Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Brief History
4.2. Virtual Reality for Neuronavigation
4.3. Virtual Reality as a Diagnostic Tool
4.4. Virtual Reality in Neurosurgery Training
4.5. Virtual Reality and Pain Management
4.6. Virtual Reality in Rehabilitation
4.7. Virtual Reality and Robotic Neurosurgery
4.8. Consent Taking and VR
4.9. Additional Avenues and Challenges of VR in Neurosurgery
4.10. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pelargos, P.E.; Nagasawa, D.T.; Lagman, C.; Tenn, S.; Demos, J.V.; Lee, S.J.; Bui, T.T.; Barnette, N.E.; Bhatt, N.S.; Ung, N.; et al. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. J. Clin. Neurosci. 2017, 35, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Abhari, K.; Baxter, J.S.; Chen, E.C.; Khan, A.R.; Peters, T.M.; de Ribaupierre, S.; Eagleson, R. Training for planning tumour resection: Augmented reality and human factors. IEEE Trans. Biomed. Eng. 2015, 62, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Barsom, E.Z.; Graafland, M.; Schijven, M.P. Systematic review on the effectiveness of augmented reality applications in medical training. Surg. Endosc. 2016, 30, 4174–4183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinckley, K.; Pausch, R.; Downs, J.H.; Proffitt, D.; Kassell, N.F. The props-based interface for neurosurgical visualization. Stud. Health Technol. Inform. 1997, 39, 552–562. [Google Scholar] [PubMed]
- Shamir, R.R.; Horn, M.; Blum, T.; Mehrkens, J.; Shoshan, Y.; Joskowicz, L.; Navab, N. Trajectory planning with Augmented Reality for improved risk assessment in image-guided keyhole neurosurgery. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 30 March–2 April 2011; pp. 1873–1876. [Google Scholar]
- Shamir, R.R.; Joskowicz, L.; Tamir, I.; Dabool, E.; Pertman, L.; Ben-Ami, A.; Shoshan, Y. Reduced risk trajectory planning in image-guided keyhole neurosurgery. Med. Phys. 2012, 39, 2885–2895. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, S.B.; Hendricks, B.K.; Cohen-Gadol, A. Immersive Three-Dimensional Modeling and Virtual Reality for Enhanced Visualization of Operative Neurosurgical Anatomy. World Neurosurg. 2019, 131, 313–320. [Google Scholar] [CrossRef]
- Chan, S.; Conti, F.; Salisbury, K.; Blevins, N.H. Virtual reality simulation in neurosurgery: Technologies and evolution. Neurosurgery 2013, 72, 154–164. [Google Scholar] [CrossRef]
- Drouin, S.; Kochanowska, A.; Kersten-Oertel, M.; Gerard, I.J.; Zelmann, R.; De Nigris, D.; Bériault, S.; Arbel, T.; Sirhan, D.; Sadikot, A.F.; et al. IBIS: An OR ready open-source platform for image-guided neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 363–378. [Google Scholar] [CrossRef]
- Gasco, J.; Patel, A.; Ortega-Barnett, J.; Branch, D.; Desai, S.; Kuo, Y.F.; Luciano, C.; Rizzi, S.; Kania, P.; Matuyauskas, M.; et al. Virtual reality spine surgery simulation: An empirical study of its usefulness. Neurol. Res. 2014, 36, 968–973. [Google Scholar] [CrossRef]
- Higginbotham, G. Virtual Connections: Improving Global Neurosurgery Through Immersive Technologies. Front. Surg. 2021, 8, 629963. [Google Scholar] [CrossRef]
