Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China
Abstract
:1. Introduction
- What impact does artificial intelligence have on the energy efficiency of Chinese manufacturing enterprises? How specific is the impact?
- In what ways does artificial intelligence affect the energy efficiency of manufacturing enterprises?
- What kind of heterogeneity is there in the impact of artificial intelligence on the energy efficiency of manufacturing enterprises?
2. Literature Review and Research Hypothesis
3. Model Design
3.1. The Model
3.2. The Variables
3.3. Data Sources
4. Empirical Test
4.1. Benchmark Regression
4.2. Endogenous Test
4.3. Robustness Test
4.4. Heterogeneity Test
4.5. Influence Mechanism Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Macharia, K.K.; Gathiaka, J.K.; Ngui, D. Energy efficiency in the Kenyan manufacturing sector. Energy Policy 2022, 161, 112715. [Google Scholar] [CrossRef]
- Su, B.; Goh, T.; Ang, B.W.; Ng, T.S. Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city. Energy Policy 2022, 161, 112732. [Google Scholar] [CrossRef]
- BP. BP Statistical Review of World Energy; BP Statistical Review: London, UK, 2020; Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 1 December 2021).
- Zhu, J.; Lin, B. Economic growth pressure and energy efficiency improvement: Empirical evidence from Chinese cities. Appl. Energy 2022, 307, 118275. [Google Scholar] [CrossRef]
- Rai, V.; Henry, A.D. Agent-based modelling of consumer energy choices. Nat. Clim. Chang. 2016, 6, 556–562. [Google Scholar] [CrossRef]
- He, Y.; Fu, F.; Liao, N. Exploring the path of carbon emissions reduction in China’s industrial sector through energy efficiency enhancement induced by R&D investment. Energy 2021, 225, 120208. [Google Scholar]
- Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey. J. Environ. Manag. 2021, 294, 113004. [Google Scholar] [CrossRef]
- Jung, J.H.; Lim, D. Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technol. Forecast. Soc. 2020, 159, 120202. [Google Scholar] [CrossRef]
- Lambrecht, J.; Kästner, L.; Guhl, J.; Krüger, J. Towards commissioning, resilience and added value of Augmented Reality in robotics: Overcoming technical obstacles to industrial applicability. Robot Comput.-Int. Manuf. 2021, 71, 102178. [Google Scholar] [CrossRef]
- Ni, B.; Obashi, A. Robotics technology and firm-level employment adjustment in Japan. Jpn. World Econ. 2021, 57, 101054. [Google Scholar] [CrossRef]
- Aghion, P.; Jones, B.F.; Jones, C.I. Artificial Intelligence and Economic Growth; University of Chicago Press: Chicago, IL, USA, 2019; pp. 237–282. [Google Scholar]
- Liu, J.; Liu, L.; Qian, Y.; Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan Sci. 2021, 101002. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wei, X.; Zhang, F. Exploring the coupling relationship between urbanization and energy eco-efficiency: A case study of 281 prefecture-level cities in China. Sustain. Cities Soc. 2021, 64, 102563. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhang, T.; Wang, L. Revisiting China’s provincial energy efficiency and its influencing factors. Energy 2020, 208, 118361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, X.; Zhang, H.; Liu, Y.; Yue, T.; Liu, G. Energy endowment, environmental regulation, and energy efficiency: Evidence from China. Technol. Forecast. Soc. 2022, 177, 121528. [Google Scholar] [CrossRef]
- Curtis, E.M.; Lee, J.M. When do environmental regulations backfire? Onsite industrial electricity generation, energy efficiency and policy instruments. J. Environ. Econ. Manag. 2019, 96, 174–194. [Google Scholar] [CrossRef]
- Sun, P.; Liu, L.; Qayyum, M. Energy efficiency comparison amongst service industry in Chinese provinces from the perspective of heterogeneous resource endowment: Analysis using undesirable super efficiency SBM-ML model. J. Clean. Prod. 2021, 328, 129535. [Google Scholar] [CrossRef]
