The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Sample
2.3. Study Instrument and Data Collection
2.4. FFQ
2.5. EPDS
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Dairy Products and PPD
3.3. Other Nutrients and PPD
3.4. Nutritional Supplements/Eating Patterns and PPD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The ACOG. Postpartum Depression. 2021. Available online: https://www.acog.org/womens-health/faqs/postpartum-depression (accessed on 8 November 2022).
- Hapgood, C.C.; Elkind, G.S.; Wright, J.J. Maternity blues: Phenomena and relationship to later postpartum depression. Aust. N. Z. J. Psychiatry 1988, 22, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Leung, B.M.; Kaplan, B.J. Perinatal depression: Prevalence, risks, and the nutrition link—A review of the literature. J. Am. Diet. Asoc. 2009, 109, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Klainin, P.; Arthur, D.G. Postpartum depression in Asian cultures: A literature review. Int. J. Nurs. Stud. 2009, 46, 1355–1373. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Johnson, A.; Sulekha, T. Incidence of postpartum depression and its association with antenatal psychiatric symptoms: A longitudinal study in 25 villages of rural south Karnataka. Indian J. Psychol. Med. 2021, 44, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, D.; Almrstani, A.S.; Bukhari, A.; Alamoudi, L.; Alsubaie, A.; Alrasheed, R.; Bajouh, O. Prevalence and factors associated with depressive symptoms among post-partum mothers in Jeddah. Int. J. Adv. Res. 2017, 5, 1542–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sit, D.K.; Wisner, K.L. Identification of postpartum depression. Clin. Obstet. Gynecol. 2009, 52, 456–468. [Google Scholar]
- World Health Organization. New Recommendations Stress Urgency of Both Physical and Mental Health Support in Postnatal Period. 2022. Available online: https://www.who.int/news/item/30-03-2022-who-urges-quality-care-for-women-and-newborns-in-critical-first-weeks-after-childbirth (accessed on 10 October 2022).
- Appleby, L.; Warner, R.; Whitton, A.; Faragher, B. A controlled study of fluoxetine and cognitive-behavioural counselling in the treatment of postnatal depression. BMJ 1997, 314, 932. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.S. Pharmacologic treatment of depression in women: PMS, pregnancy, and the postpartum period. Depress. Anxiety 1998, 8, 18–26. [Google Scholar] [CrossRef]
- Hockey, M.; McGuinness, A.J.; Marx, W.; Rocks, T.; Jacka, F.N.; Ruusunen, A. Is dairy consumption associated with depressive symptoms or disorders in adults? A systematic review of observational studies. Crit. Rev. Food Sci. Nutr. 2019, 60, 3653–3668. [Google Scholar] [CrossRef]
