Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Countermovement Jump Assessment
2.3. Back Squat Testing
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations of this Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGuigan, M. Testing and Evaluation of Strength and Power; Routledge: London, UK, 2019; pp. 77–86. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [PubMed]
- Verdijk, L.B.; Van Loon, L.; Meijer, K.; Savelberg, H.H. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J. Sports Sci. 2009, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of various methods for determining velocity, force, and power in the back squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and validity of the load–velocity relationship to predict the 1RM back squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Engel, F.A.; Faude, O.; Kölling, S.; Kellmann, M.; Donath, L. Verbal encouragement and between-day reliability during high-intensity functional strength and endurance performance testing. Front. Physiol. 2019, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Walker, S.; Stembridge, M.; Coneyworth, P.; Reed, G.; Birdsey, L.; Barter, P.; Moody, J. A testing battery for the assessment of fitness in soccer players. Strength Cond. J. 2011, 33, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Jakovljević, S.; Karalejić, M.; Pajić, Z.; Janković, N.; Erčulj, F. Relationship between 1RM back squat test results and explosive movements in professional basketball players. Auc Kinanthropologica 2015, 51, 41–50. [Google Scholar] [CrossRef]
- Wilson, G.J.; Murphy, A.J.; Pryor, J.F. Musculotendinous stiffness: Its relationship to eccentric, isometric, and concentric performance. J. Appl. Physiol. 1994, 76, 2714–2719. [Google Scholar] [CrossRef]
- Lindstedt, S.L.; LaStayo, P.; Reich, T. When active muscles lengthen: Properties and consequences of eccentric contractions. Physiology 2001, 16, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of Strength Characteristics to Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Jones, P.A.; Thomas, C.; Dos’ Santos, T.; McMahon, J.J.; Graham-Smith, P. The role of eccentric strength in 180 turns in female soccer players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Smajla, D.; Kozinc, Ž.; Šarabon, N. Associations between lower limb eccentric muscle capability and change of direction speed in basketball and tennis players. PeerJ 2022, 10, e13439. [Google Scholar] [CrossRef]
- Jones, P.A.; Dos’Santos, T.; McMahon, J.J.; Graham-Smith, P. Contribution of eccentric strength to cutting performance in female soccer players. J. Strength Cond. Res. 2022, 36, 525–533. [Google Scholar] [CrossRef]
- Franchi, M.V.; Ellenberger, L.; Javet, M.; Bruhin, B.; Romann, M.; Frey, W.O.; Spörri, J. Maximal eccentric hamstrings strength in competitive alpine skiers: Cross-sectional observations from youth to elite level. Front. Physiol. 2019, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Laffaye, G.; Wagner, P.P.; Tombleson, T.I. Countermovement jump height: Gender and sport-specific differences in the force-time variables. J. Strength Cond. Res. 2014, 28, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- McNeill, C.; Beaven, C.M.; McMaster, D.T.; Gill, N. Eccentric force-velocity characteristics during a novel squat protocol in trained rugby union athletes—Pilot study. J. Funct. Morphol. Kinesiol. 2021, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric exercise: Physiological characteristics and acute responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J. Sports Sci. 2020, 38, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, L.A.; McGuigan, M.R.; Gill, N.D.; Dulson, D.K. Relationships between concentric and eccentric strength and countermovement jump performance in resistance trained men. J. Strength Cond. Res. 2018, 32, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Snyder, B.W.; Connaboy, C.; Lamont, H.S.; Davis, S.E. Using drop jumps and jump squats to assess eccentric and concentric force-velocity characteristics. Sports 2018, 6, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int. J. Sports Sci. Coach. 2008, 3, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Cowell, J.F.; Cronin, J.; Brughelli, M. Eccentric muscle actions and how the strength and conditioning specialist might use them for a variety of purposes. Strength Cond. J. 2012, 34, 33–48. [Google Scholar] [CrossRef]
