Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30–50-Year-Old Korean Adults: Latent Class Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
- (1)
- Age: Individuals who were less than 30 years old and more than 60 years old;
- (2)
- Nonconforming data: Individuals who did not fast for 8 h prior to blood sampling;
- (3)
- Deficient data: Individuals whose fasting blood glucose and glycated hemoglobin test results were unavailable;
- (4)
- Missing data.
2.3. Observational Variable
2.4. Statistics
3. Results
3.1. Latent Class Analysis
3.1.1. Determining the Number of Latent Classes
3.1.2. Differential Classification and Naming of Latent Classes
3.1.3. Comparison of Characteristics by Classified Latent Classes
3.2. Multinomial Logistic Regression Analysis: Relationship between General Characteristics and Classified Latent Classes
3.3. Application and Evaluation of Diabetes Risk Prediction Tools
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Jung, C.-H.; Son, J.W.; Kang, S.; Kim, W.J.; Kim, H.-S.; Kim, H.S.; Seo, M.; Shin, H.-J.; Lee, S.-S.; Jeong, S.J.; et al. Diabetes Fact Sheets in Korea, 2020: An Appraisal of Current Status. Diabetes Metab. J. 2021, 45, 1–10. [Google Scholar] [CrossRef]
- Cho, E.-H.; Shin, D.; Cho, K.-H.; Hur, J. Prevalences and Management of Diabetes and Pre-diabetes among Korean Teenagers and Young Adults: Results from the Korea National Health and Nutrition Examination Survey 2005–2014. J. Korean Med. Sci. 2017, 32, 1984–1990. [Google Scholar] [CrossRef] [PubMed]
- Copeland, K.C.; Zeitler, P.; Geffner, M.; Guandalini, C.; Higgins, J.; Hirst, K.; Kaufman, F.R.; Linder, B.; Marcovina, S.; McGuigan, P.; et al. Characteristics of Adolescents and Youth with Recent-Onset Type 2 Diabetes: The TODAY Cohort at Baseline. J. Clin. Endocrinol. Metab. 2011, 96, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TODAY Study Group. Effects of Metformin, Metformin Plus Rosiglitazone, and Metformin Plus Lifestyle on Insulin Sensitivity and β-Cell Function in TODAY. Diabetes Care 2013, 36, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.-S.; Kim, Y.-E.; Park, H.; Oh, I.-H.; Jo, M.-W.; Ock, M.; Go, D.-S.; Yoon, S.-J. Measuring the Burden of Disease in Korea, 2008–2018. J. Prev. Med. Public Health 2021, 54, 293–300. [Google Scholar] [CrossRef]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Nanayakkara, N.; Curtis, A.J.; Heritier, S.; Gadowski, A.M.; Pavkov, M.E.; Kenealy, T.; Owens, D.R.; Thomas, R.L.; Song, S.; Wong, J.; et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: Systematic review and meta-analyses. Diabetologia 2020, 64, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, J.A.; Brady, E.M.; Zaccardi, F.; Tippins, F.; Webb, D.R.; Aroda, V.R.; Gregg, E.W.; Khunti, K.; Davies, M.J. Adults with early-onset type 2 diabetes (aged 18–39 years) are severely underrepresented in diabetes clinical research trials. Diabetologia 2020, 63, 1516–1520. [Google Scholar] [CrossRef]
- Lazar, M.A. How Obesity Causes Diabetes: Not a Tall Tale. Science 2005, 307, 373–375. [Google Scholar] [CrossRef]
- Young-Hyman, D.L.; Davis, C.L. Disordered Eating Behavior in Individuals With Diabetes. Diabetes Care 2010, 33, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Joo, S.Y.; Kim, Y.J.; Lim, M.N. Logistic regression analysis in the prevalence of type 2 diabetes among Korean adults. J. Basic Sci. 2008, 19, 141–148. [Google Scholar]
