0.05 | |||
Weight [kg] | 56.57 ± 7.18 | 59.43 ± 6.04 | 63.29 ± 8.71 |
p = 0.029; post hoc: EG vs. CG | |||
BMI | 21.31 ± 1.87 | 22.02 ± 2.91 | 22.57 ± 2.44 |
p > 0.05 | |||
PBF [%] | 23.04 ± 6.11 | 25.62 ± 4.14 | 26.25 ± 5.76 |
p > 0.05 | |||
FM [kg] | 13.34 ± 4.54 | 15.4 ± 3.85 | 17.03 ± 5.89 |
p > 0.05 | |||
FFM [kg] | 43.24 ± 3.81 | 44.03 ± 2.84 | 46.25 ± 3.24 |
p = 0.013; post hoc: EG vs. CG |
Cortisol | |||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | p inside the Group | p between Groups | ||
EG | mean | 261.4 | 215.8 | 242.1 | 210.6 | 0.166 | I 0.618 II 0.099 III 0.767 IV 0.250 |
SD | 109.2 | 95.6 | 138.3 | 133.3 | |||
ME | 244.1 | 228.8 | 186.9 | 147.9 | |||
MIN | 132.2 | 91.31 | 130.4 | 104.1 | |||
MAX | 493.5 | 376.2 | 523.2 | 496.1 | |||
AC | mean | 245.6 | 303.9 | 269.5 | 275.9 | 0.675 | |
SD | 125.7 | 168.9 | 133.2 | 154.7 | |||
ME | 205.95 | 279.8 | 228.85 | 230.95 | |||
MIN | 117.3 | 90.13 | 139.4 | 103 | |||
MAX | 498.7 | 582.1 | 588.9 | 520.4 | |||
CG | mean | 206 | 277.4 | 0.067 | |||
SD | 145.2 | 125.6 | |||||
ME | 170.4 | 246.7 | |||||
MIN | 62 | 148.3 | |||||
MAX | 621.6 | 537.7 |
BDNF | |||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | p inside the Group | p between Groups | ||
EG | mean | 2.1 | 2.0 | 2.0 | 2.0 | 0.126 | I 0.559 II 0.090 III 0.681 IV 0.124 |
SD | 0.9 | 0.8 | 0.8 | 0.7 | |||
ME | 1.9 | 2.0 | 1.8 | 1.8 | |||
MIN | 1.2 | 1.0 | 1.0 | 1.1 | |||
MAX | 4.0 | 3.3 | 3.5 | 3.1 | |||
AC | mean | 2.6 | 2.5 | 2.3 | 2.4 | 0.315 | |
SD | 0.9 | 0.8 | 0.7 | 0.7 | |||
ME | 2.4 | 2.4 | 2.1 | 2.2 | |||
MIN | 1.5 | 1.6 | 1.4 | 1.6 | |||
MAX | 3.7 | 4.1 | 3.5 | 3.8 | |||
CG | mean | 2.3 | 2.4 | 0.727 | |||
SD | 1.3 | 1.6 | |||||
ME | 1.9 | 1.9 | |||||
MIN | 1.4 | 1.0 | |||||
MAX | 5.9 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska, A.; Gattner, H.; Adamiak, J.; Mętel, S.; Czerwińska-Ledwig, O.; Pilch, W.; Sadowska-Krępa, E.; Żychowska, M.; Uher, I.; Pałka, T. Effect of Whole-Body Vibration on Serum Levels of Brain Derived Neurotrophic Factor and Cortisol in Young, Healthy Women. Int. J. Environ. Res. Public Health 2022, 19, 16108. https://doi.org/10.3390/ijerph192316108
Piotrowska A, Gattner H, Adamiak J, Mętel S, Czerwińska-Ledwig O, Pilch W, Sadowska-Krępa E, Żychowska M, Uher I, Pałka T. Effect of Whole-Body Vibration on Serum Levels of Brain Derived Neurotrophic Factor and Cortisol in Young, Healthy Women. International Journal of Environmental Research and Public Health. 2022; 19(23):16108. https://doi.org/10.3390/ijerph192316108
Chicago/Turabian StylePiotrowska, Anna, Halina Gattner, Justyna Adamiak, Sylwia Mętel, Olga Czerwińska-Ledwig, Wanda Pilch, Ewa Sadowska-Krępa, Małgorzata Żychowska, Ivan Uher, and Tomasz Pałka. 2022. "Effect of Whole-Body Vibration on Serum Levels of Brain Derived Neurotrophic Factor and Cortisol in Young, Healthy Women" International Journal of Environmental Research and Public Health 19, no. 23: 16108. https://doi.org/10.3390/ijerph192316108
APA StylePiotrowska, A., Gattner, H., Adamiak, J., Mętel, S., Czerwińska-Ledwig, O., Pilch, W., Sadowska-Krępa, E., Żychowska, M., Uher, I., & Pałka, T. (2022). Effect of Whole-Body Vibration on Serum Levels of Brain Derived Neurotrophic Factor and Cortisol in Young, Healthy Women. International Journal of Environmental Research and Public Health, 19(23), 16108. https://doi.org/10.3390/ijerph192316108