Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. GD Rroup and Control Group
2.2. Inclusion Criteria
2.3. Laboratory Procedures
2.4. Medical History Analysis
2.5. Statistical Analysis
2.6. Ethics Procedures
3. Results
3.1. Comparison of GO and Non-GO Groups with Respect to Patients’ Age and Laboratory Results
3.2. Comparison of GO and Non-GO Groups with Respect to Gender, Environmental Risk Factors and Treatment
3.3. Correlation Analysis between TRAb and CAS Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AITD | autoimmune thyroid diseases |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
CAS | clinical activity score |
CRP | C-reactive protein |
ESR | erythrocyte sedimentation rate |
EUGOGO | European Group of Graves’ Ophthalmopathy |
FT3 | free triiodothyronine |
FT4 | free thyroxine |
GD | Graves’ disease |
GO | Graves’ orbitopathy |
HCT | hematocrit |
HDL | high-density lipoprotein |
HGB | hemoglobin |
HLA | human leukocyte antigens |
LDL | low-density lipoprotein |
mRNA | messenger RNA |
MCHC | mean corpuscular hemoglobin concentration |
MCV | mean corpuscular volume |
PLT | platelet count |
QoL | quality of life |
RAI | radioactive iodine |
ROS | reactive oxygen species |
SLEs | stressful life events |
TC | total cholesterol |
TG | triglycerides |
Tg | thyroglobulin |
TgAb | thyroglobulin antibodies |
TPOAb | thyroid peroxidase antibodies |
TRAb | TSH-receptor antibodies |
TSH | thyroid stimulating hormone (thyrotropin) |
US | ultrasound |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
25(OH)D | 25-hydroxyvitamin D |
References
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahaly, G.J. Management of graves thyroidal and extrathyroidal disease: An update. J. Clin. Endocrinol. Metab. 2020, 105, 3704–3720. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, J.; Sigari, M.; Efendizade, A.; Grigorian, A.; Lehto, S.A.; Kolla, S. Thyroid acropachy: A rare skeletal manifestation of autoimmune thyroid disease. Radiol. Case Rep. 2019, 14, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; Ayvaz, G.; et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, M.; Tymoniuk, B.; Stasiak, B.; Lewiński, A. The risk of recurrence of subacute thyroiditis is HLA-dependent. Int. J. Mol. Sci. 2019, 20, 1089. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewinski, A.; Stasiak, M. Actual associations between HLA haplotype and Graves’ disease development. J. Clin. Med. 2022, 11, 2492. [Google Scholar] [CrossRef]
- Stasiak, M.; Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewinski, A. Significance of HLA in the development of Graves’ orbitopathy. Genes Immun. 2022; submitted. [Google Scholar]
- Bartalena, L.; Tanda, M.L. Current concepts regarding Graves' orbitopathy. J. Intern. Med. 2022, 292, 692–716. [Google Scholar] [CrossRef]
- Heisel, C.J.; Riddering, A.L.; Andrews, C.A.; Kahana, A. Serum vitamin D deficiency is an independent risk factor for thyroid eye disease. Ophthalmic. Plast. Reconstr. Surg. 2020, 36, 17–20. [Google Scholar] [CrossRef]
- Holmes, T.H.; Rahe, R.H. The Social Readjustment Rating Scale. J. Psychosom. Res. 1967, 11, 213–218. [Google Scholar] [CrossRef]