- Lin, B.; Moubarak, M. Renewable energy consumption–economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Wurlod, J.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Popp, D.C. The effect of new technology on energy consumption. Resour. Energy Econ. 2001, 23, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Welsch, H.; Ochsen, C. The determinants of aggregate energy use in West Germany: Factor substitution, technological change, and trade. Energy Econ. 2005, 27, 93–111. [Google Scholar] [CrossRef]
- Gerstlberger, W.; Knudsen, M.P.; Dachs, B.; Schröter, M. Closing the energy-efficiency technology gap in European firms? Innovation and adoption of energy efficiency technologies. J. Eng. Technol. Manag. 2016, 40, 87–100. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities. Sci. Total Environ. 2020, 709, 136172. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. 2021, 167, 120659. [Google Scholar] [CrossRef]
- Saunders, H.D. Fuel conserving (and using) production functions. Energy Econ. 2008, 30, 2184–2235. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- González, J.F. Empirical evidence of direct rebound effect in Catalonia. Energy Policy 2010, 38, 2309–2314. [Google Scholar] [CrossRef]
- Lemoine, D. General equilibrium rebound from energy efficiency innovation. Eur. Econ. Rev. 2020, 125, 103431. [Google Scholar] [CrossRef]
- Gillingham, K.; Rapson, D.; Wagner, G. The rebound effect and energy efficiency policy. Rev. Env. Econ. Policy 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Jin, S. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea. Energy Policy 2007, 35, 5622–5629. [Google Scholar] [CrossRef]
- Vélez-Henao, J.; García-Mazo, C.; Freire-González, J.; Vivanco, D.F. Environmental rebound effect of energy efficiency improvements in Colombian households. Energy Policy 2020, 145, 111697. [Google Scholar] [CrossRef]
- Adha, R.; Hong, C.; Firmansyah, M.; Paranata, A. Rebound effect with energy efficiency determinants: A two-stage analysis of residential electricity consumption in Indonesia. Sustain. Prod. Consum. 2021, 28, 556–565. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Vocke, C.; Constantinescu, C.; Popescu, D. Application potentials of artificial intelligence for the design of innovation processes. Procedia CIRP 2019, 84, 810–813. [Google Scholar] [CrossRef]
- Vlačić, E.; Dabić, M.; Daim, T.; Vlajčić, D. Exploring the impact of the level of absorptive capacity in technology development firms. Technol. Forecast. Soc. 2019, 138, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Catania, L.J. 3-The science and technologies of artificial intelligence (AI). In Foundations of Artificial Intelligence in Healthcare and Bioscience; Catania, L.J., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 29–72. [Google Scholar]
- O’Leary, D.E. Artificial intelligence and big data. IEEE Intell. Syst. 2013, 28, 96–99. [Google Scholar] [CrossRef]
- Goldfarb, A.; Trefler, D. AI and International Trade; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Gao, Q.; Li, X.; Zhang, Y. AI development and employment skill structure: A case study of China. Econ. Anal. Policy 2022, 73, 242–254. [Google Scholar] [CrossRef]
- Jiang, X.; Fu, W.; Li, G. Can the improvement of living environment stimulate urban Innovation?—Analysis of high-quality innovative talents and foreign direct investment spillover effect mechanism. J. Clean. Prod. 2020, 255, 120212. [Google Scholar] [CrossRef]
- Du, C.J.; Hu, J.; Chen, W.X. Development model and countermeasures of china’s new generation of artificial intelligence industry. Econ. Rev. J. 2018, 4, 41–47. [Google Scholar]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Huang, J.; Koroteev, D.D. Artificial intelligence for planning of energy and waste management. Sustain. Energy Technol. Assess. 2021, 47, 101426. [Google Scholar] [CrossRef]
