16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Measures
2.3.1. Cognitive Function
Digit Span
Coding
Arithmetic Reasoning Ability
2.3.2. Gross Motor Skills
2.4. Statistical Analysis
3. Results
3.1. Cognitive Function
3.1.1. Digit Span Forwards
3.1.2. Digit Span Backwards
3.1.3. Coding
3.1.4. Arithmetic Reasoning
3.2. Gross Motor Skills
3.2.1. Total TGMD-3 Score
3.2.2. Locomotor Subscale
3.2.3. Object Control Subscale
4. Discussion
4.1. Limitations and Future Research Directions
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carson, V.; Lee, E.-Y.; Hewitt, L.; Jennings, C.; Hunter, S.; Kuzik, N.; Stearns, J.A.; Unrau, S.P.; Poitras, V.J.; Gray, C.; et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 33–63. [Google Scholar] [CrossRef] [Green Version]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, S.; Brazo-Sayavera, J.; González, S.A.; Janssen, I.; Manyanga, T.; Oyeyemi, A.L.; Picard, P.; Sherar, L.B.; Turner, E.; Tremblay, M.S. Global prevalence of physical activity for children and adolescents; inconsistencies, research gaps, and recommendations: A narrative review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Griffiths, L.J.; Cortina-Borja, M.; Sera, F.; Pouliou, T.; Geraci, M.; Rich, C.; Cole, T.J.; Law, C.; Joshi, H.; Ness, A.R.; et al. How active are our children? Findings from the Millennium Cohort Study. BMJ Open 2013, 3, e002893. [Google Scholar] [CrossRef] [Green Version]
- Inchley, J.C.; Stevens, G.W.J.M.; Samdal, O.; Currie, D.B. Enhancing understanding of adolescent health and well-being: The health behaviour in school-aged children study. J. Adolesc. Health 2020, 66, S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Dengel, D.R.; Lubans, D.R. Supporting public health priorities: Recommendations for physical education and physical activity promotion in schools. Prog. Cardiovasc. Dis. 2015, 57, 368–374. [Google Scholar] [CrossRef] [Green Version]
- van Sluijs, E.M.F.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Harris, J. The case for physical education becoming a core subject in the National Curriculum. Phys. Educ. Matters 2018, 13, 9–12. [Google Scholar]
- Van den Berg, M.; van Poppel, M.; van Kamp, I.; Andrusaityte, S.; Balseviciene, B.; Cirach, M.; Danileviciute, A.; Ellis, N.; Hurst, G.; Masterson, D.; et al. Visiting green space is associated with mental health and vitality: A cross-sectional study in four european cities. Health Place 2016, 38, 8–15. [Google Scholar] [CrossRef]
- Bartholomew, J.B.; Jowers, E.M. Physically active academic lessons in elementary children. Prev. Med. 2011, 52, S51–S54. [Google Scholar] [CrossRef] [Green Version]
- Dunlosky, J.; Rawson, K.A.; Marsh, E.J.; Nathan, M.J.; Willingham, D.T. Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psy-chology. Psychol. Sci. Public Interest 2013, 14, 4–58. [Google Scholar] [CrossRef] [PubMed]
- Norris, E.; van Steen, T.; Direito, A.; Stamatakis, E. Physically active lessons in schools and their impact on physical activity, educational, health and cognition outcomes: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 54, 826–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.S.; Saliasi, E.; Van Den Berg, V.; Uijtdewilligen, L.; De Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Daly-Smith, A.J.; Zwolinsky, S.; McKenna, J.; Tomporowski, P.D.; DeFeyter, M.A.; Manley, A. Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: Understanding critical design features. BMJ Open Sport Exerc. Med. 2018, 4, e000341. [Google Scholar] [CrossRef] [Green Version]
- Magistro, D.; Cooper, S.B.; Carlevaro, F.; Marchetti, I.; Magno, F.; Bardaglio, G.; Musella, G. Two years of physically active mathematics lessons enhance cognitive function and gross motor skills in primary school children. Psychol. Sport Exerc. 2022, 63, 102254. [Google Scholar] [CrossRef]
- Williams, R.A.; Hatch, L.; Cooper, S.B. A review of factors affecting the acute exercise-cognition relationship in children and adolescents. OBM Integr. Complement. Med. 2019, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Payne, V.G.; Isaacs, L.D. Human Motor Development: A Lifespan Approach; Routledge: London, UK, 2017. [Google Scholar]
- Woodfield, L. Physical Development in the Early Years; Bloomsbury Publishing: Bloomsbury, UK, 2004. [Google Scholar]
- Haga, M. The relationship between physical fitness and motor competence in children. Child Care Health Dev. 2008, 34, 329–334. [Google Scholar] [CrossRef]
- Piek, J.P.; Baynam, G.B.; Barrett, N.C. The relationship between fine and gross motor ability, self-perceptions and self-worth in children and adolescents. Hum. Mov. Sci. 2006, 25, 65–75. [Google Scholar] [CrossRef]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, D. Wisc-Iv Wechsler Intelligence Scale for Children Technical and Interpretive Manual; The Psychological Corporation, a Harcourt Assessment Company: San Antonion, TX, USA, 2003. [Google Scholar]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Samuel, R.D.; Zavdy, O.; Levav, M.; Reuveny, R.; Katz, U.; Dubnov-Raz, G. The effects of maximal intensity exercise on cognitive performance in children. J. Hum. Kinet. 2017, 57, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, D.A. Introduction to the Special Section: Evaluation of the Psychometric Properties of the TGMD-3. J. Mot. Learn. Dev. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Webster, E.K.; Ulrich, D.A. Evaluation of the Psychometric Properties of the Test of Gross Motor development–3rd edition. J. Mot. Learn. Dev. 2017, 5, 45–58. [Google Scholar] [CrossRef]