- Noone, P.A. The Holmes-Rahe Stress Inventory. Occup. Med. 2017, 67, 581–582. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Ragusa, F.; Elia, G.; Paparo, S.R.; Ruffilli, I.; Patrizio, A.; Giusti, C.; Gonnella, D.; Cristaudo, A.; et al. Graves' disease: Epidemiology, genetic and environmental risk factors and viruses. Best. Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101387. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.Y.; Wu, S.B.; Kau, H.C.; Tsai, C.C. The Role of Oxidative stress and therapeutic potential of antioxidants in Graves' ophthalmopathy. Biomedicines 2021, 9, 1871. [Google Scholar] [CrossRef] [PubMed]
- Köhrle, J. Selenium in Endocrinology-selenoprotein-related diseases, population studies, and epidemiological evidence. Endocrinology 2021, 162, bqaa228. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-C.; Cheng, C.-Y.; Liu, C.-Y.; Kao, S.-C.; Kau, H.-C.; Hsu, W.-M.; Wei, Y.-H. Oxidative stress in patients with Graves' ophthalmopathy: Relationship between oxidative DNA damage and clinical evolution. Eye 2009, 23, 1725–1730. [Google Scholar] [CrossRef]
- Nicolì, F.; Lanzolla, G.; Mantuano, M.; Ionni, I.; Mazzi, B.; Leo, M.; Sframeli, A.; Posarelli, C.; Maglionico, M.N.; Figus, M.; et al. Correlation between serum anti-TSH receptor autoantibodies (TRAbs) and the clinical feature of Graves’ orbitopathy. J. Endocrinol. Investig. 2021, 44, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Gerding, M.N.; van der Meer, J.W.; Broenink, M.; Bakker, O.; Wiersinga, W.M.; Prummel, M.F. Association of thyrotrophin receptor antibodies with the clinical features of Graves' ophthalmopathy. Clin. Endocrinol. 2000, 52, 267–271. [Google Scholar] [CrossRef]
- Boschi, A.; Daumerie, C.; Spiritus, M.; Beguin, C.; Senou, M.; Yuksel, D.; Duplicy, M.; Costagliola, S.; Ludgate, M.; Many, M.C. Quantification of cells expressing the thyrotropin receptor in extraocular muscles in thyroid associated orbitopathy. Br. J. Ophthalmol. 2005, 89, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Wakelkamp, I.M.; Bakker, O.; Baldeschi, L.; Wiersinga, W.M.; Prummel, M.F. TSH-R expression and cytokine profile in orbital tissue of active vs. inactive Graves' ophthalmopathy patients. Clin. Endocrinol. 2003, 58, 280–287. [Google Scholar] [CrossRef]
- Wiersinga, W.; Žarković, M.; Bartalena, L.; Donati, S.; Perros, P.; Okosieme, O.; Morris, D.; Fichter, N.; Lareida, J.; von Arx, G.; et al. Predictive score for the development or progression of Graves’ orbitopathy in patients with newly diagnosed Graves’ hyperthyroidism. Eur. J. Endocrinol. 2018, 178, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Diana, T.; Kahaly, G.J. Thyroid stimulating hormone receptor antibodies in thyroid eye disease—Methodology and clinical applications. Ophthalmic. Plast. Reconstr. Surg. 2018, 34, S13–S19. [Google Scholar] [CrossRef]
- Lantz, M.; Planck, T.; Åsman, P.; Hallengren, B. Increased TRAb and/or Low Anti-TPO Titers at Diagnosis of Graves’ Disease are Associated with an Increased Risk of Developing Ophthalmopathy after Onset. Exp. Clin. Endocr. Diab. 2014, 122, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.C.P.; Paulpandian, V.; Murthy, R. Serial TSH-receptor antibody levels to guide the management of thyroid eye disease: The impact of smoking, immunosuppression, radio-iodine, and thyroidectomy. Eye 2019, 33, 212–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabini, E.; Mazzi, B.; Profilo, M.A.; Mautone, T.; Casini, G.; Rocchi, R.; Ionni, I.; Menconi, F.; Leo, M.; Nardi, M.; et al. High serum cholesterol is a novel risk factor for Graves' orbitopathy: Results of a cross-sectional study. Thyroid 2018, 28, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Khong, J.J.; Finch, S.; De Silva, C.; Rylander, S.; Craig, J.E.; Selva, D.; Ebeling, P.R. Risk Factors for Graves' orbitopathy; the Australian Thyroid-Associated Orbitopathy Research (ATOR) Study. J. Clin. Endocrinol. Metab. 