- LaChance, L.R.; Ramsey, D. Antidepressant foods: An evidence-based nutrient profiling system for depression. World J. Psychiatry 2018, 8, 97–104. [Google Scholar] [CrossRef]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.N.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Sensi, S.L.; Paoletti, P.; Koh, J.-Y.; Aizenman, E.; Bush, A.I.; Hershfinkel, M. The neurophysiology and pathology of brain zinc. J. Neurosci. 2011, 31, 16076–16085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarupski, K.A.; Tangney, C.; Li, H.; Ouyang, B.; Evans, D.A.; Morris, M.C. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am. J. Clin. Nutr. 2010, 92, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, Á.; Ortega, R.M. Introduction and executive summary of the supplement, role of milk and dairy products in health and prevention of noncommunicable chronic diseases: A series of systematic reviews. Adv. Nutr. 2019, 10, S67–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Furukawa, S.; Arakawa, M. Milk intake during pregnancy is inversely associated with the risk of postpartum depressive symptoms in Japan: The Kyushu Okinawa Maternal and Child Health Study. Nutr. Res. 2016, 36, 907–913. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Arakawa, M. Intake of dairy products and calcium and prevalence of depressive symptoms during pregnancy in Japan: A cross-sectional study. BJOG 2015, 122, 336–343. [Google Scholar] [CrossRef]
- Sparling, T.M.; Henschke, N.; Nesbitt, R.C.; Gabrysch, S. The role of diet and nutritional supplementation in perinatal depression: A systematic review. Matern. Child. Nutr. 2017, 13, e12235. [Google Scholar] [CrossRef]
- Baskin, R.; Hill, B.; Jacka, F.N.; O’Neil, A.; Skouteris, H. The association between diet quality and mental health during the perinatal period: A systematic review. Appetite 2015, 91, 41–47. [Google Scholar] [CrossRef]
- Ljungberg, T.; Bondza, E.; Lethin, C. Evidence of the importance of dietary habits regarding depressive symptoms and depression. Int. J. Environ. Res. Public Health 2020, 17, 1616. [Google Scholar] [CrossRef] [Green Version]
- Baattaiah, B.A.; Zedan, H.S.; Almasaudi, A.S.; Alashmali, S.; Aldhahi, M.I. Physical activity patterns among women during the postpartum period: An insight into the potential impact of perceived fatigue. BMC Pregnancy Childbirth 2022, 22, 678. [Google Scholar] [CrossRef]
- Alkhalaf, M.M.; Edwards, C.A.; Combet, E. Validation of a food frequency questionnaire specific for salt intake in Saudi Arabian adults using urinary biomarker and repeated multiple pass 24-hour dietary recall. Proc. Nutr. Soc. 2015, 74, E337. [Google Scholar] [CrossRef]
- Roe, M.; Pinchen, H.; Church, S.; Finglas, P. McCance and Widdowson’s the Composition of Foods Seventh Summary Edition and updated Composition of Foods Integrated Dataset. Nutr. Bull. 2015, 40, 36–39. [Google Scholar] [CrossRef]
- Shrestha, S.D.; Pradhan, R.; Tran, T.D.; Gualano, R.C.; Fisher, J.R.W. Reliability and validity of the Edinburgh Postnatal Depression Scale (EPDS) for detecting perinatal common mental disorders (PCMDs) among women in low- and lower-middle-income countries: A systematic review. BMC Pregnancy Childbirth 2016, 16, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.L.; Chapman, G.; Murray, D.; Jones, P. Validation of the Edinburgh Postnatal Depression Scale (EPDS) in non-postnatal women. J. Affect. Disord. 1996, 39, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Sasaki, S.; Yokoyama, T.; Tanaka, K.; Ohya, Y.; Fukushima, W.; Saito, K.; Ohfuji, S.; Kiyohara, C.; Hirota, Y.; et al. Risk of postpartum depression in relation to dietary fish and fat intake in Japan: The Osaka Maternal and Child Health Study. Psychol. Med. 2006, 36, 1727–1735. [Google Scholar] [CrossRef]
