A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. LULC Simulation Model
2.3.1. CA-Markov Model
2.3.2. FLUS Model
2.3.3. PLUS Model
2.3.4. Selection of Driving Factors
2.3.5. Verification of Different Models
2.3.6. Spatial Interpolation
2.4. Simulation Scenario Setting
2.5. ESV Evaluation
3. Results
3.1. Historical Changes of LULC and ESV
3.1.1. Spatiotemporal Evolution of LULC
3.1.2. Temporal Variations in ESV
3.2. Comparison and Verification of Simulation Results of Different Methods
3.3. Driving Factors Analysis of LULC Evolution
3.4. LULC and ESV Predictions under Multiple Scenarios
4. Discussion
5. Conclusions
- From 2000 to 2020, the main mutual transition came from grassland (increased by 341.18 km2) and farmland (decreased by 380.08 km2). The total ESV decreased continuously from 52,364.56 million yuan to 51,620.62 million yuan.
- The accuracy of the FLUS model (Kappa coefficient = 0.7613) and the PLUS model (Kappa coefficient = 0.7622) is similar, and both are higher than the CA-Markov model in IDRISI 17.0 (Kappa coefficient = 0.6631).
- Human activities and economic factors largely affect the land expansion of various types in Tongliao (population and GDP).
- In 2035, farmland will decrease the most (96.81 km2); the total ESV decreased from 51,620.62 million yuan to 51,541.12 million. Besides, the land showed a trend of scattered expansion under scenarios of policy impact.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
LULC | Land use and land cover |
ESV | Ecosystem services value |
CA | Cellular automata |
FLUS | Future Land Use Simulation |
PLUS | Patch-generating Land Use Simulation |
SVM | Support vector machines |
ANN | Artificial neural networks |
RF | Random forest |
TAS | Transition analysis strategy |
PAS | Pattern analysis strategy |
CF | Capital farmland |
EPRL | Ecological protection red line |
LEAS | Land expansion analysis strategy |
CARS | CA based on multi-type random patch seeds |
POP | Population |
GDP | Gross domestic product |
TE | Terrain elevation |
SL | Slope |
SOM | Soil organic matter |
AP | Annual precipitation |
PR | Proximity to road |
TR | Terrain relief |
GD | Groundwater depth |
AMT | Annual mean temperature |
OA | Overall accuracy |
Appendix A
References
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R. Social goals and the valuation of ecosystem services. Ecosystems 2000, 3, 4–10. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Costanze, R.; Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Abebe, T. Land use /land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. For. Trees Livelihood 2017, 26, 111–123. [Google Scholar] [CrossRef]
- Ogryzek, M.; Klimach, A.; Niekurzak, D.; Pietkiewicz, M. Using Cartographic Documents to Provide Geoinformation on the Rights to Real Estate—Taking Poland as an Example. ISPRS Int. J. Geo-Inf. 2019, 1, 530. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.; Anderson, S.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R.; Johnson, T. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 2017, 83, 121–135. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Peng, S.; Li, W. Improving integrated environmental zoning from the perspective of logic scoring of preference and comparative advantage: A case study of Liangjiang New Area, China. J. Clean. Prod. 2021, 325, 129350. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Pol. 2021, 108, 105536. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.; Lin, J.; Yang, L.; Luo, H.; Ma, Y.; Tian, J.; Wang, Q.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Ind. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Huang, Y. Spatial and temporal changes in ecosystem service values in karst areas in southwestern China based on land use changes. Environ. Sci. Pollut. Res. 2021, 28, 45724–45738. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite image time series analysis for big earth observation data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Huang, J.; He, J.; Liu, D.; Li, C.; Qian, J. An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity. Sci. Total Environ. 2018, 622, 1143–1152. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Clarke, K.; Gaydos, L. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geo. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Yu, L. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. Int. J. Geogr. Inf. Syst. 2014, 28, 1317–1335. [Google Scholar] [CrossRef]
- Ke, X.; Zheng, W.; Zhou, T.; Liu, X. A CA-based land system change model: LANDSCAPE. Int. J. Geogr. Inf. Sci. 2017, 31, 1798–1817. [Google Scholar] [CrossRef]
- Lin, Y.; Chu, H.; Wu, C.; Verburg, P. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling-a case study. Int. J. Geogr. Inf. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Kamusoko, C.; Gamba, J. Simulating urban growth using a random forest-cellular automata (rf-ca) model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Luan, C.; Liu, R.; Peng, S. Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili valley, China. Ecol. Indic. 2021, 123, 107333. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Openshaw, S. Neural network, genetic, and fuzzy logic models of spatial interaction. Environ. Plan. A 1998, 30, 1857–1872. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China (in Chinese). J. Nat. Resour. 2008, 23, 9112919. [Google Scholar]
- Xie, G.; Xiao, Y.; Zhen, L.; Lu, C. Study on ecosystem services value of food production in China (in Chinese). Chin. J. Eco-Agric. 2005, 13, 7–10. [Google Scholar]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu Province. China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Arowolo, A.; Deng, X.; Olatunji, O.; Obayelu, A. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
Primary Classification | Secondary Classification | Farmland | Forest | Grassland | Water | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|
Provisioning services | Food production | 822.500 | 271.425 | 353.675 | 435.925 | 0 | 16.450 |
Raw material | 320.775 | 2451.050 | 296.100 | 287.875 | 0 | 32.900 | |
Regulating services | Gas regulation | 592.200 | 3553.200 | 1233.750 | 419.475 | 0 | 49.350 |
Climate regulation | 797.825 | 3347.575 | 1283.100 | 1694.350 | 0 | 106.925 | |
Waste treatment | 1209.075 | 3306.450 | 1842.400 | 337.225 | 0 | 139.825 | |
Supporting services | Water conservation | 633.325 | 3364.025 | 1250.200 | 15,438.325 | 0 | 57.575 |
Soil fertility maintenance | 1143.275 | 1414.700 | 1085.700 | 12,214.125 | 0 | 213.850 | |
Biodiversity protection | 838.950 | 3709.475 | 1538.075 | 2821.175 | 0 | 329.000 | |
Cultural services | Recreation and culture | 139.825 | 1710.800 | 715.575 | 3651.900 | 0 | 197.400 |
LULC Type | 2000 | 2005 | 2010 | 2015 | 2020 | 2000–2005 | 2005–2010 | 2010–2015 |
---|---|---|---|---|---|---|---|---|
Farmland | 17,508.93 | 17,834.52 | 17,877.61 | 17,932.10 | 17,850.11 | 325.59 | 43.09 | 54.49 |
Forest | 4659.98 | 4654.55 | 4643.53 | 4641.51 | 4599.44 | −5.43 | −11.02 | −2.02 |
Grassland | 25,582.02 | 25,424.99 | 25,298.35 | 25,157.32 | 25,201.94 | −157.03 | −126.64 | −141.03 |
Water | 1256.17 | 1134.02 | 1132.01 | 1121.97 | 1132.56 | −122.15 | −2.01 | −10.04 |
Built-up land | 1304.49 | 1328.56 | 1344.28 | 1494.51 | 1525.05 | 24.07 | 15.72 | 150.23 |
