Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Document Selection
2.2.1. Selection Method
2.2.2. Methodological Quality
2.3. Result Variables
3. Results
4. Discussion
4.1. Strength
4.2. Structural Muscle Changes
4.3. Physiological Muscle Changes
4.4. Hemodynamic Variables and Vascular Caliber
4.5. BFR: Clinical and Trainning Consideration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Anderson, A.B.; Owens, J.G.; Patterson, S.D.; Dickens, J.F.; LeClere, L.E. Blood flow restriction therapy: From development to applications. Sports Med. Arthrosc. Rev. 2019, 27, 119–123. [Google Scholar] [CrossRef]
- Pignanelli, C.; Christiansen, D.; Burr, J.F. Blood flow restriction training and the high-performance athlete: Science to application. J. Appl. Physiol. 2021, 130, 1163–1170. [Google Scholar] [CrossRef]
- Bielitzki, R.; Behrendt, T.; Behrens, M.; Schega, L. Time to Save Time: Beneficial Effects of Blood Flow Restriction Training and the Need to Quantify the Time Potentially Saved by its Application during Musculoskeletal Rehabilitation. Phys. Ther. 2021, 101, pzab172. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.; Owens, J.; Abe, T.; Nielsen, J.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Buckner, S.L.; Dankel, S.J.; Counts, B.R.; Jessee, M.B.; Mouser, J.G.; Mattocks, K.T.; Laurentino, G.C.; Abe, T.; Loenneke, J.P. Influence of cuff material on blood flow restriction stimulus in the upper body. J. Physiol. Sci. 2017, 67, 207–215. [Google Scholar] [CrossRef]
- Slysz, J.; Stultz, J.; Burr, J.F. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [PubMed] [Green Version]
- Pearson, S.J.; Hussain, S.R. A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Heitkamp, H.C. Training with blood flow restriction. Mechanisms, gain in strength and Safety. J. Sports Med. Phys. Fit. 2015, 55, 446–456. [Google Scholar]
- Manini, T.M.; Vincent, K.R.; Leeuwenburgh, C.L.; Lees, H.A.; Kavazis, A.N.; Borst, S.E.; Clark, B.C. Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol. 2011, 201, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Clarkson, M.J.; May, A.K.; Warmington, S.A. Is there rationale for the cuff pressures prescribed for blood flow restriction exercise? A systematic review. Scand. J. Med. Sci. Sports 2020, 30, 1318–1336. [Google Scholar] [CrossRef]
- Centner, C.; Lauber, B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don’t Know. Front. Physiol. 2020, 11, 887. [Google Scholar] [CrossRef]
- Lu, Y.; Patel, B.H.; Kym, C.; Nwachukwu, B.U.; Beletksy, A.; Forsythe, B.; Chahla, J. Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120906822. [Google Scholar] [CrossRef] [PubMed]
- Van Cant, J.; Dawe-Coz, A.; Aoun, E.; Esculier, J.F. Quadriceps strengthening with blood flow restriction for the rehabilitation of patients with knee conditions: A systematic review with meta-analysis. J. Back Musculoskelet. Rehabil. 2020, 33, 529–544. [Google Scholar] [CrossRef]
- Cerqueira, M.S.; Do Nascimento, J.D.S.; Maciel, D.G.; Barboza, J.A.M.; Vieira, W.H.D.B. Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: A systematic review: Passive blood flow restriction and disuse. J. Sport Health Sci. 2020, 9, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Grønfeldt, B.M.; Nielsen, J.L.; Mieritz, R.M.; Lund, H.; Aagaard, P. Effect of blood-flow restricted vs heavy-load strength training on muscle strength: Systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2020, 30, 837–848. [Google Scholar] [CrossRef]
- Centner, C.; Wiegel, P.; Gollhofer, A.; König, D. Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Formiga, M.F.; Fay, R.; Hutchinson, S.; Locandro, N.; Ceballos, A.; Lesh, A.; Buscheck, J.; Meanor, J.; Owens, J.G.; Cahalin, L.P. Effect of Aerobic Exercise Training With and Without Blood Flow Restriction on Aerobic Capacity in Healthy Young Adults: A Systematic Review With Meta-Analysis. Int. J. Sports Phys. Ther. 2020, 15, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.G.; Pereira Neto, E.A.; Pfeiffer, P.A.S.; Neto, G.R.; Rodrigues, A.S.; Bemben, M.G.; Patterson, S.D.; Batista, G.R.; Cirilo-Sousa, M.S. Acute and Chronic Responses of Aerobic Exercise With Blood Flow Restriction: A Systematic Review. Front. Physiol. 2019, 10, 1239. [Google Scholar] [CrossRef]
- Neto, G.R.; Novaes, J.S.; Dias, I.B.F.; Brown, A.; Vianna, J.; Cirilo-Sousa, M.S. Effects of resistance training with blood flow restriction on haemodynamics: A systematic review. Clin. Physiol. Funct. Imaging 2017, 37, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Domingos, E.; Polito, M.D. Blood pressure response between resistance exercise with and without blood flow restriction: A systematic review and meta-analysis. Life Sci. 2018, 209, 122–131. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Wilson, J.M.; Marín, P.J.; Zourdos, M.C.; Bemben, M.G. Low intensity blood flow restriction training: A meta-analysis. Eur. J. Appl. Physiol. 2012, 112, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha Nascimento, D.; Petriz, B.; da Cunha Oliveira, S.; Vieira, D.C.L.; Funghetto, S.S.; Silva, A.O.; Prestes, J. Effects of blood flow restriction exercise on hemostasis: A systematic review of randomized and non-randomized trials. Int. J. Gen. Med. 2019, 12, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.; Stannard, M.S.; Duren, D.L.; Cook, J.L.; Stannard, J.P. Does Blood Flow Restriction Therapy in Patients Older Than Age 50 Result in Muscle Hypertrophy, Increased Strength, or Greater Physical Function? A Systematic Review. Clin. Orthop. Relat. Res. 2020, 478, 593–606. [Google Scholar] [CrossRef]