- Hooten, K.G.; Lister, J.R.; Lombard, G.; Lizdas, D.E.; Lampotang, S.; Rajon, D.A.; Bova, F.; Murad, G.J. Mixed Reality Ventriculostomy Simulation: Experience in Neurosurgical Residency. Oper. Neurosurg. 2014, 10, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Z.; Feng, X.B.; Shao, Z.W.; Xie, M.; Xu, S.; Wu, X.H.; Ye, Z.W. Application and Prospect of Mixed Reality Technology in Medical Field. Curr. Med. Sci. 2019, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, X.; Cui, J.; He, X.; Li, C.; Han, Y.; Pan, J.; Yang, M.; Tan, J.; Li, L. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: A study of 40 cases. Int. J. Surg. 2017, 41, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kockro, R.A.; Stadie, A.; Schwandt, E.; Reisch, R.; Charalampaki, C.; Ng, I.; Yeo, T.T.; Hwang, P.; Serra, L.; Perneczky, A. A Collaborative Virtual Reality Environment for Neurosurgical Planning and Training. Oper. Neurosurg. 2007, 61, ONSE379–ONSE391. [Google Scholar] [CrossRef] [PubMed]
- Konakondla, S.; Fong, R.; Schirmer, C.M. Simulation training in neurosurgery: Advances in education and practice. Adv. Med. Educ. Pract. 2017, 8, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafage, R.; Bess, S.; Glassman, S.; Ames, C.; Burton, D.; Hart, R.; Kim, H.J.; Klineberg, E.; Henry, J.; Line, B.; et al. Virtual Modeling of Postoperative Alignment After Adult Spinal Deformity Surgery Helps Predict Associations Between Compensatory Spinopelvic Alignment Changes, Overcorrection, and Proximal Junctional Kyphosis. Spine 2017, 42, E1119–E1125. [Google Scholar] [CrossRef]
- Lee, B.; Liu, C.Y.; Apuzzo, M.L.J. Quantum Computing: A Prime Modality in Neurosurgery’s Future. World Neurosurg. 2012, 78, 404–408. [Google Scholar] [CrossRef]
- Lee, C.; Wong, G.K.C. Virtual reality and augmented reality in the management of intracranial tumors: A review. J. Clin. Neurosci. 2019, 62, 14–20. [Google Scholar] [CrossRef]
- Lemole, G.M., Jr.; Banerjee, P.P.; Luciano, C.; Neckrysh, S.; Charbel, F.T. Virtual reality in neurosurgical education: Part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 2007, 61, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Lobel, D.A.; Elder, J.B.; Schirmer, C.M.; Bowyer, M.W.; Rezai, A.R. A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery 2013, 73, S57–S65. [Google Scholar] [CrossRef] [Green Version]
- Lohre, R.; Wang, J.C.; Lewandrowski, K.U.; Goel, D.P. Virtual reality in spinal endoscopy: A paradigm shift in education to support spine surgeons. J. Spine Surg. 2020, 6, S208–S223. [Google Scholar] [CrossRef] [PubMed]
- Moult, E.; Ungi, T.; Welch, M.; Lu, J.; McGraw, R.C.; Fichtinger, G. Ultrasound-guided facet joint injection training using Perk Tutor. Int. J. Comput. Assist. Radiol. Surg. 2013, 8, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Pfandler, M.; Lazarovici, M.; Stefan, P.; Wucherer, P.; Weigl, M. Virtual reality-based simulators for spine surgery: A systematic review. Spine J. 2017, 17, 1352–1363. [Google Scholar] [CrossRef]
- Riva, G. Applications of virtual environments in medicine. Methods Inf. Med. 2003, 42, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, N.; Condino, S.; Cattari, N.; D’Amato, R.; Ferrari, V.; Cutolo, F. Augmented Reality-Assisted Craniotomy for Parasagittal and Convexity En Plaque Meningiomas and Custom-Made Cranio-Plasty: A Preliminary Laboratory Report. Int. J. Environ. Res. Public Health 2021, 18, 9955. [Google Scholar] [CrossRef] [PubMed]
- Robison, R.A.; Liu, C.Y.; Apuzzo, M.L.J. Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery. World Neurosurg. 2011, 76, 419–430. [Google Scholar] [CrossRef]