Unused land | 8476.59 | 8411.54 | 8492.40 | 8440.77 | 8479.08 | −65.05 | 80.86 | −51.63 |
Primary Classification | Secondary Classification | ESV 2000 | 2005 | 2010 | 2015 | 2020 | ESV Change 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Provisioning services | Food production | 2540.07 | 2555.72 | 2554.53 | 2553.44 | 2547.66 | 15.65 | −1.19 | −1.08 | −5.78 | 7.59 |
Raw material | 2525.36 | 2526.09 | 2521.23 | 2517.85 | 2506.66 | 0.73 | −4.86 | −3.38 | −11.19 | −18.70 | |
Regulating services | Gas regulation | 5943.37 | 5935.90 | 5919.23 | 5903.66 | 5890.00 | −7.47 | −16.67 | −15.57 | −13.67 | −53.37 |
Climate regulation | 6542.77 | 6525.39 | 6509.42 | 6492.74 | 6480.04 | −17.38 | −15.98 | −16.68 | −12.70 | −62.73 | |
Waste treatment | 8531.88 | 8535.49 | 8514.78 | 8493.66 | 8478.95 | 3.61 | −20.70 | −21.12 | −14.71 | −52.93 | |
Supporting services | Water conservation | 7862.90 | 7673.11 | 7653.66 | 7623.00 | 7625.80 | −189.79 | −19.45 | −30.66 | 2.80 | −237.09 |
Soil fertility maintenance | 7154.01 | 7022.83 | 7011.73 | 6988.99 | 6992.26 | −131.18 | −11.11 | −22.73 | 3.27 | −161.75 | |
Biodiversity protection | 7765.49 | 7730.04 | 7712.18 | 7689.78 | 7678.41 | −35.45 | −17.86 | −22.40 | −11.37 | −87.08 | |
Cultural services | Recreation and culture | 3498.70 | 3445.20 | 3435.71 | 3421.35 | 3420.83 | −53.51 | −9.48 | −14.36 | −0.53 | −77.88 |
Total ESV | 52,364.56 | 51,949.77 | 51,832.47 | 51,684.48 | 51,620.62 | −414.79 | −117.30 | −147.99 | −63.87 | −743.94 |
LULC Type | 2020 | S1–S4 | LULC Change | Land Expansion |
---|---|---|---|---|
Farmland | 17,850.11 | 17,753.30 | −96.81 | 10.89 |
Forest | 4599.44 | 4551.23 | −48.21 | 15.72 |
Grassland | 25,201.94 | 25,248.91 | 46.97 | 46.97 |
Water | 1132.56 | 1143.88 | 11.32 | 30.23 |
Built-up land | 1525.05 | 1545.27 | 20.22 | 28.89 |
Unused land | 8479.08 | 8545.59 | 66.51 | 71.85 |
Primary Classification | Secondary Classification | ESV 2020 | S1–S4 | ESV Change |
---|---|---|---|---|
Provisioning services | Food production | 2547.66 | 2540.65 | −7.01 |
Raw material | 2506.66 | 2493.68 | −12.98 | |
Regulating services | Gas regulation | 5890.00 | 5873.73 | −16.27 |
Climate regulation | 6480.04 | 6464.84 | −15.2 | |
Waste treatment | 8478.95 | 8461.27 | −17.68 | |
Supporting services | Water conservation | 7625.80 | 7627.19 | 1.39 |
Soil fertility maintenance | 6992.26 | 6994.72 | 2.46 | |
Biodiversity protection | 7678.41 | 7665.01 | −13.4 | |
Cultural services | Recreation and culture | 3420.83 | 3420.03 | −0.8 |
Total ESV | 51,620.62 | 51,541.12 | −79.5 |
Landscape Indicators Scenario | SHDI | SHEI | CONTAG |
---|---|---|---|
S1 | 1.3753 | 0.7676 | 54.3193 |
S2 | 1.3753 | 0.7676 | 54.0539 |
S3 | 1.3753 | 0.7676 | 54.1384 |
S4 | 1.3753 | 0.7676 | 54.0111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, C.; Liu, R. A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value. Int. J. Environ. Res. Public Health 2022, 19, 16484. https://doi.org/10.3390/ijerph192416484
Luan C, Liu R. A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value. International Journal of Environmental Research and Public Health. 2022; 19(24):16484. https://doi.org/10.3390/ijerph192416484
Chicago/Turabian StyleLuan, Chaoxu, and Renzhi Liu. 2022. "A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value" International Journal of Environmental Research and Public Health 19, no. 24: 16484. https://doi.org/10.3390/ijerph192416484
APA StyleLuan, C., & Liu, R. (2022). A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value. International Journal of Environmental Research and Public Health, 19(24), 16484. https://doi.org/10.3390/ijerph192416484