Effects of Polycyclic Aromatic Hydrocarbons on Lung Function in Children with Asthma: A Mediation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Environmental Data
2.2.1. PM Monitored Data
2.2.2. Outdoor PAHs Data
2.3. Study Design and Population
2.4. Study Procedures
2.4.1. Clinical Data Collection
2.4.2. Lung Function Assessment
2.4.3. Atopy Assessment
2.4.4. Urinary Cotinine Assessment
2.4.5. Urinary PAHs Measurement
2.5. Statistical Analyses
3. Results
3.1. Environmental Exposure Profile Levels
3.2. Characteristics of Study Population
3.3. Symptoms, Urinary PAHs and Spirometry Parameters over Time
3.4. Correlations between Urinary PAHs, Spirometry Parameters and Symptom Score
3.5. Multivariable Analysis
3.6. Mediation Analysis
3.7. Sensitivity Analysis
3.8. Power Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Prasauskas, T.; Kauneliene, V.; Molnar, P.; Strandberg, B. Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas, Lithuania. J. Environ. Monit. 2011, 13, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Masih, J.; Masih, A.; Kulshrestha, A.; Singhvi, R.; Taneja, A. Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J. Hazard. Mater. 2010, 177, 190–198. [Google Scholar] [CrossRef]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mrozek-Budzyn, D.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.; Jacek, R.; et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatr. Allergy Immunol. 2010, 21, e723–e732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.L.; Garfinkel, R.; Lendor, C.; Hoepner, L.; Li, Z.; Romanoff, L.; Sjodin, A.; Needham, L.; Perera, F.P.; Whyatt, R.M. Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatr. Allergy Immunol. 2010, 21, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, S.L.; Noth, E.M.; Mann, J.; Balmes, J.; Hammond, S.K.; Tager, I.B. Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. J. Exp. Sci. Environ. Epidemiol. 2012, 22, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Smargiassi, A.; Goldberg, M.S.; Wheeler, A.J.; Plante, C.; Valois, M.-F.; Mallach, G.; Kauri, L.M.; Shutt, R.; Bartlett, S.; Raphoz, M.; et al. Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environ. Res. 2014, 132, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Majewska, R.; Mroz, E.; Flak, E.; Camann, D.; Sowa, A.; Jacek, R. Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. Sci. Total Environ. 2015, 502, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, S.; Hebbern, C.; Cakmak, J.D.; Dales, R.E. The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population. Environ. Pollut. 2017, 228, 1–7. [Google Scholar] [CrossRef]
- Han, Y.-Y.; Rosser, F.; Forno, E.; Celedón, J.C. Exposure to polycyclic aromatic hydrocarbons, vitamin D, and lung function in children with asthma. Pediatr. Pulmonol. 2018, 53, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Liu, J.; Zeng, Y.; Zhou, W.; Wu, P.; Tan, J.; Li, Y.; Pang, Q.; Jiang, W.; Fan, R. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene may impair lung function by increasing oxidative damage and airway inflammation in asthmatic children. Environ. Pollut. 2020, 266, 115220. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Dostal, M.; Pastorkova, A.; Rossner, P.; Sram, R.J. Airborne Benzo[a]Pyrene may contribute to divergent Pheno-Endotypes in children. Environ. Health 2021, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Epton, M.J.; Dawson, R.D.; Brooks, W.M.; Kingham, S.; Aberkane, T.; Cavanagh, J.-A.E.; Frampton, C.M.; Hewitt, T.; Cook, J.M.; McLeod, S.; et al. The effect of ambient air pollution on respiratory health of school children: A panel study. Environ. Health 2008, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.O.; Williams, D.A.L.; Abubaker, S.; Curtin-Brosnan, J.; McCormack, M.C.; Peng, R.; Breysse, P.N.; Matsui, E.C.; Hansel, N.N.; Diette, G.B.; et al. Predictors of polycyclic aromatic hydrocarbon exposure and internal dose in inner city Baltimore children. J. Exp. Sci. Environ. Epidemiol. 2016, 27, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hu, G.; Fan, R.; Lv, Y.; Dai, Y.; Xu, Z. Association of PAHs and BTEX exposure with lung function and respiratory symptoms among a nonoccupational population near the coal chemical industry in Northern China. Environ. Int. 2018, 120, 480–488. [Google Scholar] [CrossRef]
- Pellegrini, M.; Rotolo, M.; La Grutta, S.; Cibella, F.; Garcia-Algar, O.; Bacosi, A.; Cuttitta, G.; Pacifici, R.; Pichini, S. Assessment of exposure to environmental tobacco smoke in young adolescents following implementation of smoke-free policy in Italy. Forensic Sci. Int. 2010, 196, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Abita, A.; Antero, R.; Condò, M.; Dioguardi, R.; Ferrara, I. Annuario Regionale dei Dati Ambientali Della Sicilia.Capitolo 2, Qualità Dell’aria. 2017. Available online: https://www.arpa.sicilia.it/download/annuario-regionale-dei-dati-ambientali-anno-2018-2/?wpdmdl=5633 (accessed on 8 January 2021).