- Sabbadin, M. Interaction and Rendering with Harvested 3D Data. Ph.D. Thesis, University of Pisa, Pisa, Italy, March 2019. [Google Scholar]
- Sabbagh, A.J.; Bajunaid, K.M.; Alarifi, N.; Winkler-Schwartz, A.; Alsideiri, G.; Al-Zhrani, G.; Alotaibi, F.E.; Bugdadi, A.; Laroche, D.; Del Maestro, R.F. Roadmap for Developing Complex Virtual Reality Simulation Scenarios: Subpial Neurosurgical Tumor Resection Model. World Neurosurg. 2020, 139, e220–e229. [Google Scholar] [CrossRef]
- Wei, P.; Yao, Q.; Xu, Y.; Zhang, H.; Gu, Y.; Wang, L. Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: A prospective study. J. Orthop. Surg. Res. 2019, 14, 255. [Google Scholar] [CrossRef] [Green Version]
- Weigl, M.; Stefan, P.; Abhari, K.; Wucherer, P.; Fallavollita, P.; Lazarovici, M.; Weidert, S.; Euler, E.; Catchpole, K. Intra-operative disruptions, surgeon’s mental workload, and technical performance in a full-scale simulated procedure. Surg. Endosc. 2016, 30, 559–566. [Google Scholar] [CrossRef]
- Wewel, J.T.; Godzik, J.; Uribe, J.S. The utilization of minimally invasive surgery techniques for the treatment of spinal deformity. J. Spine Surg. 2019, 5, S84–S90. [Google Scholar] [CrossRef]
- Lizana, J.; Montemurro, N.; Aliaga, N.; Marani, W.; Tanikawa, R. From textbook to patient: A practical guide to train the end-to-side microvascular anastomosis. Br. J. Neurosurg. 2021, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bracq, M.S.; Michinov, E.; Jannin, P. Virtual Reality Simulation in Nontechnical Skills Training for Healthcare Professionals: A Systematic Review. Simul. Healthc. 2019, 14, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.; Gélinas-Phaneuf, N.; Delorme, S.; Del Maestro, R. Fundamentals of neurosurgery: Virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013, 80, e9–e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vozenilek, J.; Huff, J.S.; Reznek, M.; Gordon, J.A. See one, do one, teach one: Advanced technology in medical education. Acad. Emerg. Med. 2004, 11, 1149–1154. [Google Scholar] [CrossRef]
- Montemurro, N.; Santoro, G.; Marani, W.; Petrella, G. Posttraumatic synchronous double acute epidural hematomas: Two craniotomies, single skin incision. Surg. Neurol. Int. 2020, 11, 435. [Google Scholar] [CrossRef]
- Bichlmeier, C.; Heining, S.M.; Feuerstein, M.; Navab, N. The virtual mirror: A new interaction paradigm for augmented reality environments. IEEE Trans. Med. Imaging 2009, 28, 1498–1510. [Google Scholar] [CrossRef]
- Edwards, P.J.; King, A.P.; Maurer, C.R., Jr.; de Cunha, D.A.; Hawkes, D.J.; Hill, D.L.; Gaston, R.P.; Fenlon, M.R.; Jusczyzck, A.; Strong, A.J.; et al. Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Trans. Med. Imaging 2000, 19, 1082–1093. [Google Scholar] [CrossRef]
- Fick, T.; van Doormaal, J.A.M.; Hoving, E.W.; Regli, L.; van Doormaal, T.P.C. Holographic patient tracking after bed movement for augmented reality neuronavigation using a head-mounted display. Acta Neurochir. 2021, 163, 879–884. [Google Scholar] [CrossRef]
- Grimson, W.E.; Kikinis, R.; Jolesz, F.A.; Black, P.M. Image-guided surgery. Sci. Am. 1999, 280, 62–69. [Google Scholar] [CrossRef]
- King, A.P.; Edwards, P.J.; Maurer, C.R., Jr.; de Cunha, D.A.; Hawkes, D.J.; Hill, D.L.; Gaston, R.P.; Fenlon, M.R.; Strong, A.J.; Chandler, C.L.; et al. A system for microscope-assisted guided interventions. Stereotact. Funct. Neurosurg. 1999, 72, 107–111. [Google Scholar] [CrossRef]
