The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Docking
- -
- (6aS,10aS)-9-(hydroxymethyl)-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol (dexanabinol, NF-kB);
- -
- (4S,20R)-7-chloro-N-methyl-4-{[(1-methyl-1H-pyrazol-5-yl)carbonyl]amino}-3,18-dioxo-2,19-diazatetracyclo[20.2.2.1_6,10_.1_11,15_]octacosa-1(24),6(28),7,9,11(27),12,14,22,25-nonaene-20-carboxamide (IL-17);
- -
- (2S)-2-{[4-(3-amino-4-methylphenyl)-6-methylpyrimidin2-yl]oxy}-3-methoxy-3,3-diphenylpropanoic acid (IL-36).
2.2. Prediction of Chemico-Physical and Pharmacokinetic Properties
3. Results and Discussion
HDOCK Score a for the Top-1 Ranked Pose | HDOCK Score a—Averaged on the Top 10 Poses ± SD | Main Residues Involved in the Ligand-Protein Complex | |
---|---|---|---|
Reference compound b | −253.91 | −210.047 ± 25.277 | Tyr55, Ser220, Asn227, Lys252, Gln284 |
Apiin | −311.83 | −275.535 ± 24.457 | Gly50, Ser220, Asn227, Lys252, Gln284 |
Guanosine | −210.04 | −181.209 ± 16.489 | Ser220, Lys252, Gln284 |
Hyperoside | −310.81 | −286.252 ± 10.385 | Ser220, Asn227, Lys252, Gln284 |
HDOCK Score a for the Top-1 Ranked Pose | HDOCK Score a—Averaged on the Top 10 Poses ± SD | Main Residues Involved in the Ligand-Protein Complex | |
---|---|---|---|
Reference compound b | −234.41 | −213.715 ± 10.023 | Asn36, Pro37, Leu97 |
Apiin | −249.73 | −235.954 ± 9.371 | Met166,Ser167, Trp193, Asn194 |
Guanosine | −183.72 | −162.772 ± 10.651 | Asp58, His131, Lys135, Pro136 |
Hyperoside | −248.10 | −224.287 ± 10.313 | Met166, Ser167, Trp193, Asn194, Tyr62, Pro63, Val65 |
HDOCK Score a for the Top-1 Ranked Pose | HDOCK Score a—Averaged on the Top 10 Poses ± SD | Main Residues Involved in the Ligand-Protein Complex | |
---|---|---|---|
Reference compound b | −137.72 | −125.561 ± 5.461 | Arg121, Lys123, Val58, Leu165, Ile27 |
Apiin | −171.43 | −156.13 ± 6.49 | Arg121, Lys123, Leu165, Asn166 |
Guanosine | −115.74 | −112.396 ± 3.126 | Lys123, Leu165, Asn166 |
Hyperoside | −145.44 | −140.679 ± 2.929 | Arg121, Lys123, Leu165, Leu151 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Agoramoorthy, G. Sacred Rivers: Their Spiritual Significance in Hindu Religion. J. Relig. Health 2014, 54, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.L.; Talbot-Jones, J. Creating legal rights for rivers: Lessons from Australia, New Zealand, and India. Ecol. Soc. 2018, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sadoff, C.W.; Grey, D. Beyond the river: The benefits of cooperation on international rivers. Water Policy 2002, 4, 389–403. [Google Scholar] [CrossRef]
- Doi, H.; Katano, I.; Negishi, J.N.; Sanada, S.; Kayaba, Y. Effects of biodiversity, habitat structure, and water quality on recreational use of rivers. Ecosphere 2013, 4, art102. [Google Scholar] [CrossRef]
- Kistemann, T.; Schmidt, A.; Flemming, H.-C. Post-industrial river water quality—Fit for bathing again? Int. J. Hyg. Environ. Health 2016, 219, 629–642. [Google Scholar] [CrossRef]
- Roviello, V.; Roviello, G. Recent Records of the Eurasian Otter (Lutra Lutra) in the Mercure-Lao River Valley, South Italy; International Otter Survival Fund: Broadford, UK, 2019. [Google Scholar]
- Gecheva, G.; Yurukova, L. Water pollutant monitoring with aquatic bryophytes: A review. Environ. Chem. Lett. 2013, 12, 49–61. [Google Scholar] [CrossRef]
- Dsikowitzky, L.; Schäfer, L.; Dwiyitno; Ariyani, F.; Irianto, H.E.; Schwarzbauer, J. Evidence of massive river pollution in the tropical megacity Jakarta as indicated by faecal steroid occurrence and the seasonal flushing out into the coastal ecosystem. Environ. Chem. Lett. 2017, 15, 703–708. [Google Scholar] [CrossRef]
- Samelak, I.; Balaban, M.; Antić, M.; Šolević Knudsen, T.; Jovančićević, B. Geochromatographic migration of oil pollution from a heating plant to river sediments. Environ. Chem. Lett. 2019, 18, 459–466. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, Y.; Li, W.; Yang, W.; Meng, Q.; Yang, J. Microplastic contamination in freshwater: First observation in Lake Ulansuhai, Yellow River Basin, China. Environ. Chem. Lett. 2019, 17, 1821–1830. [Google Scholar] [CrossRef]
