Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments
Abstract
:1. Introduction
2. Study 1—Visual Statistical Learning Task
2.1. Materials and Methods
2.1.1. Participants
2.1.2. Apparatus, Stimuli, and Procedure
2.2. Results
2.2.1. Habituation Phase
2.2.2. Test Phase
3. Study 2—Visual Rule Learning Task
3.1. Materials and Methods
3.1.1. Participants
3.1.2. Apparatus, Stimuli, and Procedure
3.2. Results
3.2.1. Habituation Phase
3.2.2. Test Phase
4. Within-Subjects Comparison of Infants’ Performance in the SL and RL Tasks
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, D.V.M.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; The CATALISE-2 consortium. Phase 2 of CATALISE: A Multinational and Multidisciplinary Delphi Consensus Study of Problems with Language Development: Terminology. J. Child. Psychol. Psychiatr. 2017, 58, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Sansavini, A.; Favilla, M.E.; Guasti, M.T.; Marini, A.; Millepiedi, S.; Di Martino, M.V.; Vecchi, S.; Battajon, N.; Bertolo, L.; Capirci, O.; et al. Developmental Language Disorder: Early Predictors, Age for the Diagnosis, and Diagnostic Tools. A Scoping Review. Brain. Sci. 2021, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Catts, H.W.; Fey, M.E.; Tomblin, J.B.; Zhang, X. A Longitudinal Investigation of Reading Outcomes in Children with Language Impairments. J. Speech Lang. Hear. Res. 2002, 45, 1142–1157. [Google Scholar] [CrossRef] [Green Version]
- Conti-Ramsden, G.; St Clair, M.C.; Pickles, A.; Durkin, K. Developmental Trajectories of Verbal and Nonverbal Skills in Individuals with a History of Specific Language Impairment: From Childhood to Adolescence. J. Speech Lang. Hear. Res. 2012, 55, 1716–1735. [Google Scholar] [CrossRef]
- Tomblin, J.B.; Zhang, X.; Buckwalter, P.; Catts, H. The Association of Reading Disability, Behavioral Disorders, and Language Impairment among Second-grade Children. J. Child. Psychol. Psychiatr. 2000, 41, 473–482. [Google Scholar] [CrossRef]
- Ramus, F.; Marshall, C.R.; Rosen, S.; Van Der Lely, H.K. Phonological Deficits in Specific Language Impairment and Developmental Dyslexia: Towards a Multidimensional Model. Brain 2013, 136, 630–645. [Google Scholar] [CrossRef] [Green Version]
- Plomin, R.; Kovas, Y. Generalist Genes and Learning Disabilities. Psychol. Bull. 2005, 131, 592. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.V.; Snowling, M.J. Developmental Dyslexia and Specific Language Impairment: Same or Different? Psychol. Bull. 2004, 130, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Souza, D.; d’Souza, H.; Karmiloff-Smith, A. Precursors to Language Development in Typically and Atypically Developing Infants and Toddlers: The Importance of Embracing Complexity. J. Child Lang. 2017, 44, 591–627. [Google Scholar] [CrossRef] [Green Version]
- Aslin, R.N.; Newport, E.L. What Statistical Learning Can and Can’t Tell Us about Language Acquisition. In Infant Pathways to Language; Psychology Press: New York, NY, USA, 2009. [Google Scholar]
- Romberg, A.R.; Saffran, J.R. Statistical Learning and Language Acquisition. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Saffran, J.R.; Aslin, R.N.; Newport, E.L. Statistical Learning by 8-Month-Old Infants. Science 1996, 274, 1926–1928. [Google Scholar] [CrossRef] [Green Version]
- Ellis, E.M.; Gonzalez, M.R.; Deák, G.O. Visual Prediction in Infancy: What Is the Association with Later Vocabulary? Lang. Learn. Dev. 2014, 10, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Shafto, C.L.; Conway, C.M.; Field, S.L.; Houston, D.M. Visual Sequence Learning in Infancy: Domain-general and Domain-specific Associations with Language. Infancy 2012, 17, 247–271. [Google Scholar] [CrossRef] [Green Version]
- Saffran, J.R.; Werker, J.F.; Werner, L.A. Handbook of Child Psychology: Vol 2, Cognition, Perception, and Language; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Goyet, L.; Nishibayashi, L.L.; Nazzi, T. Early syllabic segmentation of fluent speech by infants acquiring French. PLoS ONE 2013, 8, e79646. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Frota, S. Emerging word segmentation abilities in European Portuguese-learning infants: New evidence for the rhythmic unit and the edge factor. J. Child Lang. 2018, 45, 1294–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, G.F.; Vijayan, S.; Rao, S.B.; Vishton, P.M. Rule Learning by Seven-Month-Old Infants. Science 1999, 283, 77–80. [Google Scholar] [CrossRef]
