Obese Patients Experience More Severe CSA than Non-Obese Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Case Group and Control Group
2.3. Definition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (W.H.O.). Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 October 2021).
- Kyrou, I.; Randevam, H.S.; Tsigos, C.; Kaltsas, G.; Weickert, M.O. Clinical Problems Caused by Obesity; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK278973/ (accessed on 25 October 2021).
- Luhar, S.; Timæus, I.M.; Jones, R.; Cunningham, S.; Patel, S.A.; Kinra, S.; Clarke, L.; Houben, R. Forecasting the prevalence of overweight and obesity in India to 2040. PLoS ONE 2020, 15, e0229438. [Google Scholar] [CrossRef] [PubMed]
- National Health Service. Ministry of Health and Welfare; National Health Service: London, UK, 2020. [Google Scholar]
- Health Promotion Administration. Ministry of Health and Welfare; Taiwan ROC: Taipei, Taiwan, 2018. Available online: https://www.hpa.gov.tw/File/Attach/10042/File_12271.pdf (accessed on 23 November 2021).
- Verhulst, S.; Schrauwen, N.; Haentjens, D.; Rooman, R.; Van Gaal, L.; De Backer, W.; Desager, K. Sleep Disordered Breathing and the Metabolic Syndrome in Overweight and Obese Children and Adolescents. J. Pediatr. 2007, 150, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Redline, S.; Tishler, P.V.; Schluchter, M.D.; Aylor, J.; Clark, K.E.; Graham, G. Risk Factors for Sleep-disordered Breathing in Children. Am. J. Respir. Crit. Care Med. 1999, 159, 1527–1532. [Google Scholar] [CrossRef]
- Verhulst, S.L.; Schrauwen, N.; Haentjens, D.; Suys, B.; Rooman, R.P.; Van Gaal, L.; De Backer, W.A.; Desager, K.N. Sleep-disordered breathing in overweight and obese children and adolescents: Prevalence, characteristics and the role of fat distribution. Arch. Dis. Child. 2007, 92, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, S.L.; Schrauwen, N.; Haentjens, D.; Rooman, R.P.; Van Gaal, L.; De Backer, W.A.; Desager, K.N. Sleep duration and metabolic dysregulation in overweight children and adolescents. Arch. Dis. Child. 2008, 93, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Wing, Y.K.; Hui, S.H.; Pak, W.M.; Ho, C.K.; Cheung, A.; Li, A.M.; Fok, T.F. A controlled study of sleep related disordered breathing in obesechildren. Arch. Dis. Child. 2003, 88, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.S.; Moore, R.H.; Rosen, C.L.; Mitchell, R.B.; Amin, R.; Arens, R.; Muzumdar, H.; Chervin, R.D.; Marcus, C.L.; Paruthi, S.; et al. Growth after adenotonsillectomy for obstructive sleepapnea: An RCT. Pediatrics 2014, 134, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosten, K.F.; Larramona, H.; Miano, S.; Van Waardenburg, D.; Kaditis, A.G.; Vandenbussche, N.; Ersu, R. How do we recognize the child with OSAS? Pediatr. Pulmonol. 2017, 52, 260–271. [Google Scholar] [CrossRef]
- Bixler, E.O.; Vgontzas, A.N.; Gaines, J.; Fernandez-Mendoza, J.; Calhoun, S.L.; Liao, D. Moderate sleep apnoea: A “silent” disorder, or not a disorder at all? Eur. Respir. J. 2016, 47, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, P.; Cocuzza, S.; Maniaci, A.; Ferlito, S.; Rasà, D.; Anzivino, R.; Vicini, C.; Iannella, G.; La Mantia, I. The Effect of Adenotonsillectomy on Children’s Behavior and Cognitive Performance with Obstructive Sleep Apnea Syndrome: State of the Art. Child 2021, 8, 921. [Google Scholar] [CrossRef] [PubMed]
- Pollicina, I.; Maniaci, A.; Lechien, J.R.; Iannella, G.; Vicini, C.; Cammaroto, G.; Cannavicci, A.; Magliulo, G.; Pace, A.; Cocuzza, S.; et al. Neurocognitive Performance Improvement after Obstructive Sleep Apnea Treatment: State of the Art. Behav. Sci. 2021, 11, 180. [Google Scholar] [CrossRef]
