Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge and Coagulants
2.2. Coagulant Sensitivity Experiment
2.3. Optimization Using RSM
3. Results and Discussion
3.1. Sensitivity Test
3.2. Responses of Dosage, Reaction Time and Agitation Speed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Madigan, M.T.; Martinko, J.M.; Parker, J. Brock Biology of Microorganisms, 9th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; pp. 29–47. [Google Scholar]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gan, J.; Rajendran, A.; Reis, C.E.R.; Hu, B. Phosphorus removal and recovery from digestate after biogas production. In Biofuels-Status and Perspective; IntechOpen: London, UK, 2015. [Google Scholar]
- Gong, W.; Li, Y.; Luo, L.; Luo, X.; Cheng, X.; Liang, H. Application of struvite-MAP crystallization reactor for treating cattle manure anaerobic digested slurry: Nitrogen and phosphorus recovery and crystal fertilizer efficiency in plant trials. Int. J. Environ. Res. Public Health 2018, 15, 1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattah, K.P. Assessing Struvite Formation Potential at Wastewater Treatment Plants. Int. J. Environ. Sci. Dev. 2012, 3, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Schneider, P.; Jegatheesan, V.; Johnson, J. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 2006, 97, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.I.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health 2020, 17, 9312. [Google Scholar] [CrossRef] [PubMed]
- Zaman, N.K.; Rohani, R.; Yusoff, I.I.; Kamsol, M.A.; Basiron, S.A.; Rashid, A.I.A. Eco-Friendly Coagulant versus Industrially Used Coagulants: Identification of Their Coagulation Performance, Mechanism and Optimization in Water Treatment Process. Int. J. Environ. Res. Public Health 2021, 18, 9164. [Google Scholar] [CrossRef] [PubMed]
- Mudragada, R.; Kundral, S.; Coro, E.; Moncholi, M.E.; Laha, S.; Tansel, B. Phosphorous removal during sludge dewatering to prevent struvite formation in sludge digesters by full scale evaluation. J. Water Process. Eng. 2014, 2, 37–42. [Google Scholar] [CrossRef]
- Shin, S.G.; Lee, J.; Do, T.H.; Kim, S.I.; Hwang, S. Application of Response Surface Analysis to Evaluate the Effect of Concentrations of Ammonia and Propionic Acid on Acetate-Utilizing Methanogenesis. Energies 2019, 12, 3394. [Google Scholar] [CrossRef] [Green Version]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Park, H.; Lim, S.-i.; Lee, H.; Woo, D.-S. Water blending effects on coagulation-flocculation using aluminum sulfate (alum), polyaluminum chloride (PAC), and ferric chloride (FeCl3) using multiple water sources. Desalination Water Treat. 2016, 57, 7511–7521. [Google Scholar] [CrossRef]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Lofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meric, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Global NEST J. 2006, 8, 151–158. [Google Scholar]
- Park, W.-C.; Lee, M.; Sung, I.-W. Phosphorus removal from advanced wastewater treatment process using PAC. J. Korean Soc. Environ. Eng. 2014, 36, 96–102. [Google Scholar] [CrossRef]
- Inam, M.A.; Khan, R.; Park, D.R.; Khan, S.; Uddin, A.; Yeom, I.T. Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process. Int. J. Environ. Res. Public Health 2019, 16, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, E.-J.; Cheon, H.-C. High-rate phosphorous removal by PAC (poly aluminum chloride) coagulation of A2O effluent. J. Korean Soc. Environ. Eng. 2009, 31, 673–678. [Google Scholar]