2016, 101, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.Y.; Ho, S.C.; Seah, L.L.; Fong, K.S.; Khoo, D.H. Thyroid autoantibody profiles in ophthalmic dominant and thyroid dominant Graves' disease differ and suggest ophthalmopathy is a multiantigenic disease. Clin. Endocrinol. 2004, 60, 600–607. [Google Scholar] [CrossRef]
- Laurberg, P.; Berman, D.C.; Pedersen, I.B.; Andersen, S.; Carlé, A. Incidence and clinical presentation of moderate to severe graves' orbitopathy in a Danish population before and after iodine fortification of salt. J. Clin. Endocrinol. Metab. 2012, 97, 2325–2332. [Google Scholar] [CrossRef] [Green Version]
- Tanda, M.L.; Piantanida, E.; Liparulo, L.; Veronesi, G.; Lai, A.; Sassi, L.; Pariani, N.; Gallo, D.; Azzolini, C.; Ferrario, M.; et al. Prevalence and natural history of Graves' orbitopathy in a large series of patients with newly diagnosed graves' hyperthyroidism seen at a single center. J. Clin. Endocrinol. Metab. 2013, 98, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Fernando, R.; Atkins, S.; Raychaudhuri, N.; Lu, Y.; Li, B.; Douglas, R.S.; Smith, T.J. Human fibrocytes co-express thyroglobulin and thyrotropin receptor. Proc. Natl. Acad. Sci. USA 2012, 109, 7427–7432. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Smith, T.J. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Khamisi, S.; Lundqvist, M.; Emadi, P.; Almby, K.; Ljunggren, Ö.; Karlsson, F.A. Serum thyroglobulin is associated with orbitopathy in Graves' disease. J. Endocrinol. Investig. 2021, 44, 1905–1911. [Google Scholar] [CrossRef]
- Fernandes, N.M.; Fernandes, N.; Magacho, E.J.; Bastos, M.G. Nomogram for estimating glomerular filtration rate in elderly people. J. Bras. Nefrol. 2015, 37, 379–381. [Google Scholar] [CrossRef]
- Gianoukakis, A.G.; Leigh, M.J.; Richards, P.; Christenson, P.D.; Hakimian, A.; Fu, P.; Niihara, Y.; Smith, T.J. Characterization of the anaemia associated with Graves' disease. Clin. Endocrinol. 2009, 70, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordiano, I.; Betterle, C.; Spadaccino, C.A.; Soini, B.; Girolami, A.; Fabris, F. Autoimmune thrombocytopenia (AITP) and thyroid autoimmune disease (TAD): Overlapping syndromes? Clin. Exp. Immunol. 1998, 113, 373–378. [Google Scholar] [CrossRef]
- Krygier, A.; Szczepanek-Parulska, E.; Filipowicz, D.; Ruchala, M. Changes in serum hepcidin according to thyrometabolic status in patients with Graves' disease. Endocr. Connect. 2020, 9, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Danesh, H.; Ziamajidi, N.; Mesbah-Namin, S.A.; Nafisi, N.; Abbasalipourkabir, R. Association between oxidative stress parameters and hematological indices in breast cancer patients. Int. J. Breast. Cancer. 2022, 2022, 1459410. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Hwang, Y.Y.; Tse, E. Primary immune thrombocytopenia responding to antithyroid treatment in a patient with Graves' disease. Ann. Hematol. 2011, 90, 223–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.Z.; Huang, S.S.; Liu, J.; Lu, B.; Shao, J.Q. High serum cholesterol: A novel risk factor for thyroid associated ophthalmopathy? Zhonghua Nei Ke Za Zhi. 2019, 1, 823–825. [Google Scholar] [CrossRef]