- Bertoni, A.G.; Clark, J.M.; Feeney, P.; Yanovski, S.Z.; Bantle, J.; Montgomery, B.; Safford, M.M.; Herman, W.H.; Haffner, S. Suboptimal control of glycemia, blood pressure, and LDL cholesterol in overweight adults with diabetes: The Look AHEAD Study. J. Diabetes Complicat. 2008, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Shah, S.; Saboo, B. Current glycemic status and diabetes related complications among type 2 diabetes patients in India: Data from the A1chieve study. J. Assoc. Physicians India 2013, 61, 12-5. [Google Scholar]
- Lang, V.B.; Marković, B.B.; Vrdoljak, D. The association of lifestyle and stress with poor glycemic control in patients with diabetes mellitus type 2: A Croatian nationwide primary care cross-sectional study. Croat. Med. J. 2015, 56, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badedi, M.; Solan, Y.; Darraj, H.; Sabai, A.; Mahfouz, M.; AlAmodi, S.; Alsabaani, A. Factors Associated with Long-Term Control of Type 2 Diabetes Mellitus. J. Diabetes Res. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Hussain, M.E. Obesity and diabetes: An update. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 11, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jung, S.H. Differences in prevalence and risk factors of the metabolic syndrome by gender in type 2 diabetic patients. Korean J. Adult Nurs. 2006, 18, 3–9. [Google Scholar]
- Patnode, C.D.; Lytle, L.A.; Erickson, D.J.; Sirard, J.R.; Barr-Anderson, D.J.; Story, M. Physical Activity and Sedentary Activity Patterns Among Children and Adolescents: A Latent Class Analysis Approach. J. Phys. Act. Health 2011, 8, 457–467. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, M.I.; Chang, S.J.; Moon, K.J. Identification and Prediction of Patterns of Health Promoting Behaviors among the Elderly. Health Soc. Welf. Rev. 2017, 37, 251–286. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, S.Y. A latent class analysis and predictors of chronic diseases-based on 2014 Korea national health and nutrition examination Survey. J. Korea Acad. Ind. Cooperat. Soc. 2018, 19, 324–333. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoo, S.K. Comparative Study of Career variables among Self-Construal Latent Classess of Female University Stu-dents in Korea. Korean J. Counsel. Psychother. 2014, 26, 1047–1072. [Google Scholar]
- Lee, S.G.; Chung, G.H.; Yoo, J.P. Identification and Prediction of Latent Classes of Health Promoting Behaviors among Children. Health Soc. Welf. Rev. 2015, 35, 477–510. [Google Scholar] [CrossRef]
- Seng, J.J.B.; Kwan, Y.H.; Lee, V.S.Y.; Tan, C.S.; Zainudin, S.B.; Thumboo, J.; Low, L.L. Differential Health Care Use, Diabetes-Related Complications, and Mortality Among Five Unique Classes of Patients with Type 2 Diabetes in Singapore: A Latent Class Analysis of 71,125 Patients. Diabetes Care 2020, 43, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Gu, D.; Wu, X.; Reynolds, K.; Duan, X.; Yao, C.; Wang, J.; Chen, C.-S.; Chen, J.; Wildman, R.P.; et al. Major Causes of Death among Men and Women in China. N. Engl. J. Med. 2005, 353, 1124–1134. [Google Scholar] [CrossRef]