- Condino, S.; Montemurro, N.; Cattari, N.; D’Amato, R.; Thomale, U.; Ferrari, V.; Cutolo, F. Evaluation of a Wearable AR Platform for Guiding Complex Craniotomies in Neurosurgery. Ann. Biomed. Eng. 2021, 49, 2590–2605. [Google Scholar] [CrossRef]
- Kockro, R.A.; Tsai, Y.T.; Ng, I.; Hwang, P.; Zhu, C.; Agusanto, K.; Hong, L.X.; Serra, L. Dex-ray: Augmented reality neurosurgical navigation with a handheld video probe. Neurosurgery 2009, 65, 795–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, R.; Bax, M.R.; Maurer, C.R., Jr.; Johnson, J.A.; Wilkinson, E.P.; Wang, B.; West, J.B.; Citardi, M.J.; Manwaring, K.H.; Khadem, R. Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. IEEE Trans. Med. Imaging 2002, 21, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Roethe, A.L.; Rösler, J.; Misch, M.; Vajkoczy, P.; Picht, T. Augmented reality visualization in brain lesions: A prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Acta Neurochir. 2022, 164, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Katsevman, G.A.; Greenleaf, W.; García-García, R.; Perea, M.V.; Ladera, V.; Sherman, J.H.; Rodríguez, G. Virtual Reality during Brain Mapping for Awake-Patient Brain Tumor Surgery: Proposed Tasks and Domains to Test. World Neurosurg. 2021, 152, e462–e466. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Fanelli, G.N.; Scatena, C.; Ortenzi, V.; Pasqualetti, F.; Mazzanti, C.M.; Morganti, R.; Paiar, F.; Naccarato, A.G.; Perrini, P. Surgical outcome and molecular pattern characterization of recurrent glioblastoma multiforme: A single-center retrospective series. Clin. Neurol. Neurosurg. 2021, 207, 106735. [Google Scholar] [CrossRef] [PubMed]
- Gourlay, D.; Lun, K.C.; Lee, Y.N.; Tay, J. Virtual reality for relearning daily living skills. Int. J. Med. Inform. 2000, 60, 255–261. [Google Scholar] [CrossRef]
- Mazerand, E.; Le Renard, M.; Hue, S.; Lemée, J.M.; Klinger, E.; Menei, P. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset. World Neurosurg. 2017, 97, 424–430. [Google Scholar] [CrossRef]
- Montemurro, N.; Ortenzi, V.; Naccarato, G.A.; Perrini, P. Angioleiomyoma of the knee: An uncommon cause of leg pain. A systematic review of the literature. Interdiscip. Neurosurg. 2020, 22, 100877. [Google Scholar] [CrossRef]
- Madhavan, K.; Kolcun, J.P.G.; Chieng, L.O.; Wang, M.Y. Augmented-reality integrated robotics in neurosurgery: Are we there yet? Neurosurg. Focus 2017, 42, E3. [Google Scholar] [CrossRef] [Green Version]
- Pandya, S.; Motkoski, J.W.; Serrano-Almeida, C.; Greer, A.D.; Latour, I.; Sutherland, G.R. Advancing neurosurgery with image-guided robotics. J. Neurosurg. 2009, 111, 1141–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Mucksavage, P.; Kerbl, D.C.; Huynh, V.B.; Etafy, M.; McDougall, E.M. Validation study of a virtual reality robotic simulator--role as an assessment tool? J. Urol. 2012, 187, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, A.; Monsuez, B.; Tapus, A. SafeRobots: A model-driven approach for designing robotic software architectures. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), Minneapolis, MN, USA, 19–23 May 2014; pp. 131–134. [Google Scholar]