- Clarkson, M.; May, A.; Warmington, S.A. Chronic Blood Flow Restriction Exercise Improves Objective Physical Function: A Systematic Review. Front. Physiol. 2019, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Escobar Calderón, E.H.; Ramos Bazán, A.G. Efectividad de un Programa de Entrenamiento Físico Para Mejorar la Fuerza Muscular de los Pacientes Adultos en Hemodiálisis; Universidad Norbert Wiener: Lima District, Peru, 2020. [Google Scholar]
- NLM. Muscle Strength. In Medical Subject Headings; National Library of Medicine: Bethesda, MD, USA, 2007. [Google Scholar]
- Brown, S.C.; Sewry, C.A. Basics of Skeletal Muscle Function and Normal Physiology. In Cardioskeletal Myopathies in Children and Young Adults; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 21–38. [Google Scholar] [CrossRef]
- Jones, E.J.; Bishop, P.A.; Woods, A.K.; Green, J.M. Cross-sectional area and muscular strength: A brief review. Sports Med. 2008, 38, 987–994. [Google Scholar] [CrossRef]
- Pisanu, S.; Deledda, A.; Loviselli, A.; Huybrechts, I.; Velluzzi, F. Validity of Accelerometers for the Evaluation of Energy Expenditure in Obese and Overweight Individuals: A Systematic Review. J. Nutr. Metab. 2020, 2020, 2327017. [Google Scholar] [CrossRef]
- Instituto Nacional del Cáncer. Análisis de Sangre; Instituto Nacional del Cáncer—NIH: Bethesda, MD, USA, 2019. [Google Scholar]
- Barbalho, M.; Rocha, A.C.; Seus, T.L.; Raiol, R.; Del Vecchio, F.B.; Coswig, V.S. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: A within-patient randomized trial. Clin. Rehabil. 2019, 33, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.; Webster, K.E.; McClelland, J.; Cook, J.L. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: A double-blind randomised trial. Br. J. Sports Med. 2017, 51, 1688–1694. [Google Scholar] [CrossRef]
- Curran, M.T.; Bedi, A.; Mendias, C.L.; Wojtys, E.M.; Kujawa, M.V.; Palmieri-Smith, R.M. Blood Flow Restriction Training Applied With High-Intensity Exercise Does Not Improve Quadriceps Muscle Function After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Am. J. Sports Med. 2020, 48, 825–837. [Google Scholar] [CrossRef]
- Harper, S.A.; Roberts, L.M.; Layne, A.S.; Jaeger, B.C.; Gardner, A.K.; Sibille, K.T.; Wu, S.S.; Vincent, K.R.; Fillingim, R.B.; Manini, T.M.; et al. Blood-Flow Restriction Resistance Exercise for Older Adults with Knee Osteoarthritis: A Pilot Randomized Clinical Trial. J. Clin. Med. 2019, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, N.; Straudi, S.; Donadi, M.; Tanaka, H.; Basaglia, N.; Manfredini, F. Effectiveness of blood flow-restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scand. J. Med. Sci. Sports 2020, 30, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Segal, N.A.; Williams, G.N.; Davis, M.C.; Wallace, R.B.; Mikesky, A.E. Efficacy of Blood Flow-Restricted, Low-Load Resistance Training in Women with Risk Factors for Symptomatic Knee Osteoarthritis. Pm&r 2015, 7, 376–384. [Google Scholar]
- Segal, N.; Davis, M.D.; Mikesky, A.E. Efficacy of Blood Flow-Restricted Low-Load Resistance Training For Quadriceps Strengthening in Men at Risk of Symptomatic Knee Osteoarthritis. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Ampomah, K.; Amano, S.; Wages, N.P.; Volz, L.; Clift, R.; Ludin, A.F.M.; Nakazawa, M.; Law, T.D.; Manini, T.M.; Thomas, J.S.; et al. Blood Flow-restricted Exercise Does Not Induce a Cross-Transfer of Effect: A Randomized Controlled Trial. Med. Sci. Sports Exerc. 2019, 51, 1817–1827. [Google Scholar] [CrossRef]
- Cardoso, R.K.; Araujo, A.M.; Del Vechio, F.B.; Bohlke, M.; Barcellos, F.C.; Oses, J.P.; de Freitas, M.P.; Rombaldi, A.J. Intradialytic exercise with blood flow restriction is more effective than conventional exercise in improving walking endurance in hemodialysis patients: A randomized controlled trial. Clin. Rehabil. 2020, 34, 91–98. [Google Scholar] [CrossRef]
- Barbosa, J.B.; Maia, T.O.; Alves, P.S.; Bezerra, S.D.; Moura, E.C.; Medeiros, A.I.C.; Fuzari, H.K.; Rocha, L.G.; Marinho, P.E. Does blood flow restriction training increase the diameter of forearm vessels in chronic kidney disease patients? A randomized clinical trial. J. Vasc. Access 2018, 19, 626–633. [Google Scholar] [CrossRef]