- Rabagliati, H.; Robertson, A.; Carmel, D. The Importance of Awareness for Understanding Language. J. Exp. Psychol. Gen. 2018, 147, 190. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, R.; Riva, V.; Cantiani, C.; Molteni, M.; Macchi Cassia, V.; Bulf, H. Infants’ Learning of Rule-Based Visual Sequences Predicts Language Outcome at 2 Years. Fronts Psychol. 2020, 11, 281. [Google Scholar] [CrossRef]
- Endress, A.D.; Bonatti, L.L. Rapid Learning of Syllable Classes from a Perceptually Continuous Speech Stream. Cognition 2007, 105, 247–299. [Google Scholar] [CrossRef]
- Endress, A.D.; Mehler, J. Primitive Computations in Speech Processing. Q. J. Exp. Psychol. 2009, 62, 2187–2209. [Google Scholar] [CrossRef]
- Kovács, A.M.; Endress, A.D. Hierarchical Processing in Seven-month-old Infants. Infancy 2014, 19, 409–425. [Google Scholar] [CrossRef]
- Mintz, T.H. Category Induction from Distributional Cues in an Artificial Language. Mem. Cognit. 2002, 30, 678–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulf, H.; Johnson, S.P.; Valenza, E. Visual Statistical Learning in the Newborn Infant. Cognition 2011, 121, 127–132. [Google Scholar] [CrossRef]
- Gervain, J.; Macagno, F.; Cogoi, S.; Peña, M.; Mehler, J. The Neonate Brain Detects Speech Structure. PNAS 2008, 105, 14222–14227. [Google Scholar] [CrossRef] [Green Version]
- Teinonen, T.; Fellman, V.; Näätänen, R.; Alku, P.; Huotilainen, M. Statistical Language Learning in Neonates Revealed by Event-Related Brain Potentials. BMC Neurosci. 2009, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Bulf, H.; Brenna, V.; Valenza, E.; Johnson, S.P.; Turati, C. Many Faces, One Rule: The Role of Perceptual Expertise in Infants’ Sequential Rule Learning. Front. Psychol. 2015, 6, 1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulf, H.; Capparini, C.; Nava, E.; de Hevia, M.D.; Cassia, V.M. Space Modulates Cross-Domain Transfer of Abstract Rules in Infants. J. Exp. Child Psychol. 2022, 213, 105270. [Google Scholar] [CrossRef]
- Bulf, H.; Quadrelli, E.; Brady, S.; Nguyen, B.; Macchi Cassia, V.; Johnson, S.P. Rule Learning Transfer across Linguistic and Visual Modalities in 7-month-old Infants. Infancy 2021, 26, 442–454. [Google Scholar] [CrossRef]
- Saffran, J.R.; Kirkham, N.Z. Infant Statistical Learning. Annu. Rev. Psychol. 2018, 69, 181–203. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.S.; Mintz, T.H. Learning Non-Adjacent Rules and Non-Adjacent Dependencies from Human Actions in 9-Month-Old Infants. PLoS ONE 2021, 16, e0252959. [Google Scholar] [CrossRef] [PubMed]
- Saffran, J.R. Statistical Learning as a Window into Developmental Disabilities. J. Neurodev. Disord. 2018, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Ullman, M.T. The Declarative/Procedural Model: A Neurobiological Model of Language Learning, Knowledge, and Use. In Neurobiology of Language; Elsevier: Amsterdam, The Netherlands, 2016; pp. 953–968. [Google Scholar]
- Ullman, M.T.; Pierpont, E.I. Specific Language Impairment Is Not Specific to Language: The Procedural Deficit Hypothesis. Cortex 2005, 41, 399–433. [Google Scholar] [CrossRef]
- Karmiloff-Smith, A. Development Itself Is the Key to Understanding Developmental Disorders. Trends Cogn. Sci. 1998, 2, 389–398. [Google Scholar] [CrossRef]
- Evans, J.L.; Saffran, J.R.; Robe-Torres, K. Statistical Learning in Children with Specific Language Impairment. J. Speech Lang. Hear. 2009, 52, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Mainela-Arnold, E.; Evans, J.L. Do Statistical Segmentation Abilities Predict Lexical-Phonological and Lexical-Semantic Abilities in Children with and without SLI? J. Child Lang. 2014, 41, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Gabay, Y.; Thiessen, E.D.; Holt, L.L. Impaired Statistical Learning in Developmental Dyslexia. J. Speech Lang. Hear. Res. 2015, 58, 934–945. [Google Scholar] [CrossRef]
- Singh, S.; Walk, A.; Conway, C. Visual Statistical Learning Deficits in Children with Developmental Dyslexia: An Event Related Potential Study. CogSci 2016. Available online: https://works.bepress.com/anne-walk/26/ (accessed on 8 December 2021).