- Heikes, K.E.; Eddy, D.M.; Arondekar, B.; Schlessinger, L. Diabetes Risk Calculator: A simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care 2008, 31, 1040–1045. [Google Scholar] [CrossRef] [Green Version]
- Bang, H.; Edwards, A.M.; Bomback, A.S.; Ballantyne, C.M.; Brillon, D.; Callahan, M.A.; Teutsch, S.M.; Mushlin, A.I.; Kern, L.M. Development and Validation of a Patient Self-assessment Score for Diabetes Risk. Ann. Intern. Med. 2009, 151, 775–783. [Google Scholar] [CrossRef]
- Baan, C.A.; Ruige, J.B.; Stolk, R.P.; Witteman, J.C.; Dekker, J.M.; Heine, R.J.; Feskens, E.J. Performance of a predictive model to identify undiagnosed diabetes in a health care setting. Diabetes Care 1999, 22, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.G.; Dong, Y.H.; Pang, Z.C.; Nan, H.R.; Wang, S.J.; Ren, J.; Zhang, L.; Tuomilehto, J.; Qiao, Q. A simple Chinese risk score for undiagnosed diabetes. Diabet. Med. 2010, 27, 274–281. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, D.J. Diabetes Risk Score for Korean Adults. J. Korean Diabetes 2013, 14, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, H.-S.; Lee, J.-H.; Choi, W.-J.; Lee, J.-W. Relationship between Skipping Meals and Impaired Fasting Glucose in Non-Diabetic Korean Adults. Korean J. Fam. Pract. 2017, 7, 824–829. [Google Scholar] [CrossRef]
- Rhee, E.-J. Current status of obesity treatment in Korea: Based on the 2020 Korean Society for the Study of Obesity guidelines for obesity management. J. Korean Med. Assoc. 2022, 65, 388–392. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lim, S.; Kim, D.J.; Kim, N.H.; Moon, S.D.; Jang, H.C.; Cho, Y.M.; Song, K.H.; Park, K.S.; The Committee of the Korean Diabetes Association on the Diagnosis and Classification of Diabetes Mellitus. The diagnosis of diabetes mellitus in Korea: A pooled analysis of four community-based cohort studies. Diabet. Med. 2007, 24, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Cho, S.M.J.; Lee, H.; Lee, H.H.; Baek, J.; Heo, J.E. Korea hypertension fact sheet 2020: Analysis of nationwide population-based data. Clin. Hypertens. 2021, 27, 8. [Google Scholar] [CrossRef] [PubMed]
- Committee for the Korean Guidelines for the Management of Dyslipidemia. 2015 Korean guidelines for the management of dyslipidemia: Executive summary (English translation). Korean Circ. J. 2016, 46, 275–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, J.; Tuomilehto, J. The Diabetes Risk Score. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H. Hypertension and Diabetes Mellitus. Cardiovasc. Update 2017, 19, 10–14. Available online: https://www.circulation.or.kr/bbs/skin/notice_popup/download.php?code=int&number=1699 (accessed on 3 November 2022).
- Starkweather, J.; Amanda, K.M. Multinomial Logistic Regression. 2011, pp. 793–802. Available online: http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/MLR_JDS_Aug2011.pdf (accessed on 3 November 2022).