- Drury, D.G.; Stuempfle, K.J.; Mason, C.W.; Girman, J.C. The effects of isokinetic contraction velocity on concentric and eccentric strength of the biceps brachii. J. Strength Cond. Res. 2006, 20, 390. [Google Scholar]
- Seger, J.; Thorstensson, A. Electrically evoked eccentric and concentric torque-velocity relationships in human knee extensor muscles. Acta Physiol. Scand. 2000, 169, 63–69. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Bishop, C.; Jarvis, P.; Turner, A.; Balsalobre-Fernández, C. Validity and reliability of strategy metrics to assess countermovement jump performance using the newly developed my jump lab smartphone application. J. Hum. Kinet. 2022, 83, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Vanrenterghem, J.; De Clercq, D.; Cleven, P.V. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Ergonomics 2001, 44, 814–818. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Rej, S.J.; Comfort, P. Sex differences in countermovement jump phase characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcbride, J.M.; Nimphius, S.; Erickson, T.M. The acute effects of heavy-load squats and loaded countermovement jumps on sprint performance. J. Strength Cond. Res. 2005, 19, 893–897. [Google Scholar]
- Ebben, W.; Flanagan, E.; Jensen, R. Gender similarities in rate of force development and time to takeoff during the countermovement jump. J. Exerc. Physiol. Online 2007, 10, 10–17. [Google Scholar]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Mundy, P.D.; Smith, N.A.; Lauder, M.A.; Lake, J.P. The effects of barbell load on countermovement vertical jump power and net impulse. J. Sports Sci. 2017, 35, 1781–1787. [Google Scholar] [CrossRef]
- Yarrow, J.F.; Borsa, P.A.; Borst, S.E.; Sitren, H.S.; Stevens, B.R.; White, L.J. Neuroendocrine responses to an acute bout of eccentric-enhanced resistance exercise. Med. Sci. Sports Exerc. 2007, 39, 941. [Google Scholar] [CrossRef]
- Haff, G.G.; Dumke, C. Laboratory Manual for Exercise Physiology; Human Kinetics: Champaign, IL, USA, 2021; pp. 398–416. [Google Scholar]
- Haff, G.G.; Triplett, N.T. Essentials of strength training and conditioning 4th edition. In Program Design for Resistance Training; Jeremy, M.S., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 439–520. [Google Scholar]
- Kubo, T.; Hirayama, K.; Nakamura, N.; Higuchi, M. Influence of different loads on force-time characteristics during back squats. J. Sports Sci. Med. 2018, 17, 617. [Google Scholar]
- Lake, J.; Lauder, M.; Smith, N.; Shorter, K. A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J. Appl. Biomech. 2012, 28, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Medina, L.; Perez, C.; Gonzalez-Badillo, J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Brazier, J.; Bishop, C.; Chavda, S.; Cree, J.; Read, P. Data analysis for strength and conditioning coaches: Using excel to analyze reliability, differences, and relationships. Strength Cond. J. 2015, 37, 76–83. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Atkinson, G. Assessing agreement between measurements recorded on a ratio scale in sports medicine and sports science. Br. J. Sports Med. 1997, 31, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics: A New View of Statistics. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 13 June 2002).