- Singh, S.; Walk, A.M.; Conway, C.M. Atypical Predictive Processing during Visual Statistical Learning in Children with Developmental Dyslexia: An Event-Related Potential Study. Ann. Dyslexia 2018, 68, 165–179. [Google Scholar] [CrossRef]
- Katan, P.; Kahta, S.; Sasson, A.; Schiff, R. Performance of Children with Developmental Dyslexia on High and Low Topological Entropy Artificial Grammar Learning Task. Ann. Dyslexia 2017, 67, 163–179. [Google Scholar] [CrossRef]
- Nigro, L.; Jiménez-Fernández, G.; Simpson, I.C.; Defior, S. Implicit Learning of Non-Linguistic and Linguistic Regularities in Children with Dyslexia. Ann. Dyslexia 2016, 66, 202–218. [Google Scholar] [CrossRef]
- Pavlidou, E.V.; Williams, J.M. Implicit Learning and Reading: Insights from Typical Children and Children with Developmental Dyslexia Using the Artificial Grammar Learning (AGL) Paradigm. Res. Dev. Disabil. 2014, 35, 1457–1472. [Google Scholar] [CrossRef]
- Pennington, B.F.; Bishop, D.V. Relations among Speech, Language, and Reading Disorders. Annu. Rev. Psychol. 2009, 60, 283–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, B.F. From Single to Multiple Deficit Models of Developmental Disorders. Cognition 2006, 101, 385–413. [Google Scholar] [CrossRef]
- van Bergen, E.; De Jong, P.F.; Maassen, B.; van der Leij, A. The Effect of Parents’ Literacy Skills and Children’s Preliteracy Skills on the Risk of Dyslexia. J. Abnorm. Child Psychol. 2014, 42, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trautmann, M. A Neuroconstructivistic Research Strategy to Study the Underlying Causes of Dyslexia. Transl. Dev. Psychiatry 2014, 2, 21684. [Google Scholar] [CrossRef] [Green Version]
- Kerkhoff, A.; De Bree, E.; De Klerk, M.; Wijnen, F. Non-Adjacent Dependency Learning in Infants at Familial Risk of Dyslexia. J. Child Lang. 2013, 40, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.; Fox, A.B.; Green, S.; Alt, M.; Hogan, T.P.; Petscher, Y.; Cowan, N. Working Memory Profiles of Children with Dyslexia, Developmental Language Disorder, or Both. J. Speech Lang. Hear. Res. 2019, 62, 1839–1858. [Google Scholar] [CrossRef] [PubMed]
- Cantiani, C.; Riva, V.; Piazza, C.; Bettoni, R.; Molteni, M.; Choudhury, N.; Marino, C.; Benasich, A.A. Auditory Discrimination Predicts Linguistic Outcome in Italian Infants with and without Familial Risk for Language Learning Impairment. Dev. Cogn. Neurosci. 2016, 20, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, N.; Benasich, A.A. Maturation of Auditory Evoked Potentials from 6 to 48 Months: Prediction to 3 and 4 Year Language and Cognitive Abilities. Clin. Neurophysiol. 2011, 122, 320–338. [Google Scholar] [CrossRef]
- Leppänen, P.H.; Richardson, U.; Pihko, E.; Eklund, K.M.; Guttorm, T.K.; Aro, M.; Lyytinen, H. Brain Responses to Changes in Speech Sound Durations Differ between Infants with and without Familial Risk for Dyslexia. Dev. Neuropsychol. 2002, 22, 407–422. [Google Scholar] [CrossRef]
- van Herten, M.; Pasman, J.; van Leeuwen, T.H.; Been, P.H.; van der Leij, A.; Zwarts, F.; Maassen, B. Differences in AERP Responses and Atypical Hemispheric Specialization in 17-Month-Old Children at Risk of Dyslexia. Brain Res. 2008, 1201, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.J.; Bishop, D.V. Sequence-specific Procedural Learning Deficits in Children with Specific Language Impairment. Dev. Sci. 2014, 17, 352–365. [Google Scholar] [CrossRef]