- Agoub, M.; Moussaoui, D.; Battas, O. Prevalence of postpartum depression in a Moroccan sample. Arch. Women’s Ment. Health 2005, 8, 37–43. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Furukawa, S.; Arakawa, M. Dietary patterns and depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study. J. Affect. Disord. 2018, 225, 552–558. [Google Scholar] [CrossRef]
- Fulkerson, J.A.; Sherwood, N.; Perry, C.L.; Neumark-Sztainer, D.; Story, M. Depressive symptoms and adolescent eating and health behaviors: A multifaceted view in a population-based sample. Prev. Med. 2004, 38, 865–875. [Google Scholar] [CrossRef]
- Miki, T.; Kochi, T.; Eguchi, M.; Kuwahara, K.; Tsuruoka, H.; Kurotani, K.; Ito, R.; Akter, S.; Kashino, I.; Pham, N.M.; et al. Dietary intake of minerals in relation to depressive symptoms in Japanese employees: The Furukawa Nutrition and Health Study. Nutrition 2015, 31, 686–690. [Google Scholar] [CrossRef]
- Wan Mohamed Radzi, C.W.J.B.; Salarzadeh Jenatabadi, H.; Samsudin, N. Postpartum depression symptoms in survey-based research: A structural equation analysis. BMC Public Health 2021, 21, 27. [Google Scholar] [CrossRef]
- Chen, Q.; Li, W.; Xiong, J.; Zheng, X. Prevalence and Risk Factors Associated with Postpartum Depression during the COVID-19 Pandemic: A Literature Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 2219. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, N.A.; Altayyeb, J.F.; Althuniyyan, L.S.; Alzubaidi, S.K.; Farahat, F. Prevalence of postpartum depression and associated risk factors among women in Jeddah, Western Saudi Arabia. Cereus 2021, 13, e14603. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cross, W.M.; Plummer, V.; Lam, L.; Tang, S. A systematic review of prevalence and risk factors of postpartum depression in Chinese immigrant women. Women Birth 2019, 32, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Dadi, A.; Miller, E.R.; Mwanri, L. Postnatal depression and its association with adverse infant health outcomes in low- and middle-income countries: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2020, 20, 416. [Google Scholar] [CrossRef]
- Slykerman, R.F.; Hood, F.; Wickens, K.; Thompson, J.M.D.; Barthow, C.; Murphy, R.; Kang, J.; Rowden, J.; Stone, P.; Crane, J.; et al. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine 2017, 24, 159–165. [Google Scholar] [CrossRef]
Variable | Categories | n (%) |
---|---|---|
Age (y) | 18–19 | 5 (0.9) |
20–29 | 281 (52.7) | |
30–39 | 236 (44.3) | |
40–50 | 11 (2.1) | |
Marital status | Married | 523 (98.1) |
Divorced | 9 (1.7) | |
Widow | 1 (0.2) | |
Nationality | Saudi | 499 (93.6) |
Non-Saudi | 34 (6.4) | |
Education | No certificate | 14 (2.6) |
Secondary or below | 46 (8.6) | |
Diploma | 35 (6.6) | |
Bachelor | 368 (69.0) | |
Higher education | 70 (13.1) | |
Employment status | Does not work/unemployed | 149 (28.0) |
Student | 32 (6.0) | |
Employed (public sector) | 146 (27.4) | |
Employed (private sector) | 176 (33.0) | |
Free job | 30 (5.6) | |
Family income (SAR) | <10,000 | 339 (68) |
10,000–20,000 | 110 (22) | |