- CEN. Air Quality-Determination of the PM10 Fraction of Suspended Particulate Matter-Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods, EN123. 1998. Available online: https://ec.europa.eu/environment/air/pdf/finalwgreporten (accessed on 8 January 2021).
- CEN. Air Quality—Standard Method for the Measurement of the Concentration of Benzo[a]pyrene in Ambient Air. EN 15549. 2008. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 8 January 2021).
- 2016 GINA Report, Global Strategy for Asthma Management and Prevention. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) . Available online: https://ginasthma.org/wp-content/uploads/2016/05/WMS-GINA-2016-main-Pocket-Guide.pdf (accessed on 1 February 2021).
- Montalbano, L.; Ferrante, G.; Cilluffo, G.; Gentile, M.; Arrigo, M.; La Guardia, D.; Allegra, M.; Malizia, V.; Gagliardo, R.P.; Bonini, M.; et al. Targeting quality of life in asthmatic children: The MyTEP pilot randomized trial. Respir. Med. 2019, 153, 14–19. [Google Scholar] [CrossRef]
- Galassi, C.; De Sario, M.; Biggeri, A.; Bisanti, L.; Chellini, E.; Ciccone, G.; Piffer, S.; Sestini, P. Changes in Prevalence of Asthma and Allergies Among Children and Adolescents in Italy: 1994–2002. Pediatrics 2006, 117, 34–42. [Google Scholar] [CrossRef]
- Montalbano, L.; Cilluffo, G.; Gentile, M.; Ferrante, G.; Malizia, V.; Cibella, F.; Viegi, G.; Passalacqua, G.; La Grutta, S. Development of a nomogram to estimate the quality of life in asthmatic children using the Childhood Asthma Control Test. Pediatr. Allergy Immunol. 2016, 27, 514–520. [Google Scholar] [CrossRef]
- Strunk, R.C.; Sternberg, A.L.; Bacharier, L.B.; Szefler, S.J. Nocturnal awakening caused by asthma in children with mild-to-moderate asthma in the childhood asthma management program. J. Allergy Clin. Immunol. 2002, 110, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Horner, C.C.; Mauger, D.; Strunk, R.C.; Graber, N.J.; Lemanske, R.F., Jr.; Sorkness, C.A.; Szefler, S.J.; Zeiger, R.S.; Taussig, L.M.; Bacharier, L.B.; et al. Most nocturnal asthma symptoms occur outside of exacerbations and associate with morbidity. J. Allergy Clin. Immunol. 2011, 128, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Horne, R.; Weinman, J.A. Self-regulation and Self-management in Asthma: Exploring the Role of Illness Perceptions and Treatment Beliefs in Explaining Non-adherence to Preventer Medication. Psychol. Health 2002, 17, 17–32. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Quanjer, P.H.; Brazzale, D.J.; Boros, P.W.; Pretto, J.J. Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur. Respir. J. 2013, 42, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.L.; McCool, D. Pulmonary Function Characteristics in Patients with Different Patterns of Methacholine Airway Hyperresponsiveness. Chest 2002, 121, 1818–1823. [Google Scholar] [CrossRef]