- Hollich, G.; Hirsh-Pasek, K.; Golinkoff, R.M.I. What Does It Take to Learn a Word? Monogr. Soc. Res. Child Dev. 2000, 65, 1–16. [Google Scholar] [CrossRef]
- Kirkham, N.Z.; Slemmer, J.A.; Johnson, S.P. Visual Statistical Learning in Infancy: Evidence for a Domain General Learning Mechanism. Cognition 2002, 83, B35–B42. [Google Scholar] [CrossRef]
- Bulf, H.; de Hevia, M.D.; Gariboldi, V.; Cassia, V.M. Infants Learn Better from Left to Right: A Directional Bias in Infants’ Sequence Learning. Sci. Rep. 2017, 7, 2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayley, N. Bayley-III: Bayley Scales of Infant and Toddler Development; Giunti OS: Florence, Italy, 2009. [Google Scholar]
- Vinegard, M. A Revised Adult Dyslexia Check List. Educare 1994, 48, 21–23. [Google Scholar]
- Pinnelli, S.; Cursi, R. Dislessia in Età Adulta: Il Questionario Di Vinegrad in Una Ricerca Esplorativa Con Studenti Universitari; Genovese, E., Ed.; Dislessia e Università. Esperienze e Interventi di Supporto, 2010; pp. 91–133. Available online: https://rivistedigitali.erickson.it/dislessia/archivio/vol-9-n-2-2/dislessia-in-eta-adulta-il-questionario-di-vinegrad-in-una-ricerca-esplorativa-con-studenti-universitari/ (accessed on 8 December 2021).
- Sartori, G.; Job, R.; Tressoldi, P.E. Batteria per La Valutazione Della Dislessia e Della Disortografia Evolutiva; Organizzazioni Speciali: Firenze, Italy, 1995. [Google Scholar]
- Judica, A.; De Luca, M. Prova Di Velocità Di Lettura Brani per La Scuola Media Superiore; Palomar S.r.l. e Arnoldo Mondadori Editore S.p.A.: Milano, Italy, 1993. [Google Scholar]
- Bettoni, R.; Riva, V.; Cantiani, C.; Riboldi, E.M.; Molteni, M.; Cassia, V.M.; Bulf, H. Dysfunctions in Infants’ Statistical Learning Are Related to Parental Autistic Traits. J. Autism Dev. Dis. 2021, 51, 1–11. [Google Scholar] [CrossRef]
- Slater, A.; Earle, D.C.; Morison, V.; Rose, D. Pattern Preferences at Birth and Their Interaction with Habituation-Induced Novelty Preferences. J. Exp. Child Psychol. 1985, 39, 37–54. [Google Scholar] [CrossRef]
- Tallal, P.; Benasich, A.A. Developmental Language Learning Impairments. Dev. Psychopathol. 2002, 14, 559–579. [Google Scholar] [CrossRef]
- Colombo, J.; Freeseman, L.J.; Coldren, J.T.; Frick, J.E. Individual Differences in Infant Fixation Duration: Dominance of Global versus Local Stimulus Properties. Cogn. Dev. 1995, 10, 271–285. [Google Scholar] [CrossRef]
- Choudhury, N.; Leppanen, P.H.; Leevers, H.J.; Benasich, A.A. Infant Information Processing and Family History of Specific Language Impairment: Converging Evidence for RAP Deficits from Two Paradigms. Dev. Sci. 2007, 10, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Siegelman, N.; Bogaerts, L.; Elazar, A.; Arciuli, J.; Frost, R. Linguistic Entrenchment: Prior Knowledge Impacts Statistical Learning Performance. Cognition 2018, 177, 198–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegelman, N.; Frost, R. Statistical Learning as an Individual Ability: Theoretical Perspectives and Empirical Evidence. J. Mem. Lang. 2015, 81, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Lammertink, I.; Boersma, P.; Rispens, J.; Wijnen, F. Visual Statistical Learning in Children with and without DLD and Its Relation to Literacy in Children with DLD. Read. Writ. 2020, 33, 1557–1589. [Google Scholar] [CrossRef] [Green Version]