- Magistro, D.; Piumatti, G.; Carlevaro, F.; Sherar, L.B.; Esliger, D.W.; Bardaglio, G.; Magno, F.; Zecca, M.; Musella, G. Measurement invariance of TGMD-3 in children with and without mental and behavioral disorders. Psychol. Assess. 2018, 30, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Magistro, D.; Piumatti, G.; Carlevaro, F.; Sherar, L.B.; Esliger, D.W.; Bardaglio, G.; Magno, F.; Zecca, M.; Musella, G. Psychometric proprieties of the Test of Gross Motor Development–Third Edition in a large sample of Italian children. J. Sci. Med. Sport 2020, 23, 860–865. [Google Scholar] [CrossRef]
- Derzon, J.H.; Sale, E.; Springer, J.F.; Brounstein, P. Estimating intervention effectiveness: Synthetic projection of field evaluation results. J. Prim. Prev. 2005, 26, 321–343. [Google Scholar] [CrossRef]
- Bedard, C.; John, L.S.; Bremer, E.; Graham, J.D.; Cairney, J. A systematic review and meta-analysis on the effects of physically active classrooms on educational and enjoyment outcomes in school age children. PLoS ONE 2019, 14, e0218633. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhu, W.; Mason, S.; Hammond-Bennett, A.; Colombo-Dougovito, A. Effectiveness of quality physical education in improving students’ manipulative skill competency. J. Sport Health Sci. 2015, 5, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Dudley, D.; Okely, A.; Pearson, P.; Cotton, W. A systematic review of the effectiveness of physical education and school sport interventions targeting physical activity, movement skills and enjoyment of physical activity. Eur. Phys. Educ. Rev. 2011, 17, 353–378. [Google Scholar] [CrossRef]
- Lopes, V.P.; Stodden, D.F.; Rodrigues, L.P. Effectiveness of physical education to promote motor competence in primary school children. Phys. Educ. Sport Pedagog. 2017, 22, 589–602. [Google Scholar] [CrossRef]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.-T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, D.A.; Chapman, K.M.; Weigelt, M.; Weiss, D.J.; van der Wel, R. Cognition, action, and object manipulation. Psychol. Bull. 2012, 138, 924–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef]
Intervention Group | Control Group | p Value a | |
---|---|---|---|
n (Males, Females) | 94 (39, 55) | 98 (51, 47) | - |
Age [y] | 8.5 ± 0.9 | 8.5 ± 0.8 | 0.864 |
Height [cm] | 131.9 ± 7.7 | 132.6 ± 8.5 | 0.603 |
Body mass [kg] | 31.6 ± 9.2 | 32.0 ± 8.8 | 0.819 |
Body mass index [kg m−2] | 18.0 ± 4.4 | 17.9 ± 3.2 | 0.926 |
Cognitive Function Test | Intervention Group | Control Group | Group * Time Interaction | Cohen’s d | ||
---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |||
Digit Span Forwards | 8.62 ± 2.54 | 9.26 ± 2.25 | 8.41 ± 2.10 | 8.35 ± 2.29 | 0.023 | 0.34 |
Digit Span Backwards | 5.87 ± 1.94 | 6.53 ± 1.96 | 5.89 ± 1.89 | 5.81 ± 1.99 | 0.008 | 0.42 |
Coding | 40.96 ± 10.05 | 45.56 ± 10.69 | 39.19 ± 9.90 | 40.25 ± 10.76 | 0.012 | 0.35 |
Arithmetic Reasoning | 16.85 ± 3.62 | 18.22 ± 4.38 | 16.89 ± 4.50 | 17.14 ± 4.83 | 0.022 | 0.40 |
Test | Intervention Group | Control Group | Group * Time Interaction | Cohen’s d | ||
---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |||
TGMD-3 Total Score | 65 ± 10 | 82 ± 8 | 63 ± 11 | 68 ± 11 | <0.001 | 1.16 |
Locomotor Subscale | 34 ± 7 | 41 ± 5 | 31 ± 7 | 35 ± 7 | <0.001 | 0.63 |
Object Control Subscale | 31 ± 7 | 41 ± 6 | 31 ± 6 | 33 ± 7 | <0.001 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boat, R.; Cooper, S.B.; Carlevaro, F.; Magno, F.; Bardaglio, G.; Musella, G.; Magistro, D. 16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years. Int. J. Environ. Res. Public Health 2022, 19, 16751. https://doi.org/10.3390/ijerph192416751
Boat R, Cooper SB, Carlevaro F, Magno F, Bardaglio G, Musella G, Magistro D. 16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years. International Journal of Environmental Research and Public Health. 2022; 19(24):16751. https://doi.org/10.3390/ijerph192416751
Chicago/Turabian StyleBoat, Ruth, Simon B. Cooper, Fabio Carlevaro, Francesca Magno, Giulia Bardaglio, Giovanni Musella, and Daniele Magistro. 2022. "16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years" International Journal of Environmental Research and Public Health 19, no. 24: 16751. https://doi.org/10.3390/ijerph192416751
APA StyleBoat, R., Cooper, S. B., Carlevaro, F., Magno, F., Bardaglio, G., Musella, G., & Magistro, D. (2022). 16 Weeks of Physically Active Mathematics and English Language Lessons Improves Cognitive Function and Gross Motor Skills in Children Aged 8–9 Years. International Journal of Environmental Research and Public Health, 19(24), 16751. https://doi.org/10.3390/ijerph192416751