- Andrade, A.G.; Bubu, O.M.; Varga, A.W.; Osorio, R.S. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, S255–S270. [Google Scholar] [CrossRef]
- Tung, P.; Levitzky, Y.S.; Wang, R. Obstructive, and central sleep apnea and the risk of incident atrial fibrillation in a community cohort of men and women. J. Am. Heart Assoc. 2017, 6, e004500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drager, L.F.; McEvoy, R.D.; Barbe, F.; Lorenzi-Filho, G.; Redline, S. Sleep apnea and cardiovascular disease: Lessons from recent trials and need for team science. Circulation 2017, 136, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.J.; Lin, C.L.; Lin, M.C.; Lee, S.T.; Sung, F.C.; Chang, Y.J.; Kao, C.H. Population-based cohort study on the increase in the risk for type 2 diabetes mellitus development from non-apnea sleep disorders. Sleep Med. 2013, 14, 913–918. [Google Scholar] [CrossRef]
- Chung, W.-S.; Lin, C.-L.; Chen, Y.-F.; Chiang, J.Y.; Sung, F.-C.; Chang, Y.-J.; Kao, C.-H. Sleep Disorders and Increased Risk of Subsequent Acute Coronary Syndrome in Individuals without Sleep Apnea: A Nationwide Population-Based Cohort Study. Sleep 2013, 36, 1963–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.S.; Tsai, C.H.; Lin, C.L.; Sung, F.C.; Chang, Y.J.; Kao, C.H. Non-apnea sleep disorders are associated with subsequent ischemic stroke risk: A nationwide, population-based, retrospective cohort study. Sleep Med. 2013, 14, 1341–1347. [Google Scholar] [CrossRef]
- Carotenuto, M.; Santoro, N.; Grandone, A.; Pascotto, C.; Perrone, L.; Del Giudice, E.M. The insulin gene variable number of tandem repeats (INS VNTR) genotype and sleep disordered breathing in childhood obesity. J. Endocrinol. Investig. 2009, 32, 752–755. [Google Scholar] [CrossRef]
- Carotenuto, M.; Bruni, O.; Santoro, N.; del Giudice, E.M.; Perrone, L.; Pascotto, A. Waist circumference predicts the occurrence of sleep-disordered breathing in obese children and adolescents: A questionnaire-based study. Sleep Med. 2006, 7, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Shahar, E.; Redline, S.; Gottlieb, D.J.; Givelber, R.; Resnick, H.E. Sleep-Disordered Breathing, Glucose Intolerance, and Insulin Resistance: The Sleep Heart Health Study. Am. J. Epidemiology 2004, 160, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, A.; Morley, J.E. Obesity in the Elderly; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Ma, Y.; Olendzki, B.C.B.C.; Li, W.; Hafner, A.R.; Chiriboga, D.; Hebert, J.R.; Campbell, M.; Sarnie, M.; Ockene, I.S. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur. J. Clin. Nutr. 2006, 60, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Liu, T.-C.; Wang, Y.-N.; Chung, C.-H.; Chien, W.-C. The Association Between Sleep Disorders and the Risk of Colorectal Cancer in Patients: A Population-based Nested Case–Control Study. Vivo 2019, 33, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargens, T.; Kaleth, A.; Edwards, E.; Butner, K.L. Association between sleep disorders, obesity, and exercise: A review. Nat. Sci. Sleep 2013, ume 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Herkenrath, S.D.; Randerath, W.J. More than Heart Failure: Central Sleep Apnea and Sleep-Related Hypoventilation. Respiration 2019, 98, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Kang, K.T.; Weng, W.-C.; Lee, P.-L.; Hsu, W.-C. Central sleep apnea in obese children with sleep-disordered breathing. Int. J. Obes. 2014, 38, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, S.L.; Schrauwen, N.; De Backer, W.A.; Desager, K.N. First night effect for polysomnographic data in children and adolescents with suspected sleep disordered breathing. Archives of Disease in Childhood 2006, 91, 233–237. [Google Scholar] [CrossRef]