- Kaleyias, J.; Papaioannou, D.; Manoussakis, M.; Syrigou, E.; Tapratzi, P.; Saxoni-Papageorgiou, P. Skin-prick test findings in atopic asthmatic children: A follow-up study from childhood to puberty. Pediatr. Allergy Immunol. 2002, 13, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Marchei, E.; Rossi, S.; Vagnarelli, F.; Durgbanshi, A.; García-Algar, Ó.; Vall, O.; Pichini, S. Liquid chromatography/electrospray ionization tandem mass spectrometry assay for determination of nicotine and metabolites, caffeine and arecoline in breast milk. Rapid Commun. Mass Spectrom. 2007, 21, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Ramsauer, B.; Sterz, K.; Hagedorn, H.-W.; Engl, J.; Scherer, G.; McEwan, M.; Errington, G.; Shepperd, J.; Cheung, F. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of phenolic polycyclic aromatic hydrocarbons (OH-PAH) in urine of non-smokers and smokers. Anal. Bioanal. Chem. 2010, 399, 877–889. [Google Scholar] [CrossRef]
- Li, Z.; Romanoff, L.C.; Lewin, M.D.; Porter, E.N.; Trinidad, D.A.; Needham, L.L.; Patterson, D.G.; Sjödin, A. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. J. Exp. Sci. Environ. Epidemiol. 2009, 20, 526–535. [Google Scholar] [CrossRef]
- Shao, J.; Zhong, B. Last observation carry-forward and last observation analysis. Stat. Med. 2003, 22, 2429–2441. [Google Scholar] [CrossRef]
- Bakdash, J.Z.; Marusich, L. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Liu, S.; Miao, D.; Yuan, Y. Sample size determination for mediation analysis of longitudinal data. BMC Med. Res. Methodol. 2018, 18, 32. [Google Scholar] [CrossRef] [PubMed]
- Sobus, J.R.; Waidyanatha, S.; McClean, M.D.; Herrick, R.F.; Smith, T.J.; Garshick, E.; Laden, F.; Hart, J.E.; Zheng, Y.; Rappaport, S.M. Urinary naphthalene and phenanthrene as biomarkers of occupational exposure to polycyclic aromatic hydrocarbons. Occup. Environ. Med. 2009, 66, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Commodore, A.; Hartinger, S.; Lewin, M.; Sjödin, A.; Pittman, E.; Trinidad, D.; Hubbard, K.; Lanata, C.F.; Gil, A.I.; et al. Biomonitoring human exposure to household air pollution and association with self-reported health symptoms–a stove intervention study in Peru. Environ. Int. 2016, 97, 195–203. [Google Scholar] [CrossRef] [Green Version]
- EEA Report No 09/2020. Air Quality in Europe—2020 Report. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 25 February 2021).