- Ferraz, R.B.; Gualano, B.; Rodrigues, R.; Kurimori, C.O.; Fuller, R.; Lima, F.R.; De Sá-Pinto, A.L.; Roschel, H. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med. Sci. Sports Exerc. 2018, 50, 897–905. [Google Scholar] [CrossRef]
- Chen, W.; Ni, J.; Qiao, Z.; Wu, Y.; Lu, L.; Zheng, J.; Chen, R.; Lu, X. Comparison of the clinical outcomes of two physiological ischemic training methods in patients with coronary heart disease. Open Med. 2019, 14, 224–233. [Google Scholar] [CrossRef]
- Corrêa, H.L.; Neves, R.V.P.; Deus, L.A.; Maia, B.C.H.; Maya, A.T.; Tzanno-Martins, C.; Souza, M.K.; Silva, J.A.B.; Haro, A.S.; Costa, F.; et al. Low-load resistance training with blood flow restriction prevent renal function decline: The role of the redox balance, angiotensin 1–7 and vasopressin. Physiol. Behav. 2021, 230, 113295. [Google Scholar] [CrossRef]
- Hughes, L.; Rosenblatt, B.; Haddad, F.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B.; Patterson, S.D. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med. 2019, 49, 1787–1805. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D.; Haddad, F.; Rosenblatt, B.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health Service trial. Phys. Ther. Sport 2019, 39, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Iversen, E.; Røstad, V.; Larmo, A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J. Sport Health Sci. 2016, 5, 115–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, A.N.; Aagaard, P.; Frandsen, U.; Boyle, E.; Diederichsen, L.P. Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: A randomized controlled trial. Scand. J. Rheumatol. 2018, 47, 400–409. [Google Scholar] [CrossRef]
- Ogawa, H.; Nakajima, T.; Shibasaki, I.; Nasuno, T.; Kaneda, H.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Uematsu, A.; Yasuda, T.; et al. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J. Clin. Med. 2021, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Ferraz, R.B.; Kurimori, C.O.; Guedes, L.K.; Lima, F.R.; de Sá-Pinto, A.L.; Gualano, B.; Roschel, H. Low-load resistance training with blood flow restriction increases muscle function, mass and functionality in women with rheumatoid arthritis. Arthritis Care Res. 2019, 72, 787–797. [Google Scholar] [CrossRef]
- Tennent, D.J.; Hylden, C.M.; Johnson, A.E.; Burns, T.C.; Wilken, J.M.; Owens, J.G. Blood flow restriction training after knee arthroscopy: A randomized controlled pilot study. Clin. J. Sport Med. 2017, 27, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; Buenaver, L.F.; Finan, P.; Bounds, S.C.; Redding, M.; McCauley, L.; Robinson, M.; Edwards, R.R.; Smith, M.T. Sleep, Pain Catastrophizing and Central Sensitization in Knee Osteoarthritis Patients With and Without Insomnia. Arthritis Care Res. 2015, 67, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Hinman, R.S.; Wrigley, T.V.; Roos, E.M.; Hodges, P.W.; Staples, M.; Bennell, K.L. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: “SCOPEX” a randomised control trial protocol. BMC Musculoskelet Disord. 2012, 13, 233. [Google Scholar] [CrossRef] [Green Version]
- Crossley, K.W.; Porter, D.A.; Ellsworth, J.; Caldwell, T.; Feland, J.B.; Mitchell, U.; Johnson, A.W.; Egget, D.; Gifford, J.R. Effect of Cuff Pressure on Blood Flow during Blood Flow-restricted Rest and Exercise. Med. Sci. Sports Exerc. 2019, 52, 746–753. [Google Scholar] [CrossRef]
- Brandner, C.R.; Warmington, S.A.; Kidgell, D. Corticomotor Excitability is Increased Following an Acute Bout of Blood Flow Restriction Resistance Exercise. Front. Hum. Neurosci. 2015, 9, 652. [Google Scholar] [CrossRef] [PubMed]
- Brandner, C.R.; Kidgell, D.; Warmington, S.A. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand. J. Med. Sci. Sports 2015, 25, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Mattocks, K.T.; Jessee, M.B.; Buckner, S.L.; Mouser, J.G.; Loenneke, J.P. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur. J. Appl. Physiol. 2017, 117, 2125–2135. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; Naimo, M.A. Practical Blood Flow Restriction Training Increases Acute Determinants of Hypertrophy Without Increasing Indices of Muscle Damage. J. Strength Cond. Res. 2013, 27, 3068–3075. [Google Scholar] [CrossRef]
- Salomon, J.A.; Haagsma, J.A.; Davis, A.; de Noordhout, C.M.; Polinder, S.; Havelaar, A.H.; Cassini, A.; Devleesschauwer, B.; Kretzschmar, M.; Speybroeck, N.; et al. Disability weights for the Global Burden of Disease 2013 study. Lancet Glob. Health 2015, 3, e712–e723. [Google Scholar] [CrossRef] [Green Version]
- Kakehi, S.; Tamura, Y.; Kubota, A.; Takeno, K.; Kawaguchi, M.; Sakuraba, K.; Kawamori, R.; Watada, H. Effects of blood flow restriction on muscle size and gene expression in muscle during immobilization: A pilot study. Physiol. Rep. 2020, 8, e14516. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 2017, 14651858. [Google Scholar]