- Christiano, L.D.; Singh, R.; Sukul, V.; Prestigiacomo, C.J.; Gandhi, C.D. Microvascular decompression for trigeminal neuralgia: Visualization of results in a 3D stereoscopic virtual reality environment. Minim. Invasive Neurosurg. 2011, 54, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Fiani, B.; De Stefano, F.; Kondilis, A.; Covarrubias, C.; Reier, L.; Sarhadi, K. Virtual Reality in Neurosurgery: "Can You See It?"—A Review of the Current Applications and Future Potential. World Neurosurg. 2020, 141, 291–298. [Google Scholar] [CrossRef]
- Meng, F.G.; Wu, C.Y.; Liu, Y.G.; Liu, L. Virtual reality imaging technique in percutaneous radiofrequency rhizotomy for intractable trigeminal neuralgia. J. Clin. Neurosci. 2009, 16, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Pourmand, A.; Davis, S.; Marchak, A.; Whiteside, T.; Sikka, N. Virtual Reality as a Clinical Tool for Pain Management. Curr. Pain Headache Rep. 2018, 22, 53. [Google Scholar] [CrossRef]
- Bani Mohammad, E.; Ahmad, M. Virtual reality as a distraction technique for pain and anxiety among patients with breast cancer: A randomized control trial. Palliat. Support. Care 2019, 17, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Shakur, S.F.; Luciano, C.J.; Kania, P.; Roitberg, B.Z.; Banerjee, P.P.; Slavin, K.V.; Sorenson, J.; Charbel, F.T.; Alaraj, A. Usefulness of a Virtual Reality Percutaneous Trigeminal Rhizotomy Simulator in Neurosurgical Training. Neurosurgery 2015, 11, 420–425. [Google Scholar] [CrossRef]
- Walker, M.R.; Kallingal, G.J.; Musser, J.E.; Folen, R.; Stetz, M.C.; Clark, J.Y. Treatment efficacy of virtual reality distraction in the reduction of pain and anxiety during cystoscopy. Mil. Med. 2014, 179, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Lui, M.M.W.; Choi, K.C. Effects of immersive virtual reality intervention on pain and anxiety among pediatric patients undergoing venipuncture: A study protocol for a randomized controlled trial. Trials 2019, 20, 369. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Palacios, A.; Hoffman, H.; Carlin, A.; Furness, T.A.; Botella, C. Virtual reality in the treatment of spider phobia: A controlled study. Behav. Res. Ther. 2002, 40, 983–993. [Google Scholar] [CrossRef]
- Beolchi, L.R.G. Virtual reality for health care. In Information Technologies in Medicine; John Wiley & Sons, Inc.: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Bernard, F.; Lemée, J.M.; Aubin, G.; Ter Minassian, A.; Menei, P. Using a Virtual Reality Social Network During Awake Craniotomy to Map Social Cognition: Prospective Trial. J. Med. Internet Res. 2018, 20, e10332. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.; Abreu, B.; Ottenbacher, K.; Huffman, K.; Masel, B.; Culpepper, R. Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury. Arch. Phys. Med. Rehabil. 1998, 79, 888–892. [Google Scholar] [CrossRef]
- Brown, R.K.J.; Petty, S.; O’Malley, S.; Stojanovska, J.; Davenport, M.S.; Kazerooni, E.A.; Fessahazion, D. Virtual Reality Tool Simulates MRI Experience. Tomography 2018, 4, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.C.; Lofgren, E.; Wallergard, M.; Linden, A.; Boschain, K.; Minör, U.; Sonesson, B.; Johansson, G. Three applications of virtual reality for brain injury rehabilitation of daily tasks. In Proceedings of the 4th International Conference on Disability, Virtual Reality and Associated Technology, Veszprém, Hungary; 2002; Volume 4, pp. 93–100. [Google Scholar]