- Edler, D.; Ribakova, T. The impact of industrial robots on the level and structure of employment in Germany—A simulation study for the period 1980–2000. Technol. Forecast. Soc. 1994, 45, 255–274. [Google Scholar] [CrossRef]
- Deng, Z. Promoting the deep integration of artificial intelligence and manufacturing industry: Difficulties and policy suggestions. Econ. Rev. J. 2018, 11, 13–20. [Google Scholar]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Sowa, K.; Przegalinska, A.; Ciechanowski, L. Cobots in knowledge work: Human–AI collaboration in managerial professions. J. Bus. Res. 2021, 125, 135–142. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Gallaher, M.P.; Oliver, Z.T.; Rieth, K.T.; O’Connor, A.C. Economic Analysis of Technology Infrastructure Needs for Advanced Manufacturing: Smart Manufacturing; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [Google Scholar] [CrossRef]
- Supekar, S.D.; Graziano, D.J.; Riddle, M.E.; Nimbalkar, S.U.; Das, S.; Shehabi, A.; Cresko, J. A framework for quantifying energy and productivity benefits of smart manufacturing technologies. Procedia CIRP 2019, 80, 699–704. [Google Scholar] [CrossRef]
- Sarkar, M.; Sarkar, B. How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Clean. Prod. 2020, 262, 121200. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Chun, D.; Zeeshan; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [Google Scholar] [CrossRef]
- Smajla, I.; Sedlar, D.K.; Vulin, D.; Jukić, L. Influence of smart meters on the accuracy of methods for forecasting natural gas consumption. Energy Rep. 2021, 7, 8287–8297. [Google Scholar] [CrossRef]
- Tang, W.; Wang, H.; Lee, X.; Yang, H. Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data. Energy 2022, 240, 122500. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Karuppiah, M.; Kumar, P.M. Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustain. Energy Technol. Assess. 2021, 47, 101358. [Google Scholar] [CrossRef]
- Bloom, N.; Genakos, C.; Martin, R.; Sadun, R. Modern management: Good for the environment or just hot air? Econ. J. 2010, 120, 551–572. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Zhou, P.; Zhou, D. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Econ. Model 2013, 35, 283–289. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. Renew. Sustain. Energy Rev. 2018, 96, 226–239. [Google Scholar] [CrossRef]
- Tang, L.; He, G. How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China. Energy 2021, 235, 121375. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Yang, G.; Hou, Y. The use of industrial robots, technological upgrading and economic growth. China Ind. Econ. 2020, 10, 140–158. [Google Scholar]
- Boubakri, N.; Cosset, J.; Saffar, W. The role of state and foreign owners in corporate risk-taking: Evidence from privatization. J. Financ. Econ. 2013, 108, 641–658. [Google Scholar] [CrossRef]
- Harris, M.N.; Mátyás, L. A comparative analysis of different IV and GMM estimators of dynamic panel data models. Int. Stat. Rev. 2004, 72, 397–408. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and emerging digital technologies in the energy sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Lee, D.; Chen, Y.; Chao, S. Universal workflow of artificial intelligence for energy saving. Energy Rep. 2022, 8, 1602–1633. [Google Scholar] [CrossRef]
- Fisher-Vanden, K.; Jefferson, G.H.; Jingkui, M.; Jianyi, X. Technology development and energy productivity in China. Energy Econ. 2006, 28, 690–705. [Google Scholar] [CrossRef]
- Li, L.S.; Zhou, Y. Can technological progress improve energy efficiency: Based on the empirical study on Chinese industrial sectors. Manag. World 2006, 10, 82–89. [Google Scholar]
- Huang, G.; He, L.; Lin, X. Robot adoption and energy performance: Evidence from Chinese industrial firms. Energy Econ. 2022, 107, 105837. [Google Scholar] [CrossRef]
- Wang, E.; Lee, C.; Li, Y. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Econ. 2022, 105, 105748. [Google Scholar] [CrossRef]
Variables | Symbol | Definition Measuring Method | Unit | Data Sources |