- Barek, J.; Cabalková, D.; Fischer, J.; Navrátil, T.; Pecková, K.; Yosypchuk, B. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode. Environ. Chem. Lett. 2009, 9, 83–86. [Google Scholar] [CrossRef]
- Barra, R.; Quiroz, R.; Saez, K.; Araneda, A.; Urrutia, R.; Popp, P. Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile. Environ. Chem. Lett. 2008, 7, 133–139. [Google Scholar] [CrossRef]
- Kelly, V.R.; Lovett, G.M.; Weathers, K.C.; Findlay, S.E.G.; Strayer, D.L.; Burns, D.J.; Likens, G.E. Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environ. Sci. Technol. 2007, 42, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Juang, D.E.; Yuan, C.S.; Hsueh, S.C.; Chiou, L.J. Distribution of volatile organic compounds around a polluted river. Int. J. Environ. Sci. Technol. 2008, 6, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wang, Q.; Huang, C.-C.; Liang, J.; Luo, K.; Fan, J.-R.; Zheng, H.-J. Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games. Environ. Chem. Lett. 2018, 17, 1151–1160. [Google Scholar] [CrossRef]
- Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. 2021, 19, 699–710. [Google Scholar] [CrossRef]
- Roviello, V.; Roviello, G.N. Less COVID-19 deaths in southern and insular Italy explained by forest bathing, Mediterranean environment, and antiviral plant volatile organic compounds. Environ. Chem. Lett. 2021, 20, 7–17. [Google Scholar] [CrossRef]
- Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett. 2021, 20, 131–140. [Google Scholar] [CrossRef]
- Robinson, J.M.; Breed, M.F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 2019, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.-Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017, 45, W365–W373. [Google Scholar] [CrossRef]
- Yan, Y.; Wen, Z.; Wang, X.; Huang, S.-Y. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking. Proteins Struct. Funct. Bioinform. 2017, 85, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins Struct. Funct. Bioinform. 2008, 72, 557–579. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Mondal, S.K.; Mukhoty, S.; Bag, S.; Mondal, A.; Begum, Y.; Sharma, K.; Banik, A. Virtual Screening and Docking Analysis of Novel Ligands for Selective Enhancement of Tea (Camellia sinensis) Flavonoids. Food Chem. X 2022, 13, 100212. [Google Scholar] [CrossRef]
- Stoddard, S.V.; Wallace, F.E.; Stoddard, S.D.; Cheng, Q.; Acosta, D.; Barzani, S.; Bobay, M.; Briant, J.; Cisneros, C.; Feinstein, S.; et al. In Silico Design of Peptide-Based SARS-CoV-2 Fusion Inhibitors That Target WT and Mutant Versions of SARS-CoV-2 HR1 Domains. Biophysica 2021, 1, 311–327. [Google Scholar] [CrossRef]
- Halim, S.A.; Khan, A.; Csuk, R.; Al-Rawahi, A.; Al-Harrasi, A. Diterpenoids and Triterpenoids from Frankincense Are Excellent Anti-psoriatic Agents: An in silico Approach. Front. Chem. 2020, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Nanusha, M.Y.; Krauss, M.; Brack, W. Non-target screening for detecting the occurrence of plant metabolites in river waters. Environ. Sci. Eur. 2020, 32, 130. [Google Scholar] [CrossRef]
- Wei, J.-A.; Han, L.; Lu, C.-J.; Zhao, R.-Z.; Sun, J.; Lu, Y.; Lin, H.-J. Formula PSORI-CM01 eliminates psoriasis by inhibiting the expression of keratinocyte cyclin B2. BMC Complementary Altern. Med. 2016, 16, 255. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.-Y.; Li, C.-C.; Cheng, H.-M.; Liu, I.C.; Ho, T.-Y.; Hsiang, C.-Y. Ferulic acid altered IL-17A/IL-17RA interaction and protected against imiquimod-induced psoriasis-like skin injury in mice. Food Chem. Toxicol. 2019, 129, 365–375. [Google Scholar] [CrossRef]
- Bonesi, M.; Loizzo, M.R.; Menichini, F.; Tundis, R. Flavonoids in Treating Psoriasis. Immun. Inflamm. Health Dis. 2018, 281–294. [Google Scholar] [CrossRef]