- Wang, L.; Zhang, N.; Hu, Y. Study on chemical enhanced coagulation for phosphorus removal from domestic sewage. Ind. Water Treat. 2006, 26, 26–30. [Google Scholar]
- Moghaddam, S.S.; Moghaddam, M.R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 2010, 175, 651–657. [Google Scholar] [CrossRef] [PubMed]
Parameter | Average | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
pH | 7.5 | 0.2 | 7.2 | 7.7 |
Conductivity (μS/cm) | 6.0 | 0.7 | 5.2 | 6.9 |
Total solids (mg/L) | 21,855 | 2252 | 20,360 | 25,085 |
Volatile solids (mg/L) | 15,281 | 1576 | 14,115 | 17,535 |
Total phosphorus (mg/L) | 989 | 186 | 789 | 1197 |
PO43—P (mg/L) | 169.2 | 10.8 | 153.4 | 177.9 |
Total nitrogen (mg/L) | 2388 | 414 | 1963 | 2745 |
NH4+-N (mg/L) | 634 | 108 | 480 | 730 |
Mg (mg/L) | 7.1 | 0.4 | 6.6 | 7.6 |
Run Number (Randomized) | CCD Condition | Residual [PO4−P] (mg/L) | |||
---|---|---|---|---|---|
Dose (X1) | Time (X2) (min) | RPM (X3) (rpm) | Actual | Predicted | |
1 | 2 | 100 | 45 | 1.500 | 1.538 |
2 | 1 | 180 | 70 | 25.650 | 26.632 |
3 | 3 | 180 | 70 | 1.180 | −0.554 |
4 | 3 | 20 | 70 | 0.370 | 2.271 |
5 | 2 | 100 | 45 | 1.275 | 1.583 |
6 | 1 | 20 | 70 | 15.800 | 15.948 |
7 | 3 | 20 | 20 | 0.520 | −0.286 |
8 | 2 | 100 | 45 | 1.775 | 1.538 |
9 | 3 | 180 | 20 | 0.865 | 0.894 |
10 | 1 | 180 | 20 | 34.250 | 32.525 |
11 | 2 | 100 | 45 | 1.250 | 1.538 |
12 | 1 | 20 | 20 | 15.925 | 17.836 |
13 | 1 | 100 | 45 | 25.475 | 24.424 |
14 | 2 | 180 | 45 | 1.440 | 4.153 |
15 | 2 | 100 | 70 | 0.900 | −0.132 |
16 | 3 | 100 | 45 | 0.895 | 1.770 |
17 | 2 | 20 | 45 | 1.110 | −1.779 |
18 | 2 | 100 | 20 | 0.680 | 1.536 |
Coagulant | 50 rpm | 20 rpm | ||
---|---|---|---|---|
b | R2 | b | R2 | |
Alum | 0.687 | 0.991 | 0.679 | 0.994 |
PAC | 1.650 | 0.999 | 1.522 | 0.999 |
FeCl2 | 0.805 | 0.993 | 0.825 | 0.999 |
FeCl3 | 0.765 | 0.994 | 0.621 | 0.997 |
PAC + FeCl3 | 3.639 (1.819) * | 0.999 | 2.346 (1.173) * | 0.999 |
Term | Degree of Freedom | F-Value | p-Value |
---|---|---|---|
Model | 10 | 7.60 | 0.007 |
Dose (X1) | 1 | 9.81 | 0.017 |
Time (X2) | 1 | 3.71 | 0.095 |
RPM (X3) | 1 | 0.72 | 0.426 |
Dose × Dose (X12) | 1 | 8.90 | 0.020 |
Time × Time (X22) | 1 | 0.25 | 0.632 |
RPM × RPM (X32) | 1 | 0.25 | 0.630 |
Dose × Time (X1 × X2) | 1 | 2.54 | 0.155 |
Dose × RPM (X1 × X3) | 1 | 4.50 | 0.072 |
Time × RPM (X2 × X3) | 1 | 4.66 | 0.068 |
Lack-of-fit | 4 | 4.62 | 0.120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.W.; Yu, S.I.; Im, K.; Shin, J.; Shin, S.G. Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge. Int. J. Environ. Res. Public Health 2022, 19, 1693. https://doi.org/10.3390/ijerph19031693
Kim DW, Yu SI, Im K, Shin J, Shin SG. Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge. International Journal of Environmental Research and Public Health. 2022; 19(3):1693. https://doi.org/10.3390/ijerph19031693
Chicago/Turabian StyleKim, Dae Wook, Sung Il Yu, Kyuyong Im, Juhee Shin, and Seung Gu Shin. 2022. "Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge" International Journal of Environmental Research and Public Health 19, no. 3: 1693. https://doi.org/10.3390/ijerph19031693
APA StyleKim, D. W., Yu, S. I., Im, K., Shin, J., & Shin, S. G. (2022). Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge. International Journal of Environmental Research and Public Health, 19(3), 1693. https://doi.org/10.3390/ijerph19031693