- Lanzolla, G.; Sabini, E.; Profilo, M.A.; Mazzi, B.; Sframeli, A.; Rocchi, R.; Menconi, F.; Leo, M.; Nardi, M.; Vitti, P.; et al. Relationship between serum cholesterol and Graves' orbitopathy (GO): A confirmatory study. J. Endocrinol. Investig. 2018, 41, 1417–1423. [Google Scholar] [CrossRef]
- Naselli, A.; Moretti, D.; Regalbuto, C.; Arpi, M.L.; Lo, G.F.; Frasca, F.; Belfiore, A.; Le Moli, R. Evidence that baseline levels of low-density lipoproteins cholesterol affect the clinical response of graves’ ophthalmopathy to parenteral corticosteroids. Front. Endocrinol. 2020, 11, 609895. [Google Scholar] [CrossRef]
- Lanzolla, G.; Vannucchi, G.; Ionni, I.; Campi, I.; Sileo, F.; Lazzaroni, E.; Marinò, M. Cholesterol serum levels and use of statins in Graves' orbitopathy: A new starting point for the therapy. Front. Endocrinol. 2020, 10, 933. [Google Scholar] [CrossRef]
- Topcu, C.B.; Celik, O.; Tasan, E. Effect of stressful life events on the initiation of graves’ disease. Int. J. Psychiat. Clin. 2012, 16, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Petrak, F.; Hardt, J.; Pitz, S.; Egle, U.T. Psychosocial morbidity of Graves’ orbitopathy. Clin. Endocrinol. 2005, 63, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Su, Y.; Chen, Z.; Ma, C.; Xiong, W. The risk factors for Graves' ophthalmopathy. Graefes. Arch. Clin. Exp. Ophthalmol. 2022, 260, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Perros, P.; Zarkovic, M.; Azzolini, C.; Ayvaz, G.; Baldeschi, L.; Bartalena, L.; Boschi, A.; Bournaud, C.; Brix, T.H.; Covelli, D.; et al. PREGO (presentation of Graves’ orbitopathy) study: Changes in referral patterns to European Group on Graves’ orbitopathy (EUGOGO) centres over the period from 2000 to 2012. Br. J. Ophthalmol. 2015, 99, 1531–1535. [Google Scholar] [CrossRef]
- Bartalena, L.; Piantanida, E.; Gallo, D.; Lai, A.; Tanda, M.L. Epidemiology, natural history, risk factors, and prevention of Graves’ orbitopathy. Front. Endocrinol. 2020, 11, 615993. [Google Scholar] [CrossRef]
- Manji, N.; Carr-Smith, J.D.; Boelaert, K.; Allahabadia, A.; Armitage, M.; Chatterjee, V.K.; Lazarus, J.H.; Pearce, S.H.; Vaidya, B.; Gough, S.C.; et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J. Clin. Endocrinol. Metab. 2006, 91, 4873–4880. [Google Scholar] [CrossRef]
Parameter (Reference Range and Units) | GO | Non-GO | p-Value | ||
---|---|---|---|---|---|
Mean ± SD (N) | Median/IQR | Mean ± SD (N) | Median/IQR | ||
Age at GD diagnosis (years) | 44.25 ± 14.61 (71) | 47.00/21.50 | 39.00 ± 19.04 (91) | 40.00/28.00 | 0.049 * |
TSH (0.27–4.2 µIU/mL) | 0.18 ± 0.59 (59) | 0.01/0.04 | 0.10 ± 0.48 (83) | 0.01/0.01 | 0.049 * |
FT3 (2.0–4.4 pg/mL) | 9.59 ± 8.89 (56) | 4.85/10.55 | 12.85 ± 8.06 (79) | 11.63/11.95 | 0.003 * |
FT4 (0.93–1.7 ng/dL) | 2.64 ± 2.09 (57) | 1.80/1.86 | 3.58 ± 1.96 (82) | 3.15/2.86 | <0.001 * |
TPOAb (<34 IU/mL) | 182.57 ± 195.05 (58) | 77.50/268.85 | 211.54 ± 204.57 (71) | 170.40/236.50 | 0.23 |
TgAb (<115 IU/mL) | 347.22 ± 894.99 (58) | 25.45/218.22 | 406.41 ± 640.99 (67) | 250.00/484.30 | <0.001 * |
TRAb (<1.75 IU/L) | 17.59 ± 13.79 (68) | 13.72/26.95 | 13.65 ± 13.52 (88) | 9.20/13.25 | 0.021 * |
Morning cortisol (>10 µg/dL) | 12.87 ± 5.08 (15) | 11.00/5.27 | 14.12 ± 6.80 (18) | 14.47/8.38 | 0.56 |
ESR (<12 mm/h) | 21.40 ± 20.18 (40) | 17.00/23.50 | 19.00 ± 20.38 (30) | 15.50/20.00 | 0.34 |
CRP (<1.00 mg/dL) | 0.71 ± 0.56 (54) | 0.50/0.10 | 0.89 ± 1.10 (48) | 0.50/0.13 | 0.86 |