20,001–30,000 | 33 (7) | |
>30,000 | 17 (3) | |
Region of residence | Mecca | 155 (29.1) |
Breeda | 75 (14.1) | |
Riyadh | 58 (10.9) | |
Al Dammam | 57 (10.7) | |
Medina | 44 (8.3) | |
Abha | 40 (7.5) | |
Other | 104 (19.5) | |
Mother language | Arabic | 528 (99.1) |
English/other | 5 (0.9) | |
No. of children | 1 | 126 (23.6) |
2 | 248 (46.5) | |
3 | 105 (19.7) | |
>3 | 54 (10.1) | |
Birth type | Normal | 400 (75.0) |
Cesarean birth | 133 (25.0) | |
Breastfeeding | Yes | 273 (51.2) |
Yes, but stopped | 64 (12.0) | |
Sometimes | 126 (23.6) | |
No | 70 (13.1) | |
BMI | Underweight | 16 (2.9) |
Normal | 211 (38.4) | |
Overweight | 234 (42.5) | |
Obese | 89 (16.2) | |
Physical activity | Yes | 153 (28.7) |
Sometimes | 172 (32.3) | |
No | 208 (39.0) | |
Smoking | Yes | 33 (6.2) |
No | 500 (93.8) |
Variable | Indicator Name | Indicator Value by Intake Level (Q) | p-Value | |||
---|---|---|---|---|---|---|
Q1 [Lowest] | Q2 | Q3 | Q4 [Highest] | |||
Milk | Milk Intake (serv/d) 1 | 0.0 | 0.43 | 1.00 | 2.15 | |
PPD Risk (%) 2 | 79.9 | 66.4 | 71.2 | 79.8 | ||
PPD Odds (95% CI) | 1 | 1.97 * (1.33–2.93) | 2.47 * (1.66–3.68) | 3.96 * (2.5–6.25) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 2.67 (0.31–22.73) | 1.88 (0.26–13.81) | 1.24 (0.19–8.34) | >0.05 | |
Cheese | Cheese Intake (serv/d) 1 | 0.00 | 0.86 | 1.66 | 3.00 | |
PPD Risk (%) 2 | 78.0 | 64.5 | 77.9 | 80.7 | ||
PPD Odds (95% CI) | 1 | 1.82 * (1.26–2.63) | 3.52 * (2.22–5.6) | 4.18 * (2.63–6.66) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.12 (0.02–1.03) | 0.48 (0.04–6.19) | 0.31 (0.03–3.46) | >0.05 | |
Yogurt | Yogurt Intake (serv/d) 1 | 0.00 | 0.14 | 0.80 | 2.00 | |
PPD Risk (%) 2 | 79.2 | 65.4 | 72.3 | 85.4 | ||
PPD Odds (95% CI) | 1 | 1.89 * (1.32–2.7) | 2.61 * (1.73–3.95) | 5.85 * (3.25–10.53) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 1.69 (0.27–10.45) | 1.41 (0.17–11.64) | 4.3 (0.3–62.43) | >0.05 | |
Laban | Laban Intake (serv/d) 1 | 0.00 | 0.14 | 0.80 | 2.00 | |
PPD Risk (%) 2 | 81.9 | 60.3 | 72.4 | 77.0 | ||
PPD Odds (95% CI) | 1 | 1.52 (0.95–2.42) | 2.62 * (1.84–3.74) | 3.35 * (2.03–5.52) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.05 * (0–0.93) | 0.08 * (0.01–0.96) | 0.15 (0.01–1.7) | 0.0001 | |
Total Dairy | Total dairy intake (serv/d) 1 | 0.86 | 2.14 | 4.01 | 7.09 | |
PPD Risk (%) 2 | 76.7 | 64.3 | 84.7 | 74.6 | ||
PPD Odds (95% CI) | 1 | 1.8 * (1.23–2.64) | 5.53 * (3.3–9.27) | 2.93 * (1.92–4.47) | 0.0001 | |
Adj. Odds (95% CI)3 | 1 | 0.09 (0.01–1.07) | 0.12 (0.01–1.75) | 0.38 (0.03–5.39) | >0.05 |
Variable | Indicator Value by Intake Level (Q) | p-Value | ||||
---|---|---|---|---|---|---|
Q1 [Lowest] | Q2 | Q3 | Q4 [Highest] | |||
Water (mL) | Water Intake 1 | 274.58 | 698.65 | 1035.78 | 2242.43 | |
PPD Risk (%) 2 | 76.6 | 69.4 | 77.5 | 71.8 | ||
PPD Odds (95% CI) | 1 | 2.26 * (1.51–3.39) | 3.44 * (2.2–5.37) | 2.55 * (1.68–3.86) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.89 (0.1–8.21) | 3.41 (0.28–42.34) | 0.87 (0.14–5.54) | >0.05 | |
Fat (g) | Fat Intake | 30.53 | 75.82 | 156.46 | 418.89 | |
PPD Risk (%) 2 | 77.3 | 65.8 | 77.5 | 75.5 | ||