- Stanford, D.M.; Park, J.; Jones, R.; Credeur, D.P.; McCoy, S.; Jessee, M.B. Acute cardiovascular response to unilateral, bilateral and alternating resistance exercise with blood flow restriction. Eur. J. Appl. Physiol. 2020, 120, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Neto, G.R.; Sousa, M.S.; Costa, P.B.; Salles, B.F.; Novaes, G.S.; Novaes, J.S. Hypotensive effects of resistance exercises with blood flow restriction. J. Strength Cond. Res. 2015, 29, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
Author | Size | Age | Pressure of Cuff | Interventions | Frequency of Sessions | Development Interventions | Pathology |
---|---|---|---|---|---|---|---|
Ampomah et al.[41] | n= 30 CON: 16 BFR: 14 | CON: 29.9 ± 9.9 | CON: Isometric ex. | 2 ss/w Time: 10 w | CON: Workout 25% MVIC, 3 s to task failure (leg extension, plantar flexion and elbow flexion), 30–60 s rest + 3 s (trunk extension), 25% MVIC, 15 reps. | Recurrent Nonspecific Low Back Pain | |
BFR: 28.4 ± 9.2 | Increase until full restriction and decrease until capillary refill during 2–3 s. | BFR: CON + BFR. | BFR: CON + BFR. | ||||
Barbalho et al.[34] | n = 20 * CON: 20 BFR: 20 | CON: 66 ± 4.3 | CON: Passive mobilizations. | 1 ss/day Av. d hospital: 11 ± 2.2 | CON: Passive mobilizations in flexion-extension of lower body, 3 s × 15 reps (2 s in flexion and in extension). | Elderly Coma Patients | |
BFR: 66 ± 4.3 | 80% arterial systolic | BFR: CON + BFR. | BFR: CON + BFR. | ||||
Barbosa et al.[43] | n = 26 CON: 14 BFR: 12 | CON: 60.14 ± 10.67 | CON: Strength training with cuff deflated. | Hospital: 2 ss/w Home: 3 ss/w Time: 8 w | CON: Tennis ball squeeze (6 s, 10 reps, 1 min rest, +5 reps/2 w), Elbow flexion (3 s, 10 reps, 1 kg weeks 1 and 2, 2 kg weeks 3 and 4, 3 kg last weeks), Handgrip exercise (3 s, 20 reps, 40% 1RM). 2 min rest/ex. | Chronic Kidney Disease | |
BFR: 61.33 ± 7.82 | 50% arterial systolic pressure. | BFR: CON + BFR | BFR: CON + BFR. | ||||
Ferraz et al.[44] | n = 48 EG1: 16 EG2: 16 BFR: 16 | EG1: 59.9 ± 4 | EG1: High-intensity workout | 20 min/ss 2 ss/w Time: 12 w | EG1: 1 week (4 s, 10 reps, 50% 1RM), 2 week (4 s, 10 reps, 80% 1RM), 5 week (5 s, 10 reps, 80% 1RM). | Knee Osteoarthritis | |
EG2: 60.7 ± 4 | EG2: Low-intensity workout | EG2: 1 week (4 s, 15 reps, 25% 1RM), 2 week (4 s, 15 reps, 30% 1RM), 5 week (5 s, 15 reps, 30% 1RM) | |||||
BFR: 60.3 ± 3 | 70% Full BFR | BFR: EG2 + BFR. | BFR: EG2 + BFR. | ||||
BFR: 25 ± 2.2 | 50% Full BFR | BFR: External rotation on side-lying + BFR. | BFR: CON + BFR (8 min max occlusion). | ||||
Cardoso et al.[42] | n = 66 CON: 22 EG1: 22 BFR: 22 | CON: 48.2 ± 13.6 | CON: Usual care | 3 ss/w Time: 12 w | CON: Usual care pathology in patients. | End-Stage Renal Disease | |
EG1: 59.8 ± 16.1 | EG1: Aerobic ex. (bicycle ergometer) | EG1: 1 Week (60–63% HR, 11–12 Börg scale), 7 Week (64–67% HR, 12–13 Börg scale). | |||||
BFR: 49.4 ± 15.9 | 50% Full BFR | BFR: EG1 + BFR | BFR: EG1 + BFR | ||||
Chen et al.[45] | n = 55 EG1: 19 BFR: 18 EG2: 18 | EG1: 62.84 ± 5.54 | EG1: Isometric ex. + EG2 | EG1: 2 ss/d, 5 d/w | EG1: Isometric ex. upper body 40–50% MVC (10 reps-1 min, 1 min rest) + EG2. | Coronary Heart Disease | |
BFR: 64.44 ± 8.28 | 3 min cuff inflation-induced ischemia and 5 min deflation. | BFR: Cuff inflation training + EG2 | BFR: 3 ss/d, 5 d/w | BFR: 3 min cuff-inflation-induced ischemia and 5 min deflation in both upper limbs alternatively + EG2. | |||
EG2: 65.89 ± 5.51 | EG2: Medication | EG2: Every day | EG2: Conventional drug treatment. | ||||
Time: 3 m | |||||||
Corrêa et al.[46] | n= 90 CON: 30 EG1: 30 BFR: 30 | CON: 57 ± 6 | CON: Daily activities | 3 ss/w Time: 6 m (3 mesocycles) Mesocycle = 2 m | CON: Daily activities | Stage two of Chronic Kidney Disease | |
EG1: 58 ± 9 | EG1: Resistance training | EG1: 3 s, 12 rep, 50% 1RM (1° mesocycle); 3 s, 10 rep, 60% 1RM (2° mesocycle); 3 s, 8, 70% 1RM (3° mesocycle) | |||||
BFR: 60 ± 8 | 50% systolic blood pressure | BFR: EG1 + BFR | BFR: 3 s, 12 rep, 30% 1RM (1° mesocycle); 3 s, 40 rep, 60% 1RM (2° mesocycle); 3 s, 8, 50% 1RM (3° mesocycle) + BFR | ||||
Curran et al.[36] | n = 34 EG1: 8 EG2: 8 BFR: 9 EG3: 9 | EG1: 16.1 ± 2.6 | EG1: Concentrics. | 2 ss/w Time: 8 ws | EG1: 1 s 20% 1RM (PC) + 4 s leg press 70% 1RM concentric—20% 1RM eccentric. | Anterior Cruciate Ligament Reconstruction | |
EG2: 18.8 ± 3.9 | EG2: Eccentrics. | EG2: PC + 4 s leg press 20% 1RM concentric—70% 1RM eccentric. | |||||
BFR: 15.3 ± 0.9 | 80% Full BFR | BFR: Concentrics + BFR | BFR: PC + 4 s leg press 70% 1RM concentric—20% 1RM eccentric + BFR. | ||||
EG3: 16.0 ± 1.7 | EG3: Eccentrics + BFR | EG3: PC + 4 s leg press 20% 1RM concentric—70% 1RM eccentric + BFR. | |||||
Giles et al.[35] | n = 79 EG1: 39 BFR: 40 | EG1: 26.7 ± 5.5 | EG1: Strength training | Trt: 3 ss/w, 8 w (6 individual ss/1–3 w) F/U: 16 w | EG1: 5 min bicycle, leg press 0°–60° and knee extension 45°–90°; VAS + 2/10 > ↓ 20% load (PC) + 3 s, 7–10 reps, 70% 1RM, placebo BFR (2 fingers skin/cuff) | Patellofemoral Pain | |
BFR: 28.5 ± 5.2 | 60% Full BFR | BFR: EG1 + BFR | BFR: PC + 1 set (30 reps or volitive fatigue), 3 s (15 reps), 30% 1RM, 30 s rest. | ||||