- Naimark, A.; Cherniack, R.M. Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 1960, 15, 377–382. [Google Scholar] [CrossRef]
- O’Donnell, C.; Schaub, C.D.; Haines, A.S.; Berkowitz, D.E.; Tankersley, C.G.; Schwartz, A.R.; Smith, P.L. Leptin Prevents Respiratory Depression in Obesity. Am. J. Respir. Crit. Care Med. 1999, 159, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J.L.; Pajon, A.; Veale, D.; Ferretti, G.; Lévy, P. Central sleep apnoea syndrome with upper airway collapse. Eur Respir 1993, 6, 592–595. [Google Scholar]
- Badr, M.S.; Toiber, F.R.; Skatrud, J.B.; Dempsey, J.E. Pharyngeal narrowing/occlusion during central sleep apnoea. J. Appl. Physiol. 1995, 78, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Vanderveken, O.M.; Oostveen, E.; Boudewyns, A.N.; Verbraecken, J.A.; Van De Heyning, P.H.; De Backer, W.A. Quantification of Pharyngeal Patency in Patients with Sleep-Disordered Breathing. ORL 2005, 67, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Floras, J.S. Sleep apnea and heart failure: Part II: Central sleep apnea. Circulation 2003, 107, 1822–1826. [Google Scholar] [CrossRef] [PubMed]
- Wolk, R.; Kara, T.; Somers, V.K. Sleep-Disordered Breathing and Cardiovascular Disease. Circulation 2003, 108, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Parker, T.J.; Liming, J.D.; Corbett, W.S.; Nishiyama, H.; Wexler, L.; Roselle, G.A. Sleep Apnea in 81 Ambulatory Male Patients With Stable Heart Failure. Circulation 1998, 97, 2154–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sin, D.D.; Fitzgerald, F.; Parker, J.; Newton, G.; Floras, J.S.; Bradley, T.D. Risk Factors for Central and Obstructive Sleep Apnea in 450 Men And Women with Congestive Heart Failure. Am. J. Respir. Crit. Care Med. 1999, 160, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Parker, J.; Newton, G.E.; Floras, J.S.; Mak, S.; Chiu, K.-L.; Ruttanaumpawan, P.; Tomlinson, G.; Bradley, T.D. Influence of Obstructive Sleep Apnea on Mortality in Patients With Heart Failure. J. Am. Coll. Cardiol. 2007, 49, 1625–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naughton, M.T.; Bradley, T.D. SLEEP APNEA IN CONGESTIVE HEART FAILURE. Clin. Chest Med. 1998, 19, 99–113. [Google Scholar] [CrossRef]
- Mansfield, D.; Kaye, D.M.; La Rocca, H.B.; Solin, P.; Esler, M.D.; Naughton, M.T. Raised Sympathetic Nerve Activity in Heart Failure and Central Sleep Apnea Is Due to Heart Failure Severity. Circulation 2003, 107, 1396–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naughton, M.T.; Benard, D.C.; Liu, P.P.; Rutherford, R.; Rankin, F.; Bradley, T.D. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am. J. Respir. Crit. Care Med. 1995, 152, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Bernal, C.; Quintana-Gallego, E.; Villa-Gil, M.; Sánchez-Armengol, A.; Martiínez-Martiínez, A.; Capote, F. Brain Natriuretic Peptide in Patients With Congestive Heart Failure and Central Sleep Apnea. Chest 2005, 127, 1667–1673. [Google Scholar] [CrossRef] [Green Version]