PPD Odds (95% CI) | 1 | 1.92 * (1.3–2.84) | 3.44 * (2.2–5.37) | 3.07 * (1.99–4.75) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 6.91 (0.53–89.82) | 144.33 * (2.18–9547.67) | 3.58 (0.41–31.36) | 0.0001 | |
Protein (g) | Protein Intake | 22.49 | 54.78 | 102.26 | 225.03 | |
PPD Risk (%) 2 | 77.1 | 66.4 | 72.7 | 78.9 | ||
PPD Odds (95% CI) | 1 | 1.97 * (1.33–2.93) | 2.67 * (1.75–4.06) | 3.74 * (2.36–5.92) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.37 (0.03–4.97) | 0.57 (0.05–6.21) | 5.5 (0.21–142.55) | >0.05 | |
CHO (g) | CHO Intake | 50.95 | 130.84 | 219.60 | 428.74 | |
PPD Risk (%) 2 | 78.3 | 70.1 | 76.6 | 67.9 | ||
PPD Odds (95% CI) | 1 | 2.34 * (1.55–3.55) | 3.28 * (2.1–5.13) | 2.12 * (1.41–3.18) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 12.88 (0.85–195.97) | 4.51 (0.43–47.13) | 3.7 (0.4–34.01) | >0.05 | |
Fiber (g) | Fiber Intake | 1.65 | 7.80 | 16.92 | 40.32 | |
PPD Risk (%) 2 | 87.2 | 70.9 | 64.2 | 71.6 | ||
PPD Odds (95% CI) | 1 | 2.44 * (1.62–3.68) | 1.79 * (1.21–2.66) | 2.52 * (1.66–3.81) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.53 (0.05–5.27) | 2.04 (0.16–25.21) | 1.27 (0.12–13.9) | >0.05 | |
ASH ** (g) | ASH Intake | 3.04 | 6.72 | 13.16 | 25.25 | |
PPD Risk (%) 2 | 81.8 | 70.0 | 66.4 | 77.3 | ||
PPD Odds (95% CI) | 1 | 2.33 * (1.55–3.51) | 1.97 * (1.33–2.93) | 3.4 * (2.18–5.31) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.33 (0.04–2.91) | 0.59 (0.05–6.94) | 1.77 (0.17–18.48) | >0.05 | |
Retinol (µg) | Retinol Intake | 117.50 | 309.35 | 554.69 | 1252.28 | |
PPD Risk (%) 2 | 76.1 | 70.0 | 73.4 | 77.1 | ||
PPD Odds (95% CI) | 1 | 2.33 * (1.55–3.51) | 2.76 * (1.8–4.22) | 3.36 * (2.15–5.25) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.48 (0.06–3.59) | 1.5 (0.16–13.77) | 1.33 (0.15–11.51) | >0.05 | |
Β Carotene (µg) | Β Carotene Intake | 174.19 | 620.03 | 1350.67 | 2424.24 | |
PPD Risk (%) 2 | 76.9 | 62.0 | 79.6 | 76.6 | ||
PPD Odds (95% CI) | 1 | 1.63 * (1.11–2.41) | 3.91 * (2.45–6.24) | 3.28 * (2.1–5.13) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 2.17 (0.2–23.92) | 0.95 (0.08–11.27) | 1.09 (0.11–10.56) | >0.05 | |
Thiamine (mg) | Thiamine Intake | 0.31 | 0.86 | 1.86 | 4.99 | |
PPD Risk (%) 2 | 75.5 | 69.4 | 72.1 | 78.2 | ||
PPD Odds (95% CI) | 1 | 2.26 * (1.51–3.39) | 2.58 * (1.7–3.91) | 3.58 * (2.28–5.63) | 0.00011 | |
Adj. Odds (95% CI) 3 | 1 | 1.04 (0.12–9.2) | 25.49 (0.95–682.23) | 2.63 (0.27–25.89) | >0.05 | |
Riboflavin (mg) | Riboflavin Intake | 0.52 | 1.17 | 2.00 | 4.11 | |
PPD Risk (%) 2 | 76.6 | 66.4 | 76.1 | 75.0 | ||
PPD Odds (95% CI) | 1 | 1.97 * (1.32–2.95) | 3.19 * (2.05–4.96) | 3 * (1.94–4.64) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.65 (0.09–4.77) | 1.53 (0.14–16.63) | 2.35 (0.21–26.76) | >0.05 | |
Vitamin C (mg) | Vitamin C Intake | 6.09 | 52.00 | 107.54 | 228.33 | |
PPD Risk (%) 2 | 83.3 | 69.4 | 77.8 | 67.3 | ||
PPD Odds (95% CI) | 1 | 2.27 * (1.51–3.42) | 3.5 * (2.22–5.51) | 2.06 * (1.37–3.08) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 1.24 (0.14–10.69) | 28.71 (0.53–1543.57) | 0.56 (0.08–3.91) | >0.05 | |
Sodium (mg) | Sodium Intake | 434.94 | 1440.90 | 2214.97 | 4664.47 | |
PPD Risk (%) 2 | 79.6 | 79.6 | 68.5 | 65.7 | ||
PPD Odds (95% CI) | 1 | 3.91 * (2.45–6.24) | 2.18 * (1.45–3.27) | 1.92 * (1.29–2.86) | 0.000 | |