- Spicer, M.A.; Apuzzo, M.L. Virtual reality surgery: Neurosurgery and the contemporary landscape. Neurosurgery 2003, 52, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.C.; Johansson, G.; Boschian, K.; Lindé, A.; Minör, U.; Sonesson, B. A Practical Example Using VR in the Assessment of Brain Injury. Int. J. Virtual Real. 1999, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Maresca, G.; Maggio, M.G.; Buda, A.; La Rosa, G.; Manuli, A.; Bramanti, P.; De Luca, R.; Calabrò, R.S. A novel use of virtual reality in the treatment of cognitive and motor deficit in spinal cord injury: A case report. Medicine 2018, 97, e13559. [Google Scholar] [CrossRef]
- Sengupta, M.; Gupta, A.; Khanna, M.; Rashmi Krishnan, U.K.; Chakrabarti, D. Role of Virtual Reality in Balance Training in Patients with Spinal Cord Injury: A Prospective Comparative Pre-Post Study. Asian Spine J. 2020, 14, 51–58. [Google Scholar] [CrossRef]
- Schultheis, M.T.; Rizzo, A.A. The application of virtual reality technology in rehabilitation. Rehabil. Psychol. 2001, 46, 296–311. [Google Scholar] [CrossRef]
- Weiss, R.K.; Feintuch, U.; Katz, N. Virtual Reality in Neurorehabilitation; Cambridge Press: New York, NY, USA, 2004. [Google Scholar]
- Weiss, P.L.; Bialik, P.; Kizony, R. Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities. Cyberpsychol. Behav. 2003, 6, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Jena, A.B.; Seabury, S.; Lakdawalla, D.; Chandra, A. Malpractice risk according to physician specialty. N. Engl. J. Med. 2011, 365, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Perin, A.; Galbiati, T.F.; Ayadi, R.; Gambatesa, E.; Orena, E.F.; Riker, N.I.; Silberberg, H.; Sgubin, D.; Meling, T.R.; DiMeco, F. Informed consent through 3D virtual reality: A randomized clinical trial. Acta Neurochir. 2021, 163, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Mertz, L. Virtual Reality Pioneer Tom Furness on the Past, Present, and Future of VR in Health Care. IEEE Pulse. 2019, 10, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.B.; D’Arcy, R.C.N.; Delorme, S.; Laroche, D.; Godin, G.; Hajra, S.G.; Brooks, R.; DiRaddo, R. Virtual reality simulator: Demonstrated use in neurosurgical oncology. Surg. Innov. 2013, 20, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Liebig, T.; Holtmannspötter, M.; Crossley, R.; Lindkvist, J.; Henn, P.; Lönn, L.; Gallagher, A.G. Metric-Based Virtual Reality Simulation: A Paradigm Shift in Training for Mechanical Thrombectomy in Acute Stroke. Stroke 2018, 49, e239–e242. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Perrini, P.; Mangini, V.; Galli, M.; Papini, A. The Y-shaped trabecular bone structure in the odontoid process of the axis: A CT scan study in 54 healthy subjects and biomechanical considerations. J. Neurosurg. Spine 2019, 30, 585–592. [Google Scholar] [CrossRef]
- Mitha, A.P.; Almekhlafi, M.A.; Janjua, M.J.; Albuquerque, F.C.; McDougall, C.G. Simulation and augmented reality in endovascular neurosurgery: Lessons from aviation. Neurosurgery 2013, 72, 107–114. [Google Scholar] [CrossRef]
- Rudarakanchana, N.; Van Herzeele, I.; Desender, L.; Cheshire, N.J. Virtual reality simulation for the optimization of endovascular procedures: Current perspectives. Vasc. Health Risk Manag. 2015, 11, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Corsalini, M.; Di Venere, D.; Sportelli, P.; Magazzino, D.; Ripa, C.; Cantatore, F.; Cagnetta, G.; De Rinaldis, C.; Montemurro, N.; De Giacomo, A.; et al. Evaluation of prosthetic quality and masticatory efficiency in patients with total removable prosthesis: Study of 12 cases. Oral Implantol. 2018, 11, 230–240. [Google Scholar]