---|---|---|---|---|
Industrial robots | AI | Installation amount of industrial robots | 1 unit | International Federation of Robotics (IFR) |
Total factor energy efficiency | TFP | DEA-Malmquist model | / | The comprehensive survey conducted by the Guangdong Provincial Economic and Information Technology Commission on the situation of enterprises above a designated size in the province |
Debt-to-asset ratio | Lcv | The ratio of the total amount of corporate liabilities to total assets | / | |
Enterprise age | Firmage | The current date minus the enterprises’ registered date | year | |
Ownership of enterprises | Owner-ship | If the enterprise is a private company, it is 1, and for the rest it is 0 | / | |
Enterprise performance | Ros | The ratio of net profit to operating revenue | / | |
Enterprise energy consumption level | Energy | If enterprise is in the six high energy consumption industries, it is 1, and for the rest it is 0 | / |
40,053 | 0.3052 | 0.7087 | 0.0000 | 7.6321 | |
40,053 | 0.5480 | 0.3756 | 0.0000 | 2.9998 | |
40,053 | 8.1580 | 5.4697 | 0.0000 | 26.0000 | |
40,053 | 0.0588 | 0.1409 | −0.6713 | 0.7897 | |
40,053 | 0.9959 | 0.0641 | 0.0000 | 1.0000 | |
40,053 | 0.1638 | 0.3701 | 0.0000 | 1.0000 | |
40,053 | 1.1728 | 0.9552 | 0.0902 | 11.5830 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
M1 | M2 | M3 | M4 | |
0.0469 *** | 0.1450 *** | 0.0458 *** | 0.1449 *** | |
(5.99) | (8.70) | (5.79) | (8.74) | |
NO | NO | YES | YES | |
NO | YES | NO | YES | |
NO | YES | NO | YES | |
NO | YES | NO | YES | |
1.1585 *** | 0.9974 *** | 1.1898 *** | 0.9708 *** | |
(228.53) | (178.77) | (22.26) | (6.03) | |
N | 40,053 | 40,053 | 40,053 | 40,053 |
0.0012 | 0.0234 | 0.0027 | 0.0246 |
(5) | (6) | |
---|---|---|
0.8875 ** | ||
(2.07) | ||
0.0185 *** | ||
(7.92) | ||
YES | YES | |
YES | YES | |
YES | YES | |
YES | YES | |
N | 39854 | 39,854 |
60.52 *** | ||
14.48 *** | ||
62.68 *** | ||
(16.38) | ||
Weakinstrumentrobustinference | ||
Anderson–RubinWaldtest | 4.54 ** |
(7) | (8) | (9) | (10) | |
---|---|---|---|---|
Replace Explanatory Variables | Replace Dependent Variable | Tobit | Sys-GMM | |
−0.0053 *** | 0.0143 *** | 0.2991 *** | ||
(−3.80) | (4.30) | (7.84) | ||
0.0511 *** | ||||
(8.00) | ||||
−0.1094 *** | ||||
(−6.83) | ||||
YES | YES | YES | YES | |
YES | YES | YES | YES | |
YES | YES | YES | YES | |
YES | YES | YES | YES | |
0.9656 *** | 0.0616 *** | 3.4522 | 1.5660 *** | |
(5.97) | (3.53) | (0.14) | (5.91) | |
N | 40,053 | 40,053 | 40053 | 24,729 |
0.0243 | 0.0053 |
(11) | (12) | |
---|---|---|
0.2473 *** | 0.1172 *** | |
(6.77) | (6.54) * | |
−0.0107 *** | ||
(−3.60) | ||
0.6229 *** | ||
(2.88) | ||
YES | YES | |
YES | YES | |
YES | YES | |
YES | YES | |
0.9462 *** | 0.9688 *** | |
(5.87) | (6.00) | |
N | 40053 | 40053 |
0.0252 | 0.0260 |
(13) | (14) | |
---|---|---|
0.1419 *** | −0.0061 | |
(9.31) | (−1.53) | |
YES | YES | |
YES | YES | |
YES | YES | |
YES | YES | |
0.9644 *** | 1.0276 *** | |
(6.38) | (23.43) | |
N | 39785 | 38905 |
0.0128 | 0.0887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qian, Y.; Yang, Y.; Yang, Z. Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 2091. https://doi.org/10.3390/ijerph19042091
Liu J, Qian Y, Yang Y, Yang Z. Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China. International Journal of Environmental Research and Public Health. 2022; 19(4):2091. https://doi.org/10.3390/ijerph19042091
Chicago/Turabian StyleLiu, Jun, Yu Qian, Yuanjun Yang, and Zhidan Yang. 2022. "Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China" International Journal of Environmental Research and Public Health 19, no. 4: 2091. https://doi.org/10.3390/ijerph19042091
APA StyleLiu, J., Qian, Y., Yang, Y., & Yang, Z. (2022). Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China. International Journal of Environmental Research and Public Health, 19(4), 2091. https://doi.org/10.3390/ijerph19042091