- Calvin, A.D.; Somers, V.K.; Van Der Walt, C.; Scott, C.G.; Olson, L.J. Relation of Natriuretic Peptide Concentrations to Central Sleep Apnea in Patients With Heart Failure. Chest 2011, 140, 1517–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, O.; Sanchez-Alavez, M.; Brownell, S.E.; Ross, B.; Klaus, J.; Dubins, J.; Beutler, B.; Conti, B.; Bartfai, T. Metabolic Characterization of a Mouse Deficient in All Known Leptin Receptor Isoforms. Cell. Mol. Neurobiol. 2009, 30, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmazyn, M.; Purdham, D.M.; Rajapurohitam, V.; Zeidan, A. Leptin as a Cardiac Hypertrophic Factor: A Potential Target for Therapeutics. Trends Cardiovasc. Med. 2007, 17, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.T.; Dixon, R.A.; Wynne, A.M.; Theodorou, L.; Ong, S.-G.; Subrayan, S.; Davidson, S.M.; Hausenloy, D.J.; Yellon, D.M. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am. J. Physiol. Circ. Physiol. 2010, 299, H1265–H1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malli, F.; Papaioannou, A.I.; Gourgoulianis, K.I.; Daniil, Z. The role of leptin in the respiratory system: An overview. Respir. Res. 2010, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makinodan, K.; Yoshikawa, M.; Fukuoka, A.; Tamaki, S.; Koyama, N.; Yamauchi, M.; Tomoda, K.; Hamada, K.; Kimura, H. Effect of Serum Leptin Levels on Hypercapnic Ventilatory Response in Obstructive Sleep Apnea. Respiration 2008, 75, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Shimura, R.; Tatsumi, K.; Nakamura, A.; Kasahara, Y.; Tanabe, N.; Takiguchi, Y.; Kuriyama, T. Fat Accumulation, Leptin, and Hypercapnia in Obstructive Sleep Apnea-Hypopnea Syndrome. Chest 2005, 127, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S. A Mechanism of Central Sleep Apnea in Patients with Heart Failure. New Engl. J. Med. 1999, 341, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Harth, M.; Luchner, A.; Muders, F.; Holmer, S.R.; Blumberg, F.C.; Riegger, G.A.; Pfeifer, M. Enhanced Ventilatory Response to Exercise in Patients With Chronic Heart Failure and Central Sleep Apnea. Circulation 2003, 107, 1998–2003. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.P. Periodic breathing in heart failure: Bridging the gap between the sleep laboratory and the exercise laboratory. Circulation 2006, 113, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fain, J.N.; Kanu, A.; Bahouth, S.W.; Cowan, G.S.; Hiler, M.L. Inhibition of leptin release by atrial natriuretic peptide (ANP) in human adipocytes. Biochem. Pharmacol. 2003, 65, 1883–1888. [Google Scholar] [CrossRef]
- Moro, C.; Klimcáková, E.; Lolmède, K.; Berlan, M.; Lafontan, M.; Stich, V.; Bouloumié, A.; Galitzky, J.; Arner, P.; Langin, D. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 2007, 50, 1038–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tankersley, C.G.; O’Donnell, C.; Daood, M.J.; Watchko, J.F.; Mitzner, W.; Schwartz, A.; Smith, P. Leptin attenuates respiratory complications associated with the obese phenotype. J. Appl. Physiol. 1998, 85, 2261–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.; Sano, H.; Matsudaira, T.; Miyashita, Y.; Morimoto, A.; Shirasawa, T.; Takahashi, E.; Kawaguchi, T.; Tajima, N. Childhood obesity and its relation to serum adiponectin and leptin: A report from a population-based study. Diabetes Res. Clin. Pr. 2007, 76, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Riestra, P.; García-Anguita, A.; López-Simón, L.; Cano, B.; De Oya, I.; De Oya, M.; Garcés, C. Leptin and adiponectin levels in pubertal children: Relationship with anthropometric variables and body composition. Clin. Chem. Lab. Med. (CCLM) 2010, 48, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Antunes, H.; Santos, C.; Carvalho, S. Serum leptin levels in overweight children and adolescents. Br. J. Nutr. 2009, 101, 1262–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, R.; Sano, H.; Matsudaira, T.; Morimoto, A.; Miyashita, Y.; Shirasawa, T.; Kokaze, A.; Tajima, N. Changes in body mass index, leptin and adiponectin in Japanese children during a three-year follow-up period: A population-based cohort study. Cardiovasc. Diabetol. 2009, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deflandre, E.; Gerdom, A.; Lamarque, C.; Bertrand, B. Understanding Pathophysiological Concepts Leading to Obstructive Apnea. Obesity Surgery 2018, 28, 2560–2571. [Google Scholar] [CrossRef]