Glucose (60–99 mg/dL) | 94.10 ± 24.76 (59) | 89.00/11.50 | 98.26 ± 18.74 (52) | 96.00/11.00 | 0.006 * |
Urea (19.3–42.3 mg/dL) | 31.56 ± 10.25 (48) | 31.00/11.00 | 32.40 ± 7.49 (45) | 32.00/10.00 | 0.65 |
Creatinine (0.66–1.25 mg/dL) | 0.68 ± 0.20 (58) | 0.66/0.23 | 0.53 ± 0.16 (54) | 0.50/0.21 | <0.001 * |
ALT (women < 35 U/L, men < 50 U/L) | 30.22 ± 16.90 (58) | 24.00/17.50 | 32.27 ± 16.78 (61) | 29.00/22.00 | 0.45 |
AST (women < 36 U/L, men < 59 U/L) | 26.71 ± 8.51 (59) | 25.00/9.00 | 29.59 ± 10.18 (60) | 27.00/13.25 | 0.11 |
Bilirubin (0.2–1.3 mg/dL) | 0.62 ± 0.19 (40) | 0.65/0.22 | 0.66 ± 0.43 (46) | 0.57/0.39 | 0.66 |
WBC (4–10 × 103/µL) | 6.96 ± 2.21 (63) | 6.49/2.87 | 6.71 ± 2.37 (64) | 6.62/3.02 | 0.57 |
RBC (women 3.8–5.8 × 106/µL, men 4.5–6.5 × 106/µL) | 4.58 ± 0.51 (62) | 4.49/0.62 | 4.68 ± 0.50 (65) | 4.60/0.65 | 0.23 |
HGB (women 12–15, men 13–18 g/dL) | 13.39 ± 1.59 (62) | 13.30/1.77 | 13.09 ± 2.00 (65) | 13.00/1.70 | 0.21 |
HCT (women 36–45, men 40–54%) | 39.62 ± 4.44 (62) | 39.00/4.97 | 38.58 ± 3.46 (65) | 38.70/3.80 | 0.25 |
PLT (150–400 × 103/µL) | 238.37 ± 59.11 (62) | 235.00/79.25 | 270.11 ± 72.74 (65) | 259.00/89.00 | 0.02 * |
MCV (women 78–93 fl, men 82–94 fl) | 86.21 ± 6.35 (58) | 86.95/7.25 | 82.93 ± 5.27 (60) | 82.55/7.67 | <0.001 * |
MCHC (32–37 g/dL) | 33.78 ± 1.08 (62) | 34.00/1.10 | 33.73 ± 1.01 (65) | 33.70/1.00 | 0.39 |
TC Total cholesterol (<200 mg/dL) | 192.84 ± 53.39 (64) | 189.00/82.75 | 161.96 ± 48.21 (54) | 152.00/70.25 | 0.001 * |
LDL cholesterol (<100 mg/dL) | 117.28 ± 46.53 (64) | 103.50/86.00 | 94.13 ± 39.74 (54) | 85.00/31.75 | 0.006 * |
HDL cholesterol (>40 mg/dL) | 51.80 ± 15.84 (64) | 50.00/21.00 | 47.94 ± 15.79 (53) | 46.00/19.00 | 0.13 |
triglycerides (<150 mg/dL) | 121.53 ± 54.28 (64) | 111.50/77.50 | 106.93 ± 47.41 (54) | 91.50/56.75 | 0.13 |
25(OH)D (>30 ng/mL) | 27.05 ± 10.37 (51) | 25.30/15.80 | 25.24 ± 15.21 (45) | 22.60/9.40 | 0.12 |
Parameter | GO | Non-GO | p-Value |
---|---|---|---|
Male/Female ratio | 14/57 | 15/76 | 0.59 |
Smoking (Yes/No) | 32/37 | 13/71 | <0.001 * |
Stressful events (Yes/No) | 46/20 | 46/27 | 0.27 |
131I treatment (Yes/No) | 21/50 | 17/72 | 0.12 |
Thyroidectomy (Yes/No) | 16/55 | 2/87 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzka-Starczewska, K.; Stasiak, B.; Wojciechowska-Durczyńska, K.; Lewiński, A.; Stasiak, M. Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. Int. J. Environ. Res. Public Health 2022, 19, 16941. https://doi.org/10.3390/ijerph192416941
Zawadzka-Starczewska K, Stasiak B, Wojciechowska-Durczyńska K, Lewiński A, Stasiak M. Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. International Journal of Environmental Research and Public Health. 2022; 19(24):16941. https://doi.org/10.3390/ijerph192416941
Chicago/Turabian StyleZawadzka-Starczewska, Katarzyna, Bartłomiej Stasiak, Katarzyna Wojciechowska-Durczyńska, Andrzej Lewiński, and Magdalena Stasiak. 2022. "Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy" International Journal of Environmental Research and Public Health 19, no. 24: 16941. https://doi.org/10.3390/ijerph192416941
APA StyleZawadzka-Starczewska, K., Stasiak, B., Wojciechowska-Durczyńska, K., Lewiński, A., & Stasiak, M. (2022). Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. International Journal of Environmental Research and Public Health, 19(24), 16941. https://doi.org/10.3390/ijerph192416941