Adj. Odds (95% CI) 3 | 1 | 2.72 (0.33–22.3) | 1.64 (0.16–17.35) | 2.08 (0.29–15.15) | >0.05 | |
Potassium (mg) | Potassium Intake | 777.55 | 2055.05 | 4053.13 | 8410.87 | |
PPD Risk (%) 2 | 82.7 | 77.5 | 62.7 | 72.7 | ||
PPD Odds (95% CI) | 1 | 3.44 * (2.2–5.37) | 1.68 * (1.14–2.48) | 2.67 * (1.75–4.06) | 0.000 | |
Adj. Odds (95% CI) 3 | 1 | 1.35 (0.16–11.12) | 1.89 (0.2–18.22) | 2.01 (0.28–14.52) | >0.05 | |
Calcium (mg) | Calcium Intake | 372.04 | 835.19 | 1419.41 | 2944.36 | |
PPD Risk (%) 2 | 78.2 | 66.7 | 75.5 | 75.5 | ||
PPD Odds (95% CI) | 1 | 2 * (1.35–2.97) | 3.07 * (1.99–4.75) | 3.07 * (1.99–4.75) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 0.7 (0.09–5.51) | 1.37 (0.17–11.16) | 1.16 (0.14–9.88) | >0.05 | |
Phosphorus (mg) | Phosphorus Intake | 477.06 | 1133.37 | 2145.35 | 4627.63 | |
PPD Risk (%) 2 | 79.3 | 70.3 | 68.5 | 77.5 | ||
PPD Odds (95% CI) | 1 | 2.36 * (1.57–3.55) | 2.17 * (1.46–3.24) | 3.44 * (2.2–5.37) | 0.000 | |
Adj. Odds (95% CI) 3 | 1 | 0.65 (0.06–7.72) | 0.74 (0.06–8.61) | 9.3 (0.38–225.88) | >0.05 | |
Iron (mg) | Iron Intake | 3.46 | 14.91 | 29.75 | 60.09 | |
PPD Risk (%) 2 | 84.1 | 75.7 | 66.4 | 68.9 | ||
PPD Odds (95% CI) | 1 | 3.12 * (2–4.85) | 1.97 * (1.32–2.95) | 2.21 * (1.47–3.34) | 0.0001 | |
Adj. Odds (95% CI) 3 | 1 | 1.04 (0.12–8.78) | 2.97 (0.2–43.51) | 1.32 (0.15–11.53) | >0.05 |
Nutritional Supplements/Eating Patterns | Chance of PPD (Not Following) | Chance of PPD (Following) | Chi-Square p-Value | Odds of PPD with Nutritional Supplements/Eating Patterns |
---|---|---|---|---|
Vitamin D | 74.2% | 75.5% | 0.756 | 0.64 (0.14–2.94) |
Calcium | 73.4% | 74.4% | 0.836 | 0.89 (0.17–4.74) |
Omega 3 | 71.4% | 78.4% | 0.093 | 1.15 (0.2–6.79) |
Probiotics | 69.0% | 90.2% | <0.001 | 0.1 * (0.01–0.93) |
Fiber | 75.6% | 71.8% | 0.364 | 1.17 (0.28–4.90) |
3 meals a day | 71.1% | 76.3% | 0.194 | 0.62 (0.14–2.79) |
Snacks in between | 66.1% | 77.7% | 0.005 | 2.58 (0.51–13.08) |
Taking specific Laban brands (Activia, Danone, Kefir) | 72.0% | 77.4% | 0.188 | 0.92 (0.23–3.63) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alashmali, S.; Almasaudi, A.S.; Zedan, H.S.; Baattaiah, B.A.; Alashmali, Y. The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression. Int. J. Environ. Res. Public Health 2022, 19, 16624. https://doi.org/10.3390/ijerph192416624
Alashmali S, Almasaudi AS, Zedan HS, Baattaiah BA, Alashmali Y. The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression. International Journal of Environmental Research and Public Health. 2022; 19(24):16624. https://doi.org/10.3390/ijerph192416624
Chicago/Turabian StyleAlashmali, Shoug, Arwa S. Almasaudi, Haya S. Zedan, Baian A. Baattaiah, and Yazed Alashmali. 2022. "The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression" International Journal of Environmental Research and Public Health 19, no. 24: 16624. https://doi.org/10.3390/ijerph192416624
APA StyleAlashmali, S., Almasaudi, A. S., Zedan, H. S., Baattaiah, B. A., & Alashmali, Y. (2022). The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression. International Journal of Environmental Research and Public Health, 19(24), 16624. https://doi.org/10.3390/ijerph192416624