- Choi, H.; Tabashidze, N.; Rossner, P., Jr.; Dostal, M.; Pastorkova, A.; Kong, S.W.; Gmuender, H.; Sram, R.J. Altered vulnerability to asthma at various levels of ambient Benzo [a] Pyrene by CTLA4, STAT4 and CYP2E1 polymorphisms. Environ. Pollut. 2017, 231, 1134–1144. [Google Scholar] [CrossRef]
- Cibella, F.; Cuttitta, G.; La Grutta, S.; Melis, M.R.; Lospalluti, M.L.; Uasuf, C.G.; Bucchieri, S.; Viegi, G. Proportional Venn diagram and determinants of allergic respiratory diseases in Italian adolescents. Pediatr. Allergy Immunol. 2010, 22, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barraza-Villarreal, A.; Escamilla-Nuñez, M.C.; Schilmann, A.; Hernandez-Cadena, L.; Li, Z.; Romanoff, L.; Sjödin, A.; Del Río-Navarro, B.E.; Díaz-Sanchez, D.; Díaz-Barriga, F.; et al. Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in Mexican schoolchildren: A pilot study. J. Occup. Environ. Med. Coll. Occup. Environ. Med. 2014, 56, 415. [Google Scholar] [CrossRef] [Green Version]
n = 50 (100%) | |
---|---|
Female, n (%) | 17 (34.00) |
Age, years, mean (SD) | 9.14 (1.58) |
BMI, Kg/m2, mean (SD) | 16.93 (3.00) |
Current ETS exposure, n (%) | 8 (16.00) |
Paternal education ≥ 8 years, n (%) | 40 (80.00) |
Maternal education ≥ 8 years, n (%) | 38 (76.00) |
Maternal history of asthma, n (%) | 11 (22.00) |
Paternal history of asthma, n (%) | 12 (24.00) |
Disease duration, years, mean (SD) | 5.40 (2.93) |
Atopic index | |
0 | 4 (8.00) |
1 | 14 (28.00) |
≥2 | 32 (64.00) |
Median ICS dose (fluticasone propionate) μg·day−1 | 200 (100–500) |
T1 (Baseline Visit) | T2 (Day 30) | T3 (Day 60) | T4 (Day 90) | p-Value ** | |
---|---|---|---|---|---|
n | 50 | 50 | 50 * | 50 * | |
Diurnal cough, n (%) | 14 (28.00) | 10 (20.00) | 7 (14.00) | 4 (8.00) | <0.001 |
Nocturnal cough, n (%) | 4 (8.00) | 1 (2.00) | 4 (8.00) | 1 (2.00) | 0.058 |
Diurnal wheeze, n (%) | 5 (10.00) | 1 (2.00) | 1 (2.00) | 3 (6.00) | <0.001 |
Nocturnal wheeze, n (%) | 5 (10.00) | 1 (2.00) | 2 (4.00) | 2 (4.00) | 0.004 |
Blocked nose, n (%) | 24 (48.00) | 18 (36.00) | 14 (28.00) | 9 (18.00) | <0.001 |
Symptom score, mean (SD) | 2.18 (3.51) | 1.00 (1.93) | 1.08 (1.98) | 0.84 (2.71) | <0.001 |
Reliever use, n (%) | 5 (10.00) | 1 (2.00) | 1 (2.00) | 0 (0.00) | <0.001 |
MARS score | 43.0 (5.44) | 43.7 (3.31) | 43.9 (1.53) | 44.1 (1.16) | 0.099 |
T1 (Baseline Visit) | T2 (Day 30) | T3 (Day 60) | T4 (Day 90) | p-Value ** | |
---|---|---|---|---|---|
n | 50 | 50 | 50 * | 50 * | |
Urinary PAHs | |||||
2-Hydroxynaphthalene µg/g crea | 7.97 (7.93) | 7.13 (6.03) | 6.77 (5.73) | 4.84 (5.96) | 0.012 |
1-Hydroxynaphthalene µg/g crea | 4.72 (9.03) | 3.84 (4.00) | 2.57 (3.67) | 2.70 (10.1) | 0.098 |
2-Hydroxyfluorene µg/g crea | 0.13 (0.10) | 0.14 (0.12) | 0.13 (0.13) | 0.09 (0.10) | 0.013 |