Harper et al.[39] | n= 35 EG1: 19 BFR: 16 | EG1: 69.1 ± 7.1 | EG1: Moderate-resistance training | 3 ss/w Time: 12 w | EG1: wmup + leg press, leg extension, leg curl and calf flexion at 60% 1RM + Flexibility-Balance ex. | Knee Osteoarthritis | |
BFR: 67.2 ± 5.2 | pressure mm Hg = 0.5 (SBP) + 2(thigh circumference) + 5 | BFR: EG1 + BFR | BFR: EG1 + BFR 20% 1RM (↓ pression/s). | ||||
Hughes et al.[47] | n = 28 EG1: 14 BFR: 14 | EG1: 29 ± 7 | EG1: High-resistance training | 2 ss/w (48 h rest/ss) Time: 8 w | EG1: 5 min bicycle no resistance and 10 reps unilateral leg press low load, 5 min rest (PC) + unilateral leg press 70% 1RM, 3 sets, 10 reps, 30 s rest. | Anterior Cruciate Ligament Reconstruction | |
BFR: 29 ± 7 | 80% Full BFR | BFR: EG1 + BFR | BFR: PC + EG1 + BFR 30% 1RM, 4 s (reps: 30, 15, 15, 15). | ||||
Hughes et al.[48] | n = 28 EG1: 14 BFR: 14 | EG1: 29 ± 7 | EG1: High-resistance training | 2 ss/w (48 h rest/ss) Time: 8 w | EG1: 5 min bicycle no resistance and 10 reps unilateral leg press low load, 5 min rest (PC) + unilateral leg press 70% 1RM, 3 sets, 10 reps, 30 s rest. | Anterior Cruciate Ligament Reconstruction | |
BFR: 29 ± 7 | 80% Full BFR | BFR: EG1 + BFR | BFR: PC + EG1 + BFR 30% 1RM, 4 s (reps: 30, 15, 15, 15). | ||||
Iversen et al.[49] | n = 24 CON: 12 BFR: 12 | CON: 29.8 ± 9.3 | CON: Quadriceps strength ex. | 2 ss/d Time: 12 d | CON: 5 s, 20 reps (isometric quadriceps > leg extension over knee roll > straight leg raises). | Anterior Cruciate Ligament Reconstruction | |
BFR: 24.9 ± 7.4 | 180 mm Hg or maximal pressure tolerable. | BFR: CON + BFR | BFR: CON + BFR (5 min inflated, 3 min deflated + ex.). | ||||
Jørgensen et al.[50] | n = 22 CON: 11 BFR: 11 | CON: 69.8 ± 4.8 | CON: No workout. | 2 ss/w Time: 12 w F/U: 12 w | CON: Nothing. | Sporadic Inclusion Body Myositis | |
BFR: 68.1 ± 6.4 | 110 mm Hg | BFR: Strength training + BFR. | BFR: leg press, knee extension, knee flexion (4 w), calf raise and dorsal flexion. 3 s × 25 reps (9 w: 4 s) | ||||
Lamberti et al. [38] | n = 22 BFR: 11 CON: 11 | BFR: 54 ± 11 | CON: Physiotherapy-assisted walking | 2 ss/w Time: 6 w F/U: 6 w | CON: PC + 40 min physiotherapy-assisted walking, 60 m corridor. Rest: 8/10 RPE on chair. | Severe Multiple Sclerosis | |
CON: 56 ± 10 | 30% systolic blood pressure | BFR: Walking interval-metronome + BFR | BFR: 10 min warm up (PC) + 5 cycles (3 reps: 1 min work and 1 min rest. 3 min rest cycle deflated BFR) low-velocity walking (60 steps/min-metronome) + 10 min cool down and stretching CORE (PC). | ||||
Ogawa et al.[51] | n= 21 CON: 10 BFR: 11 | CON: 66 ± 8.7 | CON: Standard cardiac rehab. program | 2 ss/w Time: 3 m | CON: 30 min aerobic exercise within the level of anaerobic threshold on a cycle ergometer. | Cardiac open surgery | |
BFR: 57 ± 12.2 | 100–(160–200) mmHg. Increase 20 mmHg/2–3 w. | BFR: BFR during Resistance training | BFR: Week 1–2: 1 s, 20 rep, 1, 5 s concentric–eccentric (5–10 kg leg extension, 20–30 kg leg press) > 3 s, 30 rep (=weight if Börg < 15 after ex.). Week 3: 3 s, 30 rep, 20–30% 1RM (if Börg < 15 after ex.). | ||||
Rodrigues et al.[52] | n = 48 EG1: 16 BFR: 16 CON: 16 | CON: 58.1 ± 5.9 | CON: No workout | 2 ss/w Time: 12 w | CON: Activities of daily living. | Rheumatoid Arthritis | |
EG1: 58.0 ± 6.6 | EG1: High-load workout | EG1: Bilateral leg press and knee extension. 1 Week: 4 s, 10 reps, 50% 1RM; 2 Week: 4 s, 10 reps, 70% 1RM; 5 Week: 5 s, 10 reps, 70% 1RM. | |||||
BFR: 59.6 ± 3.9 | 70% Full BFR | BFR: Low-load workout + BFR | BFR: EG1. (1 Week: 4 s, 15 reps, 20% 1RM; 2 Week: 4 s, 15 reps, 30% 1RM; 5 Week: 5 s, 15 reps, 30% 1RM) | ||||
Segal et al.[39] | n = 42 CON: 22 BFR: 20 | CON: 56.1 ± 7.7 | CON: Low-load workout | 3 ss/w Time: 4 w F/U: 3 d | CON: Leg press 30% 1RM: 4 s (reps: 30, 15, 15, 15), 30 s rest. Rep: 2 s concentric and 2 s eccentric. | Knee Osteoarthritis | |
BFR: 58.4 ± 8.7 | 1 Week: 160 mm Hg 2 Week: 180 mm Hg 3 Week: 200 mm Hg | BFR: CON + BFR. | BFR: CON + BFR. | ||||
Segal et al.[40] | n = 45 CON: 24 BFR: 21 | CON: 54.6 ± 6.9 | CON: Low-load workout | 3 ss/w Time: 4 w F/U: 3 d | CON: Leg press 30% 1RM: 4 s (reps: 30, 15, 15, 15), 30 s rest. Rep: 2 s concentric, 2 s eccentric. | Knee Osteoarthritis | |
BFR: 56.1 ± 5.9 | 1 Week: 160 mm Hg 2 Week: 180 mm Hg 3 Week: 200 mm Hg | BFR: CON + BFR. | BFR: CON + BFR. | ||||
Tennent et al.[53] | n = 24 CON: 13 BFR: 11 | CON: 37.0 (32–47) | CON: Physiotherapy | 12 ss Time: 6 ss | CON: Immediate weight loading, immediate formal physiotherapy and no range of motion restrictions. | Non-Reconstructive Knee Arthroscopy | |
BFR: 37.0 (30–46.2) | 80% Full BFR | BFR: Physiotherapy + (Strength training + BFR) | BFR: CON + 4 sets (reps: 30, 15, 15, 15), 30% 1RM, 30 s rest–1 min rest/ex. (leg press, leg extension and reverse press). 5 min max. occlusion/ex. |
Measurement Tool | Article | Group | Baseline | Measurements (SD/CI 95%) | Follow-Up (SD/CI 95%) | ||||