- Pyo, E.Y.; Jung, M.H.; Kim, Y.S. Factors related to blood glucose control in patients with diabetes. Korean J. Health Educ. Promot. 2012, 29, 15–22. [Google Scholar]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.; Hoskin, M.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of Weight Loss With Lifestyle Intervention on Risk of Diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Kim, K.Y.; Kim, M.G.; Nam, H.M.; Bae, S.G. Factors associated with impaired fasting glucose by obesity status of non-diabetic adults. J. Korea Acad. Ind. Cooperat. Soc. 2017, 18, 180–186. [Google Scholar] [CrossRef]
- Roh, E.H.; Park, S.C. Association between Clustering of Lifestyle and Chronic Disease Using Healthcare Big Data. J. Health Informatics Stat. 2020, 45, 113–123. [Google Scholar] [CrossRef]
- van Dam, R.M.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Dietary patterns and risk for type 2 diabetes mellitus in US men. Ann. Intern. Med. 2002, 136, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.M. Factors Associated with Prediabetes: Data from the Korean National Health and Nutrition Examination Survey V, 2011–2012. Ph.D. Thesis, Yonsei University, Seoul, Korea, 2015. [Google Scholar]
- Ryu, S.H.; Beck, S.H.; Chang, Y.S.; Kim, D.I.; Suh, B.S.; Kim, W.S.; Sung, K.C. Abdominal Obesity in Relation to the Incidence of Type 2 Diabetes Mellitus and Impaired Fasting Glucose among some Korean Adults: A Retrospective Cohort Study. J. Prev. Med. Public Health 2004, 37, 359–365. [Google Scholar]
- Freemantle, N.; Holmes, J.; Hockey, A.; Kumar, S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes? Int. J. Clin. Pract. 2008, 62, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.E.; Han, M.-A.; Kim, K.S.; Park, J.; Kang, M.G.; Ryu, S.Y. Associated Factors of Impaired Fasting Glucose in Some Korean Rural Adults. J. Prev. Med. Public Health 2010, 43, 309–318. [Google Scholar] [CrossRef]
Classes | AIC | BIC | Adjusted BIC | LMR | Entropy | Latent Class Prevalence (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
2 | 84,395.078 | 84,516.808 | 84,462.785 | 0.0000 | 0.847 | 36.98 | 63.02 | |||
3 | 83,894.685 | 84,080.861 | 83,998.237 | 0.0000 | 0.689 | 26.76 | 31.57 | 41.67 | ||
4 | 83,700.155 | 83,950.776 | 83,839.552 | 0.0498 | 0.606 | 28.20 | 37.14 | 10.73 | 23.93 | |
5 | 83,618.400 | 83,933.467 | 83,793.642 | 0.2306 | 0.675 | 17.10 | 24.91 | 11.53 | 10.03 | 36.44 |
Characteristics | Classification | Class A (n = 2683) | Class B (n = 3534) | Class C (n = 1021) | Class D (n = 2277) |
---|---|---|---|---|---|
Current smoking | Yes | 37.3 | 0.0 | 78.8 | 0.6 |
No | 62.7 | 100 | 21.2 | 99.4 | |
Alcohol consumption (≥1 time per month) | Yes | 91.2 | 33.6 | 90.0 | 48.7 |
No | 8.8 | 66.4 | 10.0 | 51.3 | |
Physical activity | Yes | 45.5 | 44.8 | 32.2 | 50.9 |
No | 54.5 | 55.2 | 67.8 | 49.1 | |
Diet regularity | Yes | 28.1 | 64.9 | 28.9 | 59.4 |
No | 71.9 | 35.1 | 71.1 | 40.6 | |
Sleep time (h/day) | <7 | 45.6 | 46.4 | 49.8 | 52.8 |
≧7 | 54.4 | 53.6 | 50.2 | 47.2 | |
Abdominal obesity † | Yes | 0.5 | 0.7 | 83.6 | 74.4 |
No | 99.5 | 99.3 | 16.4 | 25.6 | |
Regular health examination | Yes | 71.8 | 74.6 | 67.9 | 72.6 |
No | 28.2 | 25.4 | 32.1 | 27.4 | |
Naming | Negative Abdominal Obesity and High-Risk Health Behavior | Negative Abdominal Obesity and Low-Risk Health Behavior | Positive Abdominal Obesity and High-Risk Health Behavior | Positive Abdominal Obesity and Low-Risk Health Behavior |
Characteristics | Classification | Class A | Class B | Class C | Class D | x2 | p |