2-Hydroxyphenanthrene µg/g crea | 0.08 (0.07) | 0.10 (0.13) | 0.09 (0.11) | 0.06 (0.07) | 0.154 |
3-Hydroxyphenanthrene µg/g crea | 0.08 (0.08) | 0.09 (0.07) | 0.09 (0.08) | 0.06 (0.05) | 0.087 |
1,9-Hydroxyphenanthrene µg/g crea | 0.12 (0.09) | 0.13 (0.10) | 0.14 (0.15) | 0.09 (0.10) | 0.196 |
4-Hydroxyphenanthrene µg/g crea | 0.02 (0.02) | 0.01 (0.02) | 0.02 (0.04) | 0.01 (0.02) | 0.991 |
1-Hydroxypyrene µg/g crea | 0.11 (0.09) | 0.11 (0.08) | 0.12 (0.10) | 0.08 (0.08) | 0.078 |
ΣPAH µg/g crea | 13.2 (12.6) | 11.6 (7.52) | 9.94 (6.55) | 7.92 (12.7) | 0.003 |
ΣPAHn µg/g crea | 12.7 (12.5) | 11.0 (7.35) | 9.34 (6.41) | 7.54 (12.4) | 0.003 |
ΣPAHp µg/g crea | 0.30 (0.23) | 0.33 (0.23) | 0.34 (0.30) | 0.22 (0.23) | 0.097 |
Spirometry parameters | |||||
FEV1 %predicted | 91.6 (19.8) | 98.8 (19.1) | 101 (21.4) | 97.6 (16.4) | 0.011 |
FVC %predicted | 92.9 (18.2) | 99.0 (20.0) | 99.4 (22.0) | 97.3 (16.7) | 0.050 |
FEF25–75 %predicted | 85.3 (26.9) | 94.4 (23.8) | 98.0 (25.9) | 92.5 (20.7) | 0.037 |
FEV1/FVC %predicted | 98.0 (7.42) | 99.5 (5.92) | 101 (5.34) | 99.8 (5.39) | 0.044 |
FEV1 (L) | FVC (L) | FEF25–75 (L/s) | FEV1/FVC | Symptom Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | Rho | p-Value | Rho | p-Value | Rho | p-Value | |
2-Hydroxynaphthalene µg/g crea | −0.053 | 0.456 | −0.082 | 0.246 | 0.051 | 0.473 | 0.114 | 0.107 | 0.160 | 0.024 |
1-Hydroxynaphthalene µg/g crea | −0.081 | 0.260 | −0.076 | 0.285 | −0.072 | 0.309 | −0.022 | 0.755 | 0.182 | 0.010 |
2-Hydroxyfluorene µg/g crea | −0.126 | 0.077 | −0.123 | 0.084 | −0.060 | 0.395 | 0.037 | 0.602 | 0.065 | 0.368 |
2-Hydroxyphenanthrene µg/g crea | −0.162 | 0.022 | −0.160 | 0.024 | −0.098 | 0.167 | 0.054 | 0.447 | 0.027 | 0.705 |
3-Hydroxyphenanthrene µg/g crea | −0.146 | 0.039 | −0.140 | 0.048 | −0.109 | 0.124 | 0.037 | 0.598 | 0.061 | 0.397 |
1,9-Hydroxyphenanthrene µg/g crea | −0.058 | 0.413 | −0.057 | 0.418 | −0.048 | 0.501 | 0.014 | 0.800 | 0.013 | 0.856 |
4-Hydroxyphenanthrene µg/g crea | −0.065 | 0.358 | −0.063 | 0.374 | −0.020 | 0.774 | 0.014 | 0.838 | 0.025 | 0.722 |
1-Hydroxypyrene µg/g crea | −0.129 | 0.068 | −0.126 | 0.075 | −0.096 | 0.176 | 0.017 | 0.806 | 0.009 | 0.897 |
ΣPAH µg/g crea | −0.097 | 0.175 | −0.112 | 0.115 | −0.023 | 0.746 | 0.057 | 0.419 | 0.233 | 0.001 |
ΣPAHn µg/g crea | −0.092 | 0.194 | −0.108 | 0.127 | −0.019 | 0.783 | 0.057 | 0.420 | 0.235 | 0.001 |
ΣPAHp µg/g crea | −0.140 | 0.048 | −0.137 | 0.054 | −0.095 | 0.183 | 0.025 | 0.720 | 0.037 | 0.606 |
Symptom score | −0.136 | 0.094 | −0.160 | 0.049 | −0.047 | 0.563 | −0.029 | 0.722 |
Outcomes | |||||
---|---|---|---|---|---|
FEV1, l | FVC, l | FEF25–75, l/s | FEV1/FVC | Symptoms | |
Covariate | |||||
ΣPAH µg/g crea | −0.001 (0.001) | −0.002 (0.002) | −0.002 (0.003) | −0.0001 (0.0003) | 0.045 (0.007) *** |