---|---|---|---|---|---|---|---|---|---|
0–6 Weeks | 6–12 Weeks | 3–6 Months | 1–3 Months | 3–6 Months | >6 Months | ||||
Dynamometer | Ampomah et al. [41] (Nm) | CON | TE: 238.2 ± 97.9 LE: 939.9 ± 301.0 | - | 8.4% ± 8.2% ^ | - | 14.3% ± 6.2% ^ | - | - |
BFR | TE: 221.2 ± 86.1 LE: 904.1 ± 277.5 | - | 4.7% ± 7.9% ^ | - | −0.1% ± 5.5% ^ | - | |||
Barbosa et al. [43] (kgf) | CON | 24.93 (19.76–30.10) | - | 27.29 (22.11–32.46) | - | - | - | - | |
BFR | 26.83 (21.18–32.48) | - | 29.08 (23.86–34.30) | - | - | - | - | ||
Cardoso et al. [42] (kgf) | CON | 53.8 ± 26.6 | - | 53.9 ± 35.7 | - | - | - | - | |
EG1 | 70.97 ± 27.12 | - | 70.28 ± 27.57 | - | - | - | - | ||
BFR | 59.72 ± 26.26 | - | 66.6 ± 32.2 | - | - | - | - | ||
Giles et al. [35] (Nm) | EG1 | 135.1 ± 55.1 | - | 158.7 ± 57.4 | - | - | - | - | |
BFR | 131.2 ± 61.9 | - | 166.4 ± 59.4 | - | - | - | - | ||
Harper et al. [37] (Nm) | EG1 | 44.2 * | 52.5 ± 3 * | 54.75 ± 2.5 * | - | - | - | - | |
BFR | 44.5 * | 50.5 ± 3 * | 53 ± 3.5 * | - | - | - | - | ||
Hughes et al. [47] (N·kg bm) | EG1 | 60°/seg I: 1.8 ± 0.5 * NI: 2.05 ± 0.2 * 150°/seg I: 1.47 ± 0.3 * NI: 1.65 ± 0.3 * 300°/seg I: 1.07 ± 0.23 * NI: 1.65 ± 0.25 * | - | 60°/seg I: 1.35 ± 0.5 * NI: 2.35 ± 0.3 * 150°/seg I: 1.25 ± 0.25 * NI: 1.87 ± 0.35 * 300°/seg I: 0.95 ± 0.17 * NI: 1.85 ± 0.35 * | - | - | - | - | |
BFR | 60°/seg I: 1.75 ± 0.45 * NI: 2.25 ± 0.3 * 150°/seg I: 1.37 ± 0.28 * NI: 1.65 ± 0.2 * 300°/seg I: 1.05 ± 0.2 * NI: 1.65 ± 0.22 * | - | 60°/seg I: 1.6 ± 0.5 * NI: 2.45 ± 0.2 * 150°/seg I: 1.42 ± 0.28 * NI: 1.8 ± 0.25 * 300°/seg I: 1.1 ± 0.17 * NI: 1.83 ± 0.28 * | - | - | - | - | ||
Segal et al. (2015) [39] (Nm) | BFR | 169.7 ± 39.0 | −0.1 ± 3.3 ¨ | - | - | 0.4 ± 2.4 ¨,^ | - | - | |
CON | 151.9 ± 34.8 | 7.0 ± 3.0 ¨ | - | - | 6.7 ± 2.3 ¨,^ | - | - | ||
Segal et al. (2015) [40] (Nm) | BFR | 1.3 ± 0.3 | - | - | - | 0.07 ± 0.03 ¨ | - | - | |
CON | 1.3 ± 0.4 | - | - | - | 0.05 ± 0.03 ¨ | - | - | ||
Tennent et al. [53] (Nm/kg) | BFR | EU (u/i/d): 209.68 (150.13–209.68)/92.81 (68.97–153.41)/106.86 (29.97 a 165.82) FU (u/i/d): 121.21 (95.35–154.16)/91.47 (67.33–108.43)/35.57 (13.38 a 59.26) EC (u/i/d): 215.21 (147.51–251.97)/99.83 (73.83–153.79)/98.34 (29.44 a 145.57) FC (u/i/d): 123.15 (95.5–123.15)/99.83 (79.21–111.34)/31.09 (9.42 a 53.5) | EU (u/i/d): 230.76 (173.07–272.15)/194.59 (132.49–228.51)/34.82 (24.56 a 73.76) FU (u/i/d): 125.69 (111.94–142.73)/131.07 (95.05–140.79)/21.79 (215.99 a 9.57) EC (u/i/d): 225.08 (168.88–285.75)/211.92 (127.48–232.85)/23.01 (29.12 a 64.56) FC (u/i/d): 130.02 (110.75–144.67)/141.68 (110.6–147.06)/22.99 (218.53 a 10.76) | - | - | - | - | - | |
CON | EU (u/i/d): 189.81 (185.62–204.15)/124.35 (55.3–156.03)/79.81 (39.16 a 145.27) FU (u/i/d): 124.64 (83.99–126.14)/99.24 (43.34–122.85)/12.85 (214.05 a 46.63) EC (u/i/d): 192.5 (175.76–192.5)/126.74 (100.88–170.75)/68.15 (34.9 a 137.2) FC (u/i/d): 125.09 (84.89–128.38)/105.51 (58.14–129.58)/7.77 (216.44 a 38.65) | EU (u/i/d): 201.76 (169.78–222.98)/181.14 (128.53–217.31)/41.25 (217.93 a 117.47) FU (u/i/d): 130.92 (98.04–139.59)/130.62 (106.78–146.016)/2.39 (215.99 a 9.57) EC (u/i/d): 206.54 (192.87–250.93)/171.57 (120.53–217.9)/42.44 (14.348 a 119.71) FC (u/i/d): 133.91 (97.29–141.17)/132.71 (87.22–142.7)/1.79 (212.2 a 21.89) | - | - | - | - | - | ||
Curran et al. [36] (Nm) | EG1 | - | - | ik: −19.2 ± 35.9 is: −13.7 ± 42.6 | - | - | - | - | |
EG2 | - | - | ik: −10.8 ± 34.7 is: −10.0 ± 36.3 | - | - | - | - | ||
BFR | - | - | ik: −16.7 ± 21.4 is: −18.0 ± 34.5 | - | - | - | - | ||
EG3 | - | - | ik: −8.1 ± 16.9 is: −14.6 ± 29.3 | - | - | - | - | ||
Corrêa et al. [46] (kgf) | CON | 21.5 ± 6.2 | - | - | 23.3 ± 4.4 | - | - | - | |
EG1 | 22.2 ± 5.8 | - | - | 29.1 ± 3.7 | - | - | - | ||
BFR | 24.1 ± 4.9 | - | - | 30.2 ± 3.2 | - | - | - | ||
Ogawa et al. [51] (kgf) | CON | HG: 31.3 (7.4) KE: 33.5 (10.5) | HG: 28.3 (8.2) KE: 28 (10.4) | HG: 30.7 (6.7) KE: 31.7 (7.48) | - | - | - | - | |
BFR | HG: 30.3 (7.5) KE: 30.5 (11.2) | HG: 29.2 (5.2) KE: 29.2 (5.2) | HG: 33.9 (8.5) KE: 41.8 (15.1) | - | - | - | - | ||
1RM (kg) | Ferraz et al. [44] | EG1 | KE: 33 ± 9 * LP: 130 ± 45 * | - | KE: 42.5 ± 9 * LP: 175 ± 50 * | - | - | - | - |
EG2 | KE: 31.5 ± 11 * LP: 125 ± 40 * | - | KE: 34 ± 10 * LP: 140 ± 45 * | - | - | - | - | ||
BFR | KE: 33 ± 8.5 * LP: 125 ± 30 * | - | KE: 41 ± 8 * LP: 165 ± 25 * | - | - | - | - | ||
Rodrigues et al. [52] | EG1 | KE: 35 ± 12.5 * LP: 113 ± 49.5 * | - | KE: 43 ± 12 * LP: 140 ± 45 * | - | - | - | - | |
BFR | KE: 30 ± 12 * LP: 110 ± 30 * | - | KE: 37.5 ± 10.5 * LP: 135 ± 28 * | - | - | - | - | ||
CON | KE: 33.5 ± 12.5 * LP: 112 ± 35.5 * | - | KE: 33.75 ± 12 * LP: 110 ± 35 * | - | - | - | - | ||
Segal et al. (2015) [39] | BFR | 346.1 ± 95.5 ª | 11.3 ± 14.0 ¨ | - | - | 3.1 ± 0.9 ¨,^ | - | - | |
CON | 289.0 ± 48.1 ª | 13.5 ± 6.8 ¨ | - | - | 4.7 ± 1.3 ¨,^ | - | - | ||
Segal et al. (2015) [40] | BFR | 1RM (kg/kg bm): 2.3 ± 0.6 40% 1RM (W/kg bm): 12.6 ± 2.5 | 1RM (kg/kg bm): - 40% 1RM (W/kg bm): - | - | - | 1RM (kg/kg bm): 0.4 ± 0.3 ¨ 40% 1RM (W/kg bm): 0.62 ± 0.27 ¨ | - | - | |