- David, F.N. Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples; Cambridge University Press: Cambridge, UK, 1938. [Google Scholar]
- Algina, J.; Olejnik, S. Sample size tables for correlation analysis with applications in partial correlation and multiple regression analysis. Multivar. Behav. Res. 2003, 38, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.T.; Cronin, J.B.; Newton, M.J. Three methods of calculating force-time variables in the rebound jump squat. J. Strength Cond. Res. 2011, 25, 867–871. [Google Scholar] [CrossRef]
- Stock, M.S.; Luera, M.J. Consistency of peak and mean concentric and eccentric force using a novel squat testing device. J. Appl. Biomech. 2014, 30, 322–325. [Google Scholar] [CrossRef]
- Hollander, D.B.; Kraemer, R.R.; Kilpatrick, M.W.; Ramadan, Z.G.; Reeves, G.V.; Francois, M.; Hebert, E.P.; Tryniecki, J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007, 21, 37–40. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Winchester, J.B. The relationship between isometric and dynamic strength in college football players. J. Sports Sci. Med. 2008, 7, 101. [Google Scholar]
- Sheppard, J.M.; Cronin, J.B.; Gabbett, T.J.; McGuigan, M.R.; Etxebarria, N.; Newton, R.U. Relative importance of strength, power, and anthropometric measures to jump performance of elite volleyball players. J. Strength Cond. Res. 2008, 22, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 1996, 81, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Schilling, B.K. Theory and application of augmented eccentric loading. Strength Cond. J. 2005, 27, 20. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- McLean, B.D.; Coutts, A.J.; Kelly, V.; McGuigan, M.R.; Cormack, S.J. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int. J. Sports Physiol. Perform. 2010, 5, 367–383. [Google Scholar] [CrossRef] [Green Version]
- Mooney, M.G.; Cormack, S.; O’Brien, B.J.; Morgan, W.M.; McGuigan, M. Impact of neuromuscular fatigue on match exercise intensity and performance in elite Australian football. J. Strength Cond. Res. 2013, 27, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Cormie, P. Neuromuscular and endocrine responses of elite players during an Australian rules football season. Int. J. Sports Physiol. Perform. 2008, 3, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Mansournia, M.A.; Waters, R.; Nazemipour, M.; Bland, M.; Altman, D.G. Bland-Altman methods for comparing methods of measurement and response to criticisms. Glob. Epidemiol. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Haghayegh, S.; Kang, H.-A.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R. A comprehensive guideline for Bland–Altman and intra class correlation calculations to properly compare two methods of measurement and interpret findings. Physiol. Meas. 2020, 41, 055012. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.; Frost, C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2008, 31, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Harden, M.; Wolf, A.; Haff, G.G.; Hicks, K.M.; Howatson, G. Repeatability and specificity of eccentric force output and the implications for eccentric training load prescription. J. Strength Cond. Res. 2019, 33, 676–683. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | CV % | ICC (95% CI) | Kolmogorov-Smirnov p Value |
---|---|---|---|---|
CMJ | ||||
JH (cm) | 38.92 ± 5.94 | 3.81 | 0.947 | 0.200 * |
EccPF (N) | 1980.80 ± 394.34 | 3.14 | 0.976 | 0.100 |
EccMF (N) | 1476.29 ± 331.76 | 3.31 | 0.979 | 0.136 |
1RM-BS | ||||
Load (kg) | 159.54 ± 28.12 | 9.04 | - | 0.086 |
EccPF(N) | 2560.99 ± 403.72 | 9.75 | - | 0.200 * |
EccMF (N) | 2393.98 ± 374.66 | 9.15 | - | 0.200 * |
Variable | CMJ-EccPF | CMJ-EccMF | BS-load | BS-EccPF | BS-EccMF |
---|---|---|---|---|---|
CMJ-JH | 0.267 | 0.232 | 0.321 | 0.325 | 0.274 |
CMJ-EccPF | 0.939 ** | 0.596 ** | 0.694 ** | 0.720 ** | |
CMJ-EccMF | 0.474 ** | 0.578 ** | 0.616 ** | ||
BS-load | 0.955 ** | 0.951 ** | |||
BS-EccPF | 0.986 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Chiang, C.-Y. Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study. Int. J. Environ. Res. Public Health 2022, 19, 16176. https://doi.org/10.3390/ijerph192316176
Chang C-C, Chiang C-Y. Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study. International Journal of Environmental Research and Public Health. 2022; 19(23):16176. https://doi.org/10.3390/ijerph192316176
Chicago/Turabian StyleChang, Chien-Chun, and Chieh-Ying Chiang. 2022. "Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study" International Journal of Environmental Research and Public Health 19, no. 23: 16176. https://doi.org/10.3390/ijerph192316176
APA StyleChang, C.-C., & Chiang, C.-Y. (2022). Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study. International Journal of Environmental Research and Public Health, 19(23), 16176. https://doi.org/10.3390/ijerph192316176