---|---|---|---|---|---|---|---|
Age (year) | 30s | 972 (35.2) | 983 (27.8) | 369 (36.1) | 534 (23.5) | 196.477 | 0.000 |
40s | 998 (37.2) | 1231 (34.8) | 369 (36.1) | 788 (34.6) | |||
50s | 713 (26.6) | 1320 (37.4) | 283 (27.7) | 955 (41.9) | |||
Gender | Men | 1454 (54.2) | 643 (18.2) | 843 (82.6) | 928 (40.8) | 1686.131 | 0.000 |
Women | 1229 (45.8) | 2891 (81.8) | 178 (17.4) | 1349 (59.2) | |||
Current Spouse | Yes | 2158 (80.4) | 3029 (85.7) | 804 (78.7) | 1968 (86.4) | 62.081 | 0.000 |
No † | 525 (19.6) | 505 (14.3) | 217 (21.3) | 309 (13.6) | |||
Household income (quartile) | Low | 175 (6.5) | 224 (6.3) | 90 (8.8) | 161 (7.1) | ||
L-Medium | 571 (21.3) | 750 (21.2) | 229 (22.4) | 578 (25.4) | |||
M-High | 882 (32.9) | 1086 (30.7) | 364 (35.7) | 745 (32.7) | |||
High | 1055 (39.3) | 1474 (41.7) | 338 (33.1) | 793 (34.8) | |||
Education (school) | ≤Elementary | 98 (3.7) | 103 (2.9) | 32 (3.1) | 148 (6.5) | 102.358 | 0.000 |
Middle | 167 (6.2) | 184 (5.2) | 74 (7.2) | 172 (7.6) | |||
High | 924 (34.4) | 1177 (33.3) | 379 (37.1) | 864 (37.9) | |||
≥College | 1494 (55.7) | 2070 (58.6) | 536 (52.5) | 1093 (48.0) | |||
Occupation ‡ | Managers | 571 (21.3) | 787 (22.3) | 213 (20.9) | 426 (18.7) | 449.567 | 0.000 |
Office workers | 484 (18.0) | 577 (16.3) | 212 (20.8) | 308 (13.5) | |||
Service and sales worker | 417 (15.5) | 468 (13.2) | 157 (15.4) | 390 (17.1) | |||
Agriculture | 43 (1.6) | 55 (1.6) | 28 (2.7) | 74 (3.2) | |||
Functional | 452 (16.8) | 256 (7.2) | 229 (22.4) | 292 (12.8) | |||
Simple labor worker | 168 (6.3) | 222 (6.3) | 57 (5.6) | 175 (7.7) | |||
Unemployed | 548 (20.4) | 1169 (33.1) | 125 (12.2) | 612 (26.9) | |||
Current job state | Yes | 2135 (79.6) | 2365 (66.9) | 896 (87.8) | 1665 (73.1) | 237.754 | 0.000 |
No | 548 (20.4) | 1169 (33.1) | 125 (12.2) | 612 (26.9) | |||
Type of health insurance | Community | 730 (27.2) | 383 (23.7) | 312 (30.6) | 626 (27.5) | 38.540 | 0.000 |
Workplace | 1891 (70.5) | 2638 (74.6) | 676 (66.2) | 1608 (70.6) | |||
Medicare | 62 (2.3) | 58 (1.6) | 33 (3.2) | 43 (1.9) | |||
Private health state | Yes | 2500 (93.2) | 3297 (93.3) | 935 (91.6) | 2104 (92.4) | 4.672 | 0.197 |
No | 183 (6.8) | 237 (6.7) | 86 (8.4) | 173 (7.6) |
Characteristics | Classification | Class A | Class B | Class C | Class D | Statistics | p |
---|---|---|---|---|---|---|---|
Family history of diabetes | Yes | 685 (25.5) | 886 (25.1) | 313 (30.7) | 624 (27.4) | χ2 = 14.96 | 0.002 |
No | 1998 (74.5) | 2648 (74.9) | 708 (69.3) | 1653 (72.6) | |||
History of being diagnosed with hypertension | Yes | 397 (14.8) | 415 (11.7) | 356 (34.9) | 739 (32.5) | χ2 = 556.92 | <0.001 |
No | 2286 (85.2) | 3119 (88.3) | 665 (65.1) | 1538 (67.5) | |||
Blood pressure (≥130/85 mmHg) | Yes | 597 (22.3) | 566 (16.0) | 424 (41.5) | 862 (37.9) | χ2 = 499.60 | <0.001 |
No | 2085 (77.7) | 2967 (84.0) | 597 (58.5) | 1415 (62.1) | |||
HbA1c (%) | Mean ± SD | 113.54 ± 13.96 | 111.23 ± 14.17 | 120.99 ± 14.71 | 120.00 ± 14.7 | F = 246.00 | <0.001 |
76.37 ± 9.57 | 73.94 ± 9.13 | 82.31 ± 10.05 | 6 80.31 ± 9.91 | F = 321.02 | <0.001 | ||
<6.5 | 2583 (96.3) | 3418 (96.7) | 890 (87.2) | 2030 (89.2) | χ2 = 304.36 | <0.001 | |
≥6.5 | 100 (3.7) | 116 (3.3) | 131 (12.8) | 247 (10.8) | |||