ΣPAHn µg/g crea | −0.002 (0.001) | −0.002 (0.002) | −0.002 (0.003) | −0.0001 (0.0003) | 0.046 (0.007) *** |
ΣPAHp µg/g crea | 0.0003 (0.077) | 0.030 (0.079) | −0.055 (0.140) | −0.015 (0.016) | 1.1907 (0.381) ** |
Symptoms | −0.016 (0.007) ** | −0.018 (0.007) ** | −0.016 (0.013) | −0.0003 (0.001) |
Indirect Effect | p-Value | Direct Effect | p-Value | %Mediated | |
---|---|---|---|---|---|
ΣPAH µg/g crea | |||||
FEV1, L | −0.011 | 0.04 | −0.0210 | 0.38 | 24.6% |
FVC, L | −0.0123 | 0.02 | −0.0205 | 0.40 | 27.4% |
FEF25–75, L /s | −0.0106 | 0.32 | −0.0246 | 0.52 | 13.3% |
FEV1/FVC | −0.0002 | 0.82 | −0.00192 | 0.76 | 1.6% |
ΣPAHn µg/g crea | |||||
FEV1, L | −0.0113 | 0.04 | −0.0220 | 0.38 | 24.1% |
FVC, L | −0.0126 | 0.02 | −0.0219 | 0.38 | 27.8% |
FEF25–75, L /s | −0.0109 | 0.32 | −0.0249 | 0.58 | 13.5% |
FEV1/FVC | −0.00025 | 0.82 | −0.00173 | 0.78 | 2.2% |
ΣPAHp µg/g crea | |||||
FEV1, L | −0.01180 | <0.001 | 0.00263 | 0.94 | 19.1% |
FVC, L | −0.01331 | <0.001 | 0.01565 | 0.68 | 6.2% |
FEF25–75, L /s | −0.0112 | 0.28 | −0.0189 | 0.76 | 8.4% |
FEV1/FVC | −0.0002 | 0.80 | −0.0060 | 0.38 | 1.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilluffo, G.; Ferrante, G.; Murgia, N.; Mancini, R.; Pichini, S.; Cuffari, G.; Giudice, V.; Tirone, N.; Malizia, V.; Montalbano, L.; et al. Effects of Polycyclic Aromatic Hydrocarbons on Lung Function in Children with Asthma: A Mediation Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1826. https://doi.org/10.3390/ijerph19031826
Cilluffo G, Ferrante G, Murgia N, Mancini R, Pichini S, Cuffari G, Giudice V, Tirone N, Malizia V, Montalbano L, et al. Effects of Polycyclic Aromatic Hydrocarbons on Lung Function in Children with Asthma: A Mediation Analysis. International Journal of Environmental Research and Public Health. 2022; 19(3):1826. https://doi.org/10.3390/ijerph19031826
Chicago/Turabian StyleCilluffo, Giovanna, Giuliana Ferrante, Nicola Murgia, Rosanna Mancini, Simona Pichini, Giuseppe Cuffari, Vittoria Giudice, Nicolò Tirone, Velia Malizia, Laura Montalbano, and et al. 2022. "Effects of Polycyclic Aromatic Hydrocarbons on Lung Function in Children with Asthma: A Mediation Analysis" International Journal of Environmental Research and Public Health 19, no. 3: 1826. https://doi.org/10.3390/ijerph19031826
APA StyleCilluffo, G., Ferrante, G., Murgia, N., Mancini, R., Pichini, S., Cuffari, G., Giudice, V., Tirone, N., Malizia, V., Montalbano, L., Fasola, S., Pacifici, R., Viegi, G., & La Grutta, S. (2022). Effects of Polycyclic Aromatic Hydrocarbons on Lung Function in Children with Asthma: A Mediation Analysis. International Journal of Environmental Research and Public Health, 19(3), 1826. https://doi.org/10.3390/ijerph19031826