- Phipps, P.R.; Starritt, E.; Caterson, I.; Grunstein, R.R. Association of serum leptin with hypoventilation in human obesity. Thorax 2002, 57, 75–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, B.J.; Cheung, J.; Phipps, P.; Banerjee, D.; Piper, A.J.; Grunstein, R. R: Treatment of Obesity Hypoventilation Syndrome and Serum Leptin. Respiration 2006, 73, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, B.; Tulaimat, A.; Faibussowitsch, I.; Wang, Y.; Evans, A.T. Obesity hypoventilation syndrome: Prevalence and predictors in patients with obstructive sleep apnea. Sleep Breath. 2006, 11, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Takada, G.P.; Steiropoulos, P.; Nena, E.; Constandinidis, T.C.; Bouros, D. Prevalence and clinical characteristics of obesity hypoventilation syndrome among individuals reporting sleep-related breathing symptoms in northern Greece. Sleep Breath 2010, 14, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Verin, E.; Tardif, C.; Pasquis, P. Prevalence of daytime hypercapnia or hypoxia in patients with OSAS and normal lung function. Respir. Med. 2001, 95, 693–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cundrle, I.; Somers, V.K.; Singh, P.; Johnson, B.D.; Scott, C.G.; Van Der Walt, C.; Olson, L.J. Leptin deficiency promotes central sleep apnea in patients with heart failure. Chest 2014, 145, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Harms, C.A.; Zeng, Y.J.; Smith, C.A.; Vidruk, E.H.; Dempsey, J.A. Negative pressure-induced deformation of the upper airway causes central apnea in awake and sleeping dogs. J. Appl. Physiol. 1996, 80, 1528–1539. [Google Scholar] [CrossRef]
- Verhulst, S.L.; Schrauwen, N.; Haentjens, D.; Van Gaal, L.; De Backer, W.A.; Desager, K.N. Reference values for sleep-related respiratory variables in asymptomatic European children and adolescents. Pediatr. Pulmonol. 2007, 42, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, M.; Hu, D. Dose-response association between sleep duration and obesity risk: A systematic review and meta-analysis of prospective cohort studies. Sleep Breath. 2019, 23, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhai, L.; Zhang, D. Sleep duration and obesity among adults: A meta-analysis of prospective studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chapman, C.D.; Cedernaes, J.; Benedict, C. Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. Sleep Med. Rev. 2018, 40, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, Y.; Li, G.; Han, L.; Li, Y.; Li, L.; Feng, D.; Wu, Y.; Xiao, X.; Li, M.; et al. Childhood sleep duration modifies the polygenic risk for obesity in youth through leptin pathway: The Beijing Child and Adolescent Metabolic Syndrome cohort study. Int. J. Obes. 2019, 43, 1556–1567. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.F.; Harden, K.; Buchwald, D.; Vitiello, M.V.; Pack, A.; Weigle, D.S.; Goldberg, J. Sleep Duration and Body Mass Index in Twins: A Gene-Environment Interaction. Sleep 2012, 35, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesi, A.; Grant, S.F. The Genetics of Pediatric Obesity. Trends Endocrinol. Metab. 2015, 26, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willer, C.J.; Speliotes, E.K.; Loos, R.J.; Li, S.; Lindgren, C.M.; Heid, I.M.; Berndt, S.I.; Elliott, A.L.; Jackson, A.U.; Lamina, C.; et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009, 41, 25–34. [Google Scholar] [PubMed]