CON | 1RM (kg/kg bm): 2.1 ± 0.5 40% 1RM (W/kg bm): 11.3 ± 2.9 | 1RM (kg/kg bm): - 40% 1RM (W/kg bm): - | - | - | 1RM (kg/kg bm): 0.2 ± 0.3 ¨ 40% 1RM (W/kg bm): 0.42 ± 0.26 ¨ | - | - | ||
Curran et al. [36] | EG1 | - | - | 2.32 ± 0.90 | - | - | - | - | |
EG2 | - | - | 1.87 ± 1.00 | - | - | - | - | ||
BFR | - | - | 2.94 ± 0.96 | - | - | - | - | ||
EG3 | - | - | 1.94 ± 1.28 | - | - | - | - | ||
10RM (kg/kg bm) | Hughes et al. (2019) [47] | EG1 | I: 0.475 ± 0.125 * NI: 0.95 ± 0.2 * | I: 0.725 ± 0.925 * NI: 1.13 ± 0.24 * | I: 0.85 ± 0.25 * NI: 1.32 ± 0.25 | - | - | - | - |
BFR | I: 0.565 ± 0.125 * NI: 1.03 ± 0.15 * | I: 0.87 ± 0.16 * NI: 1.30 ± 0.17 * | I: 1.08 ± 0.18 * NI: 1.45 ± 0.2 * | - | - | - | - | ||
CAR | Curran et al. [36] | EG1 | - | - | –3.8 ± 11.6 | - | - | - | - |
EG2 | - | - | –3.0 ± 9.2 | - | - | - | - | ||
BFR | - | - | –5.7 ± 10.0 | - | - | - | - | ||
EG3 | - | - | 0.2 ± 7.0 | - | - | - | - | ||
MMT-8 | Jørgensen et al. [50] | CON | 68.0 ± 5.5 | - | - | - | 66.9 ± 6.1 | - | - |
BFR | 70.3 ± 4.9 | - | - | - | 71.2 ± 5.4 | - | - | ||
Kinetic Communicator (Nm/kg) | Jørgensen et al. [50] | CON | 0.59 ± 0.57 | - | - | - | 0.53 ± 0.50 | - | - |
BFR | 0.62 ± 0.59 | - | - | - | 0.62 ± 0.55 | - | - |
Measurement Tool | Article | Group | Baseline | Measurements (SD/CI 95%) | Follow-Up (SD/CI 95%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0–6 Weeks | 6–12 Weeks | 3–6 Months | 1–3 Months | 3–6 Months | >6 Months | |||||
Cross- sectional area | RMI | Ampomah et al. [41] (cm2) | CON | ES: 22.1 ± 4.3 Q: 57.0 ± 12.6 | - | ES: −1.7% ± 2.5% ^ Q: 0.5% ± 1.2% ^ | - | ES: 2.5% ± 4.3% ^ Q: 2.3% ± 1.3% ^ | - | - |
BFR | ES: 19.8 ± 3.7 Q: 51.5 ± 10.2 | - | ES: −3.9% ± 2.7% ^ Q: 2.9% ± 1.05 ^ | - | ES: 1.0% ± 4.2% ^ Q: 3.7% ± 1.1% ^ | - | - | |||
Giles et al. [35] (cm) | EG1 | 7.7 ± 1.4 | - | 7.9 ± 1.2 | - | - | - | - | ||
BFR | 7.9 ± 1.3 | - | 8.0 ± 1.1 | - | - | - | - | |||
Iversen et al. [49] (cm2) | CON | 40%: 75.4 ± 3.2 50%: 82.8 ± 3.4 | 40%: 66.1 ± 3.3 50%: 71.3 ± 3.2 | - | - | - | - | - | ||
BFR | 40%: 77.5 ± 2.5 50%: 87.0 ± 3.6 | 40%: 67.7 ± 2.7 50%: 73.9 ± 3.5 | - | - | - | - | - | |||
Segal et al. [40] (cm3) | BFR | 948.0 ± 71.4 | - | - | - | 1.3 ± 0.80 ¨ | - | - | ||
CON | 1030.8 ± 65.2 | - | - | - | 0.01 ± 0.73 ¨ | - | - | |||
Ultrasound | Barbalho et al. [34] (mm) | CON | 11.2 ± 2.7 | –2.8 ± 0.7 | - | - | - | - | - | |
BFR | 11.2 ± 2.6 | –2.1 ± 0.9 | - | - | - | - | - | |||
Hughes et al. [47] (cm) | EG1 | - | 0.03 ± 0.01 | 0.12 ± 0.06 | - | - | - | - | ||
BFR | - | 0.02 ± 0.01 | 0.10 ± 0.04 | - | - | - | - | |||
Curran et al. [36] (cm3) | EG1 | - | - | –3.1 ± 3.5 | - | - | - | - | ||
EG2 | - | - | –2.3 ± 4.3 | - | - | - | - | |||
BFR | - | - | –1.8 ± 2.6 | - | - | - | - | |||
EG3 | - | - | –1.5 ± 2.4 | - | - | - | - | |||
TC (mm2) | Ferraz et al. [44] | EG1 | 4700 ± 750 * | - | 5150 ± 600 * | - | - | - | - | |
EG2 | 4600 ± 950 * | - | 4700 ± 950 * | - | - | - | - | |||
BFR | 4650 ± 825 * | - | 4950 ± 750 * | - | - | - | - | |||
Rodrigues et al. [52] | EG1 | 4250 ± 400 * | - | 4450 ± 400 * | - | - | - | - | ||
BFR | 4200 ± 225 * | - | 4400 ± 300 * | - | - | - | - | |||
CON | 4350 ± 450 * | - | 4375 ± 425 * | - | - | - | - | |||
Muscular thickness | Measuring tape (cm) | Barbalho et al. [34] | CON | 48.2 ± 2.5 | –3.6 ± 1.3 ¨ | - | - | - | - | - |
BFR | 48.1 ± 2.9 | –2.5 ± 1.1 ¨ | - | - | - | - | - | |||
Barbosa et al. [43] | CON | 25.62 (23.67–27.56) | - | 25.84 (24.11–27.57) | - | - | - | - | ||
BFR | 26.27 (24.87–27.67) | - | 26.49 (25.13–27.85) | - | - | - | - | |||
Tennent et al. [53] | CON | 6 cm-p (u/i): 50.00 (44–52)/49.00 (45.5–51) 16 cm-p (u/i): 59.50 (53–62)/60.00 (54–61) | 6 cm-p (i): 50.00 (45.5–50.5) 16 cm-p (i): 60.00 (54–61) | - | - | - | - | - | ||
BFR | 6 cm-p (u/i): 46.50 (43–53.25)/44.50 (42.3–50.5) 16 cm-p (u/i): 58.00 (51.4–63.3)/54.50 (50.3–61.4) | 6 cm-p (i): 47.25 (45.5–53.6) 16 cm-p (i): 57.50 (51.6–64) | - | - | - | - | - |
Measurement Tool | Article | Group | Baseline | Measurements (SD/CI 95%) | Follow-Up (SD/CI 95%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0–6 Weeks | 6–12 Weeks | 3–6 Months | 1–3 Months | 3–6 Months | >6 Months | |||||
Fatigue | MFIS (0–84) | Lamberti et al. [38] | BFR | 42 (32–52) | 33 (20–46) | - | - | 33 (21–45) | - | - |
CON | 33 (25–41) | 24 (14–33) | - | - | 28 (17–38) | - | - | |||
FSS (9–63) | Lamberti et al. [38] | BFR | 5.3 (4.9–5.8) | 5.1 (4.4–5.9) | - | - | 5.0 (4.4–5.6) | - | - | |
CON | 5.2 (4.7–5.6) | 4.8 (4.2–5.3) | - | - | 5.0 (4.6–5.5) | - | - | |||
Exertion | RPE | Hughes et al. [38] | EG1 | - | 13.8 ± 2.1 (I)/14.8 ± 2 (NI) * | 15.5 ± 2.3 (I)/15.7 ± 2.2 (NI) * | - | - | - | - |
BFR | - | 13.9 ± 2 (I)/14.75 ± 2 (NI) * | 14.5 ± 2 (I)/15.3 ± 2.2 (NI) * | - | - | - | - | |||
Time | Accelerometer (min/day) | Rodrigues et al. [52] | EG1 | S: 495.5 ± 93.1 | - | - | - | - | - | - |
L: 368.4 ± 76.7 | - | |||||||||