Fasting glucose (mg/dl) | Mean ± SD | 5.51 ± 0.67 | 5.51 ± 0.57 | 5.84 ± 0.84 | 8.82 ± 0.89 | F = 157.18 | <0.001 |
<100 | 1923 (71.7) | 2851 (80.7) | 465 (45.5) | 1248 (54.8) | χ2 = 698.10 | <0.001 | |
≥100 | 760 (28.3) | 683 (19.3) | 556 (54.5) | 1029 (45.2) | |||
97.15 ± 20.27 | 94.36 ± 16.76 | 107.14 ± 25.03 | 104.67 ± 28.34 | F = 137.74 | <0.001 |
Variables | Class B (Reference) | |||
---|---|---|---|---|
Class A | Class C | Class D | ||
Gender | Men vs. women | 5.69 (5.03–6.44) | 23.32 (19.15–28.39) | 3.48 (3.06–3.95) |
Age | 30s vs. 50s | 2.63 (2.26–3.05) | 2.82 (2.28–3.49) | 1.04 (0.89–1.21) |
40s vs. 50s | 1.97 (1.71–2.26) | 1.92 (1.57–2.34) | 1.11 (0.98–1.27) | |
Household income quartile (ref. high) | Low | 1.02 (0.80–1.30) | 1.91 (1.38–2.65) | 1.19 (0.93–1.51) |
Low-medium | 0.97 (0.84–1.13) | 1.27 (1.03–1.57) | 1.38 (1.19–1.59) | |
Medium-high | 1.06 (0.93–1.21) | 1.41 (1.17–1.70) | 1.26 (1.11–1.44) | |
Education level (ref. college) | ≤Elementary school | 3.11 (2.27–4.27) | 3.29 (2.06–5.25) | 3.39 (2.55–4.52) |
Middle school | 2.36 (1.84–3.02) | 3.14 (2.24–4.38) | 2.00 (1.57–2.54) | |
High school | 1.61 (1.43–1.83) | 2.03 (1.71–2.42) | 1.56 (1.38–1.77) | |
Currently employed | Yes vs. no | 1.16 (1.02–1.32) | 1.32 (1.05–1.67) | 0.98 (0.87–1.12) |
Currently married | Yes vs. no | 1.10 (0.91–1.32) | 1.48 (1.23–1.75) | 1.19 (1.05–1.35) |
Family history | Yes vs. no | 1.10 (0.97–1.24) | 1.22 (0.95–1.55) | 1.35 (1.09–1.66) |
Variables | Classification | Total | Class A | Class B | Class C | Class D | Statistics | p |
---|---|---|---|---|---|---|---|---|
Score † | ≤4 | 6608 (69.4) | 1903 (70.9) | 3290 (93.1) | 117 (11.5) | 1298 (57.0) | χ2 = 3202.51 | <0.001 |
5–7 | 2474 (26.0) | 730 (27.2) | 241 (6.8) | 644 (63.1) | 859 (37.7) | |||
8–9 | 418 (4.4) | 50 (1.9) | 3 (0.1) | 245 (24.0) | 120 (5.3) | |||
≥10 | 15 (0.2) | 0 (0.0) | 0 (0.0) | 15 (1.5) | 0 (0.0) | |||
Mean ± SD (min–max) | 3.56 ± 2.09 (3.52–3.60) | 3.58 ± 1.71 | 2.16 ± 1.55 | 6.27 ± 1.59 | 4.50 ± 1.63 | F = 2097.58 | <0.001 | |
Probability of having diabetes | ≥6% | 2907 (30.6) | 780 (29.1) | 244 (6.9) | 904 (88.5) | 979 (43.0) | χ2 = 2718.48 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, R.; Chun, J.-H. Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30–50-Year-Old Korean Adults: Latent Class Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16600. https://doi.org/10.3390/ijerph192416600
Seol R, Chun J-H. Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30–50-Year-Old Korean Adults: Latent Class Analysis. International Journal of Environmental Research and Public Health. 2022; 19(24):16600. https://doi.org/10.3390/ijerph192416600
Chicago/Turabian StyleSeol, Roma, and Jin-Ho Chun. 2022. "Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30–50-Year-Old Korean Adults: Latent Class Analysis" International Journal of Environmental Research and Public Health 19, no. 24: 16600. https://doi.org/10.3390/ijerph192416600
APA StyleSeol, R., & Chun, J.-H. (2022). Classification of Type 2 Diabetes Incidence Risk and the Health Behavior of the 30–50-Year-Old Korean Adults: Latent Class Analysis. International Journal of Environmental Research and Public Health, 19(24), 16600. https://doi.org/10.3390/ijerph192416600