- Van Witteloostuijn, M.; Boersma, P.; Wijnen, F.; Rispens, J. The Contribution of Individual Differences in Statistical Learning to Reading and Spelling Performance in Children with and without Dyslexia. Dyslexia 2021, 27, 168–186. [Google Scholar] [CrossRef]
- Gómez, R.L.; Gerken, L. Infant Artificial Language Learning and Language Acquisition. Trends Cogn. Sci. 2000, 4, 178–186. [Google Scholar] [CrossRef]
- Cantiani, C.; Lorusso, M.L.; Perego, P.; Molteni, M.; Guasti, M.T. Developmental Dyslexia with and without Language Impairment: ERPs Reveal Qualitative Differences in Morphosyntactic Processing. Dev. Neuropsychol. 2015, 40, 291–312. [Google Scholar] [CrossRef]
- Rispens, J.; Been, P. Sensitivity to Subject-Verb Agreement in Children with Developmental Language Disorders: A Comparison of Developmental Dyslexia with SLI. J. Neurolinguist. 2004, 17, 333–347. [Google Scholar] [CrossRef]
- Wilsenach, C.; Wijnen, F. Perceptual Sensitivity to Morphosyntactic Agreement in Language Learners: Evidence from Dutch Children at Risk for Developing Dyslexia. In Proceedings of the BUCLD 28: Proceeding of the 28th Annual Boston University Conference on Language and Development, Boston, MA, USA, 31 October–2 November 2003; Volume 2, pp. 645–656. [Google Scholar]
- Blom, E.; Vasić, N.; de Jong, J. Production and Processing of Subject–Verb Agreement in Monolingual Dutch Children with Specific Language Impairment. J. Speech Lang. Hear. Res. 2014, 57, 952–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellutino, F.R.; Fletcher, J.M.; Snowling, M.J.; Scanlon, D.M. Specific Reading Disability (Dyslexia): What Have We Learned in the Past Four Decades? J. Child Psychol. Psychiatry 2004, 45, 2–40. [Google Scholar] [CrossRef]
- Frank, M.C.; Slemmer, J.A.; Marcus, G.F.; Johnson, S.P. Information from Multiple Modalities Helps 5-month-olds Learn Abstract Rules. Dev. Sci. 2009, 12, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Quail, M.; Williams, C.; Leitao, S. Verbal Working Memory in Specific Language Impairment: The Effect of Providing Visual Support. Int. J. Speech Lang. Pathol. 2009, 11, 220–233. [Google Scholar] [CrossRef]
Study 1—Visual SL Task | |||||
---|---|---|---|---|---|
TD (N = 21) | HR (N = 20) | ||||
M (SD) | M (SD) | t (df) | p | Cohen’s d | |
Gestational weeks | 39.06 (1.39) | 38.35 (1.63) | 1.39 (34) | 0.174 | 0.466 |
Birth weight (gr) | 3270 (413.51) | 3192.50 (583.14) | 0.448 (34) | 0.657 | 0.150 |
Bayley Cognitive sub-scales 1 | 11.19 (1.38) | 11.78 (1.44) | −1.219 (32) | 0.232 | −0.419 |
Mother’s age | 32.50 (6.22) | 34.65 (3.86) | −1.294 (36) | 0.204 | −0.421 |
Father’s age | 35.50 (6.07) | 36.60 (4.56) | −0.636 (36) | 0.529 | −0.207 |
Mother’s educational level 2 | 53.22 (16.65) | 56.75 (17.64) | −0.881 (36) | 0.423 | −0.264 |
Father’s educational level | 54.44 (13.38) | 45.00 (18.21) | 1.804 (36) | 0.080 | 0.586 |
Socioeconomic status 3 | 61.11 (16.05) | 58.50 (17.78) | 0.473 (36) | 0.639 | 0.154 |
Visual SL Task—Habituation Phase | |||||
---|---|---|---|---|---|
TD Infants | HR Infants | ||||
M (SD) | M (SD) | t (df) | p | Cohen’s d | |