- Incekara, F.; Smits, M.; Dirven, C.; Vincent, A. Clinical Feasibility of a Wearable Mixed-Reality Device in Neurosurgery. World Neurosurg. 2018, 118, e422–e427. [Google Scholar] [CrossRef]
- Langreth, R. Virtual reality: Head mounted distress. Pop. Sci. 1994, 5, 49. [Google Scholar]
- Perrini, P.; Montemurro, N. Congenital absence of a cervical spine pedicle. Neurol. India 2016, 64, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, L.N.; Tariq, F.; Kim, L.J.; Pridgeon, J.; Hannaford, B. Commentary: Virtual reality and robotics in neurosurgery. Neurosurgery 2013, 72, A1–A6. [Google Scholar] [CrossRef] [PubMed]
- Nakarada-Kordic, I.; Reay, S.; Bennett, G.; Kruse, J.; Lydon, A.M.; Sim, J. Can virtual reality simulation prepare patients for an MRI experience? Radiography 2020, 26, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.H.; Oh, J.W.; Jang, C.K.; Choi, S.; Kim, E.H.; Hong, C.K.; Kim, S.H. Virtual dissection of the real brain: Integration of photographic 3D models into virtual reality and its effect on neurosurgical resident education. Neurosurg. Focus 2021, 51, E16. [Google Scholar] [CrossRef] [PubMed]
- Delion, M.; Klinger, E.; Bernard, F.; Aubin, G.; Minassian, A.T.; Menei, P. Immersing Patients in a Virtual Reality Environment for Brain Mapping During Awake Surgery: Safety Study. World Neurosurg. 2020, 134, e937–e943. [Google Scholar] [CrossRef]
- Grantcharov, T.P.; Kristiansen, V.B.; Bendix, J.; Bardram, L.; Rosenberg, J.; Funch-Jensen, P. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br. J. Surg. 2004, 91, 146–150. [Google Scholar] [CrossRef]
- Steineke, T.C.; Barbery, D. Microsurgical clipping of middle cerebral artery aneurysms: Preoperative planning using virtual reality to reduce procedure time. Neurosurg. Focus 2021, 51, E12. [Google Scholar] [CrossRef]
- Qi, F.; Gan, Y.; Wang, S.; Tie, Y.; Chen, J.; Li, C. Efficacy of a virtual reality-based basic and clinical fused curriculum for clinical education on the lumbar intervertebral disc. Neurosurg. Focus 2021, 51, E17. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Szyfter, W.; Greczka, G.; Gawęcki, W. Otosurgery with the High-Definition Three-Dimensional (3D) Exoscope: Advantages and Disadvantages. J. Clin. Med. 2021, 10, 777. [Google Scholar] [CrossRef]
- Montemurro, N.; Scerrati, A.; Ricciardi, L.; Trevisi, G. The Exoscope in Neurosurgery: An Overview of the Current Literature of Intraoperative Use in Brain and Spine Surgery. J. Clin. Med. 2021, 11, 223. [Google Scholar] [CrossRef]
- Montemurro, N.; Perrini, P. Will COVID-19 change neurosurgical clinical practice? Br. J. Neurosurg. 2020, 1, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Ponce, B.A.; Brabston, E.W.; Zu, S.; Watson, S.L.; Baker, D.; Winn, D.; Guthrie, B.L.; Shenai, M.B. Telemedicine with mobile devices and augmented reality for early postoperative care. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 4411–4414. [Google Scholar] [PubMed]