MV: 16.4 ± 14.1 | - | |||||||||
BFR | S: 702.6 ± 246.1 | - | - | - | - | - | - | |||
L: 317.9 ± 98.0 | - | |||||||||
MV: 16.8 ± 13.8 | - | |||||||||
CON | S: 637.2 ± 263.0 | - | - | - | - | - | - | |||
L: 365.7 ± 96.5 | - | |||||||||
MV: 21.4 ± 15.2 | - |
Measurement Tool | Article | Group | Baseline | Measurements (SD/CI 95%) | Follow-Up (SD/CI 95%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–6 Weeks | 6–12 Weeks | 3–6 Months | 1–3 Months | 3–6 Months | >6 Months | |||||||
Vascular thickness | Ultrasound (mm) | Barbosa et al. [43] | Cephalic vein | 2 cm | CON | D1: 2.71 (2.39–3.02) | - | D1: 2.94 (2.65–3.23) | - | - | - | - |
D2: 2.62 (2.26–2.98) | D2: 2.97 (2.74–3.20) | |||||||||||
BFR | D1: 2.50 (2.05–2.95) | - | D1: 2.70 (2.30–3.11) | - | - | - | - | |||||
D2: 2.55 (2.14–2.97) | D2: 2.69 (2.34–3.04) | |||||||||||
10 cm | CON | D1: 3.06 (2.61–3.51) | - | D1: 3.45 (3.01–3.88) | - | - | - | - | ||||
D2: 3.01 (2.36–3.66) | D2: 3.41 (2.94–3.88) | |||||||||||
BFR | D1: 2.74 (2.16–3.32) | - | D1: 2.90 (2.30–3.50) | - | - | - | - | |||||
D2: 2.69 (2.00–3.15) | D2: 2.81 (2.35–3.27) | |||||||||||
20 cm | CON | D1: 3.40 (2.95–3.86) | - | D1: 3.57 (3.08–4.05) | - | - | - | - | ||||
D2: 3.20 (2.77–3.62) | D2: 3.52 (3.12–3.93) | |||||||||||
BFR | D1: 2.95 (2.28–3.62) | - | D1: 3.10 (2.46–3.74) | - | - | - | - | |||||
D2: 3.05 (2.41–3.70) | D2: 2.90 (2.26–3.53) | |||||||||||
Radial artery | 2 cm | CON | D1: 2.82 (2.55–3.10) | - | D1: 2.95 (2.64–3.26) | - | - | - | - | |||
BFR | D1: 2.53 (2.21–2.85) | - | D1: 2.77 (2.50–3.04) | - | - | - | - | |||||
10 cm | CON | D1: 2.90 (2.62–3.17) | - | D1: 3.02 (2.75–3.29) | - | - | - | - | ||||
BFR | D1: 2.59 (2.21–2.96) | - | D1: 2.85 (2.42–3.29) | - | - | - | - | |||||
20 cm | CON | D1: 3.03 (2.61–3.45) | - | D1: 3.34 (3.05–3.63) | - | - | - | - | ||||
BFR | D1: 2.93 (2.46–3.39) | - | D1: 3.11 (2.69–3.53) | - | - | - | - | |||||
Breathing | CPET (Anaerobic umbral: mL/kg/min) | Chen et al. [45] | EG1 | 11.15 ± 2.64 | - | 18.5 ± 3.5 ^ | - | - | - | - | ||
BFR | 11.26 ± 3.16 | - | 15 ± 2 ^ | - | - | - | - | |||||
EG2 | 11.86 ± 2.57 | - | 11.75 ± 2 ^ | - | - | - | - | |||||
CPET (VO2max: mL/kg/min) | Chen et al. [45] | EG1 | 33.50 ± 4.28 | - | 38 ± 6 ^ | - | - | - | - | |||
BFR | 32.18 ± 5.39 | - | 35.5 ± 6.5 ^ | - | - | - | - | |||||
EG2 | 32.76 ± 5.92 | - | 32.7 ± 5.9 ^ | - | - | - | - | |||||
Blood pressure | SBP (mmHg) | Chen et al. [45] | EG1 | 143.32 ± 7.48 | - | 133 ± 7.5 ^ | - | - | - | - | ||
BFR | 143.94 ± 9.55 | - | 140 ± 4.25 ^ | - | - | - | - | |||||
EG2 | 145.78 ± 7.73 | - | 144 ± 6 ^ | - | - | - | - | |||||
Corrêa et al. [46] | CON | 142.7 ± 10.7 | - | - | 141.7 ± 10.1 | - | - | - | ||||
EG1 | 143.0 ± 10.1 | - | - | 129.5 ± 10.6 | - | - | - | |||||
BFR | 141.4 ± 10.2 | - | - | 128.2 ± 10 | - | - | - | |||||
DBP (mmHg) | Chen et al. [45] | EG1 | 82.63 ± 7.65 | - | 76 ± 5.5 ^ | - | - | - | - | |||
BFR | 83.50 ± 7.12 | - | 81 ± 7 ^ | - | - | - | - | |||||
EG2 | 83.22 ± 6.53 | - | 84 ± 6 ^ | - | - | - | - | |||||
Corrêa et al. [46] | CON | 92.4 ± 9.8 | - | - | 92.6 ± 11 | - | - | - | ||||
EG1 | 93.8 ± 10.3 | - | - | 82.2 ± 11.2 | - | - | - | |||||
BFR | 94.4 ± 9.5 | - | - | 82.5 ± 12.5 | - | - | - | |||||
Length | ECG (LVEF: %) | Chen et al. [45] | EG1 | 54.21 ± 7.38 | - | 61 ± 4.5 ^ | - | - | - | - | ||
BFR | 53.39 ± 7.41 | - | 57.5 ± 5.5 ^ | - | - | - | ||||||
EG2 | 51.44 ± 7.60 | - | 52 ± 7.25 ^ | - | - | - | - | |||||
ECG (LVEDD: mm) | Chen et al. [45] | EG1 | 47.53 ± 7.31 | - | 43.75 ± 6.5 ^ | - | - | - | - | |||
BFR | 48.44 ± 8.46 | - | 45.5 ± 7.75 ^ | - | - | - | - | |||||
EG2 | 50.89 ± 7.45 | - | 50.4 ± 7.5 ^ | - | - | - | - | |||||
ECG (LVESD: mm) | Chen et al. [45] | EG1 | 35.68 ± 6.54 | - | 29.75 ± 5.25 ^ | - | - | - | - | |||
BFR | 36.22 ± 6.81 | - | 33.5 ± 6.5 ^ | - | - | - | - | |||||
EG2 | 38.11 ± 7.11 | - | 38.5 ± 6.25 ^ | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reina-Ruiz, Á.J.; Galán-Mercant, A.; Molina-Torres, G.; Merchán-Baeza, J.A.; Romero-Galisteo, R.P.; González-Sánchez, M. Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1160. https://doi.org/10.3390/ijerph19031160
Reina-Ruiz ÁJ, Galán-Mercant A, Molina-Torres G, Merchán-Baeza JA, Romero-Galisteo RP, González-Sánchez M. Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(3):1160. https://doi.org/10.3390/ijerph19031160
Chicago/Turabian StyleReina-Ruiz, Álvaro Jesús, Alejandro Galán-Mercant, Guadalupe Molina-Torres, Jose Antonio Merchán-Baeza, Rita Pilar Romero-Galisteo, and Manuel González-Sánchez. 2022. "Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 3: 1160. https://doi.org/10.3390/ijerph19031160
APA StyleReina-Ruiz, Á. J., Galán-Mercant, A., Molina-Torres, G., Merchán-Baeza, J. A., Romero-Galisteo, R. P., & González-Sánchez, M. (2022). Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review. International Journal of Environmental Research and Public Health, 19(3), 1160. https://doi.org/10.3390/ijerph19031160