Number of trials | 7.10 (1.92) | 8.15 (3.66) | 1.163 (39) | 0.252 | 0.364 |
Total looking times (s) | 98.74 (61.33) | 95.90 (43.31) | 0.486 (39) | 0.865 | 0.053 |
Slope | −3.99 (4.02) | −3.17 (3.48) | 0.691 (38) | 0.494 | 0.26 |
Study 2—Visual RL Task | |||||
---|---|---|---|---|---|
TD (N = 19) | HR (N = 19) | ||||
M (SD) | M (SD) | t (df) | p | Cohen’s d | |
Gestational weeks | 39.35 (1.72) | 38.61 (1.88) | 1.36 (33) | 0.184 | 0.459 |
Birth weight (gr) | 3361.44 (378.53) | 3190.83 (561.14) | 1.07 (34) | 0.292 | 0.356 |
Bayley Cognitive sub-scales | 11.22 (1.70) | 12.35 (1.12) | −2.312 (33) | 0.027 * | −0.782 |
Mother’s age | 33.68 (4.40) | 35.58 (3.60) | −1.454 (36) | 0.155 | −0.472 |
Father’s age | 35.53 (4.09) | 37.63 (5.23) | −1.382 (36) | 0.175 | −0.449 |
Mother’s educational level | 60.56 (13.05) | 58.16 (18.50) | 0.453 (35) | 0.653 | 0.149 |
Father’s educational level | 53.33 (12.83) | 44.74 (19.82) | 1.574 (35) | 0.126 | −512 |
Socioeconomic status | 65.00 (12.00) | 61.84 (15.48) | 0.691 (35) | 0.494 | 0.227 |
Visual RL Task—Habituation Phase | |||||
---|---|---|---|---|---|
TD Infants | HR Infants | ||||
M (SD) | M (SD) | t (df) | p | Cohen’s d | |
Numbers of trials | 9.05 (3.55) | 9.05 (4.59) | 0.000 (36) | 1.00 | 4.102 |
Total looking times (s) | 65.23 (37.79) | 64.76 (38.14) | 0.038 (36) | 0.970 | 0.012 |
Slope | 1.30 (1.04) | −1.54 (1.28) | 0.640 (36) | 0.526 | 0.208 |
Longitudinal Sample | |||||
---|---|---|---|---|---|
TD (N = 10) | HR (N = 15) | ||||
M (SD) | M (SD) | t (df) | p | Cohen’s d | |
Gestational weeks | 39.50 (1.35) | 38.27 (1.83) | 1.82 (23) | 0.082 | 0.743 |
Birth weight (gr) | 3361.50 (456.97) | 3141.00 (601.71) | 0.983 (23) | 0.336 | 0.401 |
Bayley Cognitive sub-scales | 11.10 (1.66) | 12.15 (1.21) | −1.759 (21) | 0.093 | −0.740 |
Mother’s age | 33.50 (5.38) | 35.33 (3.77) | −1.004 (23) | 0.326 | −0.410 |
Father’s age | 35.70 (3.23) | 37.00 (4.65) | −0.767 (23) | 0.451 | −0.313 |
Mother’s educational level | 56.00 (13.50) | 59.67 (17.53) | −0.558 (23) | 0.582 | −0.228 |
Father’s educational level | 54.00 (16.46) | 45.33 (19.95) | 1.137 (23) | 0.267 | 0.464 |
Socioeconomic status | 63.00 (14.94) | 61.33 (16.74) | 0.254 (23) | 0.802 | 0.104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettoni, R.; Cantiani, C.; Riva, V.; Molteni, M.; Macchi Cassia, V.; Bulf, H. Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments. Int. J. Environ. Res. Public Health 2022, 19, 1877. https://doi.org/10.3390/ijerph19031877
Bettoni R, Cantiani C, Riva V, Molteni M, Macchi Cassia V, Bulf H. Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments. International Journal of Environmental Research and Public Health. 2022; 19(3):1877. https://doi.org/10.3390/ijerph19031877
Chicago/Turabian StyleBettoni, Roberta, Chiara Cantiani, Valentina Riva, Massimo Molteni, Viola Macchi Cassia, and Hermann Bulf. 2022. "Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments" International Journal of Environmental Research and Public Health 19, no. 3: 1877. https://doi.org/10.3390/ijerph19031877
APA StyleBettoni, R., Cantiani, C., Riva, V., Molteni, M., Macchi Cassia, V., & Bulf, H. (2022). Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments. International Journal of Environmental Research and Public Health, 19(3), 1877. https://doi.org/10.3390/ijerph19031877