- Majmundar, N.; Ducruet, A.F.; Wilkinson, D.A.; Catapano, J.S.; Patel, J.; Baranoski, J.F.; Cole, T.S.; Albuquerque, F.C. Telemedicine for Endovascular Neurosurgery Consultation During the COVID-19 Era: Patient Satisfaction Survey. World Neurosurg. 2021, 11, S1878–S8750. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Herbet, G.; Duffau, H. Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients. Brain Topogr. 2016, 29, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Barteit, S.; Lanfermann, L.; Bärnighausen, T.; Neuhann, F.; Beiersmann, C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021, 9, e29080. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Pangal, D.J.; Cardinal, T.; Kugener, G.; Zhu, Y.; Roshannai, A.; Markarian, N.; Sinha, A.; Anandkumar, A.; Hung, A.; et al. A systematic review of virtual reality for the assessment of technical skills in neurosurgery. Neurosurg. Focus 2021, 51, E15. [Google Scholar] [CrossRef]
Issues Addressed for the Use of VR As: | Studies | Advantages | Disadvantages |
---|---|---|---|
| Abhari et al. [2]; Chan et al. [8]; Drouin et al. [9]; Gasco et al. [10]; Higginbotham et al. [11]; Hooten et al. [12]; Hu et al. [13]; Hu et al. [14]; Kockro et al. [15]; Konakondla et al. [16]; Lafage et al. [17]; Lee et al. [18]; Lee et al. [19]; Lemole et al. [20]; Lobel et al. [21]; Lohre et al. [22]; Moult et al. [23]; Pfandler et al. [24]; G. Riva et al. [25]; Montemurro et al. [26]; Robison et al. [27]; Sabbadin et al. [28]; Sabbagh [29]; Wei et al. [30]; Weigl et al. [31]; Wewel et al. [32]. |
|
|
|
| ||
| |||
| |||
| Bichlmeier et al. [38]; Edwards et al. [39]; Fick et al. [40]; Grimson et al. [41]; King et al. [42]; Kockro et al. [15]; Condino et al. [43]; Kockro et al. [44]; Shahidi et al. [45]; Roethe et al. [46] |
|
|
|
| ||
| |||
| Chan et al. [8]; Madhavan et al. [52]; Pandya et al. [53]; Lee et al. [54]; Ramaswamy et al. [55] |
|
|
|
| ||
| |||
| Christiano et al. [56]; Meng et al. [58]; Pourmand et al. [59]; Bani Mohammad et al. [60]; Shakur et al. [61]; Walker et al. [62]; Wong et al. [63]. |
|
|
| |||
| Christiansen et al. [67]; Davies et al. [69]; Gourlay et al. [49]; Davies et al. [71]; Maresca et al. [72]; Sengupta et al. [73]; Schultheis et al. [74]; Weiss et al. [75]; Weiss et al. [76]. |
|
|
| |||
| |||
| Jena et al. [77]; Perin et al. [78]. |
|
|
| |||
| Lafage et al. [17]; Liebig et al. [81]; Mitha et al. [83]; Rudarakanchana et al. [84]; Incekara et al. [86]; Sekhar et al. [89]; Roh et al. [91]; Delion et al. [92]; Steineke et al. [94]. |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, R.; Narayanan, M.D.K.; Umana, G.E.; Montemurro, N.; Chaurasia, B.; Deora, H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. Int. J. Environ. Res. Public Health 2022, 19, 1719. https://doi.org/10.3390/ijerph19031719
Mishra R, Narayanan MDK, Umana GE, Montemurro N, Chaurasia B, Deora H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. International Journal of Environmental Research and Public Health. 2022; 19(3):1719. https://doi.org/10.3390/ijerph19031719
Chicago/Turabian StyleMishra, Rakesh, M.D. Krishna Narayanan, Giuseppe E. Umana, Nicola Montemurro, Bipin Chaurasia, and Harsh Deora. 2022. "Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning" International Journal of Environmental Research and Public Health 19, no. 3: 1719. https://doi.org/10.3390/ijerph19031719
APA StyleMishra, R., Narayanan, M. D. K., Umana, G. E., Montemurro, N., Chaurasia, B., & Deora, H. (2022). Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. International Journal of Environmental Research and Public Health, 19(3), 1719. https://doi.org/10.3390/ijerph19031719