- Yeo, G.S.; Farooqi, I.S.; Aminian, S.; Halsall, D.J.; Stanhope, R.G.; O’Rahilly, S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 1998, 20, 111–112. [Google Scholar] [CrossRef] [PubMed]
Obesity | Total | With | Without | p-Value | |||
---|---|---|---|---|---|---|---|
Variables | n | % | n | % | n | % | |
Total | 121,815 | 24,363 | 20.00 | 97,452 | 80.00 | ||
CSA | <0.001 | ||||||
Without | 121,705 | 99.91 | 24,274 | 99.63 | 97,431 | 99.98 | |
With | 110 | 0.09 | 89 | 0.37 | 21 | 0.02 | |
Gender | 0.999 | ||||||
Male | 52,105 | 42.77 | 10,421 | 42.77 | 41,684 | 42.77 | |
Female | 69,710 | 57.23 | 13,942 | 57.23 | 55,768 | 57.23 | |
Age (years) | 44.30 ± 15.64 | 44.25 ± 15.53 | 44.31 ± 15.67 | 0.592 | |||
Age Group (Years) | 0.999 | ||||||
20–44 | 74,135 | 47.48 | 14,827 | 47.48 | 59,308 | 47.48 | |
45–64 | 34,330 | 21.99 | 6,866 | 21.99 | 27,464 | 21.99 | |
≥65 | 47,680 | 30.54 | 9,536 | 30.54 | 38,144 | 30.54 | |
CCI_R | 0.05 ± 0.27 | 0.06 ± 0.35 | 0.05 ± 0.24 | <0.001 |
Variables | Adjusted OR | 95% CI | p-Value |
---|---|---|---|
CSA | |||
Without | Reference | ||
With | 2.234 | 1.483–4.380 | <0.001 |
Gender | |||
Male | 0.862 | 0.645–1.089 | 0.171 |
Female | Reference | ||
Age group (Years) | |||
20–44 | Reference | ||
45–64 | 0.608 | 0.578–0.627 | <0.001 |
≥65 | 0.422 | 0.397–0.446 | <0.001 |
CCI_R | 1.138 | 1.093–1.386 | <0.001 |
Season | |||
Spring | Reference | ||
Summer | 0.842 | 0.804–0.885 | <0.001 |
Autumn | 1.007 | 0.962–1.057 | 0.863 |
Winter | 0.876 | 0.834–0.921 | <0.001 |
Group | With CSA vs. Without CSA (Reference) | ||
---|---|---|---|
Stratified | Adjusted OR | 95% CI | p-Value |
Overall | 2.234 | 1.483–4.380 | <0.001 |
Gender | |||
Male | 2.213 | 1.438–4.432 | <0.001 |
Female | 2.252 | 1.496–4.417 | <0.001 |
Age Group (Years) | |||
20–44 | 2.577 | 1.713–5.054 | <0.001 |
45–64 | 2.256 | 1.501–4.436 | <0.001 |
≥65 | 1.581 | 1.050–3.102 | 0.001 |
Season | |||
Spring | 2.547 | 1.682–4.986 | <0.001 |
Summer | 1.952 | 1.288–3.835 | <0.001 |
Autumn | 2.556 | 1.693–5.000 | <0.001 |
Winter | 2.082 | 1.381–4.214 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-C.; Huang, S.-H.; Chung, R.-J.; Wang, B.-L.; Chung, C.-H.; Chien, W.-C.; Sun, C.-A.; Yu, P.-C.; Lu, C.-H. Obese Patients Experience More Severe CSA than Non-Obese Patients. Int. J. Environ. Res. Public Health 2022, 19, 1289. https://doi.org/10.3390/ijerph19031289
Huang Y-C, Huang S-H, Chung R-J, Wang B-L, Chung C-H, Chien W-C, Sun C-A, Yu P-C, Lu C-H. Obese Patients Experience More Severe CSA than Non-Obese Patients. International Journal of Environmental Research and Public Health. 2022; 19(3):1289. https://doi.org/10.3390/ijerph19031289
Chicago/Turabian StyleHuang, Yao-Ching, Shi-Hao Huang, Ren-Jei Chung, Bing-Long Wang, Chi-Hsiang Chung, Wu-Chien Chien, Chien-An Sun, Pi-Ching Yu, and Chieh-Hua Lu. 2022. "Obese Patients Experience More Severe CSA than Non-Obese Patients" International Journal of Environmental Research and Public Health 19, no. 3: 1289. https://doi.org/10.3390/ijerph19031289
APA StyleHuang, Y. -C., Huang, S. -H., Chung, R. -J., Wang, B. -L., Chung, C. -H., Chien, W. -C., Sun, C. -A., Yu, P. -C., & Lu, C. -H. (2022). Obese Patients Experience More Severe CSA than Non-Obese Patients. International Journal of Environmental Research and Public Health, 19(3), 1289. https://doi.org/10.3390/ijerph19031289