- Jin, K.S.; Jun, M.R.; Park, M.J.; Ok, S.; Jeong, J.H.; Kang, H.S.; Jo, W.K.; Lim, H.J.; Jeong, W.S. Promises and risks of unsaturated volatile organic compounds: Limonene, pinene, and isoprene. Food Sci. Biotechnol. 2008, 17, 447–456. [Google Scholar]
- Amoroso, V.B.; Mendez, R.A.; Junio, H.A.; Molino, R.J.E.J.; Pescadero, I.R.; Villalobos, A.P. Characterization of a Natural Fungicide from an Indigenous Plant Tasmannia piperita (Hook. f.) Miers Extract: Stability, Metabolomics, and In Silico Studies. Philipp. J. Sci. 2021, 150, 355–370. [Google Scholar]
- Torsekar, R.; Gautam, M. Topical therapies in psoriasis. Indian Dermatol. Online J. 2017, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics 2019, 9, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, S.; Wang, L.; Li, Z.; Zhang, Y.; Li, M.; Mehmood, K.; Liu, W.; Li, P.; Lichtfouse, E. Common source areas of air pollution vary with haze intensity in the Yangtze River Delta, China. Environ. Chem. Lett. 2020, 18, 957–965. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Yu, S.; Wang, L.; Li, P.; Li, Z.; Mehmood, K.; Liu, W.; Wu, J.; Lichtfouse, E. Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China. Environ. Chem. Lett. 2018, 16, 1117–1127. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. In Green Adsorbents for Pollutant Removal; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–71. [Google Scholar]
- Roviello, V.; Gilhen-Baker, M.; Roviello, G.N.; Lichtfouse, E. River Therapy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Albanese, L.; Antonelli, M.; Baraldi, R.; Becheri, F.R.; Centritto, F.; Donelli, D.; Finelli, F.; Firenzuoli, F.; Margheritini, G.; et al. Short-Term Effects of Forest Therapy on Mood States: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 9509. [Google Scholar] [CrossRef]
- Zabini, F.; Albanese, L.; Becheri, F.R.; Gavazzi, G.; Giganti, F.; Giovanelli, F.; Gronchi, G.; Guazzini, A.; Laurino, M.; Li, Q.; et al. Comparative Study of the Restorative Effects of Forest and Urban Videos during COVID-19 Lockdown: Intrinsic and Benchmark Values. Int. J. Environ. Res. Public Health 2020, 17, 8011. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Albanese, L.; Bartolini, G.; Zabini, F. Temporal and Spatial Variability of Volatile Organic Compounds in the Forest Atmosphere. Int. J. Environ. Res. Public Health 2019, 16, 4915. [Google Scholar] [CrossRef] [Green Version]
- Meneguzzo, F.; Zabini, F. Terapia Forestale. 2021. Available online: https://www.cnr.it/sites/default/files/public/media/attivita/editoria/9788880804307_terapia%20forestale.pdf (accessed on 12 February 2022).
- Meneguzzo, F.; Zabini, F. Agri-Food and Forestry Sectors for Sustainable Development: Innovations to Address the Ecosystems-Resources-Climate-Food-Health Nexus; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Gilhen-Baker, M.; Roviello, V.; Beresford-Kroeger, D.; Roviello, G.N. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environ. Chem. Lett. 2022, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. Int. J. Environ. Res. Public Health 2022, 19, 2502. https://doi.org/10.3390/ijerph19052502
Roviello V, Gilhen-Baker M, Vicidomini C, Roviello GN. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. International Journal of Environmental Research and Public Health. 2022; 19(5):2502. https://doi.org/10.3390/ijerph19052502
Chicago/Turabian StyleRoviello, Valentina, Melinda Gilhen-Baker, Caterina Vicidomini, and Giovanni N. Roviello. 2022. "The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters" International Journal of Environmental Research and Public Health 19, no. 5: 2502. https://doi.org/10.3390/ijerph19052502
APA StyleRoviello, V., Gilhen-Baker, M., Vicidomini, C., & Roviello, G. N. (2022). The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. International Journal of Environmental Research and Public Health, 19(5), 2502. https://doi.org/10.3390/ijerph19052502