Negative Self-Assessment of Health in Women: Association with Sociodemographic Characteristics, Physical Inactivity and Multimorbidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Variables
2.2.1. Dependent Variable
2.2.2. Independent Variables
2.3. Statistical Analysis
2.4. Ethical Aspects
3. Results
3.1. Sample Characteristics
3.2. Health Self-Assessment
3.3. Factors Associated with Negative Health Self-Assessment
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Noncomunicable Diseases Country Profiles 2018; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/nmh/publications/ncd-profiles-2018/en/ (accessed on 18 November 2021).
- Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Mendis, S.; Chowdhury, R.; Bramer, W.; Falla, A.; et al. The global impact of non-communicable diseases on healthcare spending and national income: A systematic review. Eur. J. Epidemiol. 2015, 30, 251–277. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Fullman, N.; Mumford, J.E.; Knight, M.; Barthelemy, C.M.; Abbafati, C.; Abbastabar, H.; Abd-Allah, F.; Abdollahi, M.; Abedi, A.; et al. Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1250–1284. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases; WHO: Geneva, Switzerland, 2013; Available online: https://www.who.int/publications/i/item/9789241506236 (accessed on 18 November 2021).
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 10258. [Google Scholar] [CrossRef]
- Marinho, F.; de Azeredo Passos, V.M.; Carvalho Malta, D.; Barboza França, E.; Abreu, D.M.X.; Araújo, V.E.M.; Bustamante-Teixeira, M.T.; Camargos, P.A.M.; da Cunha, C.C.; Duncan, B.B.; et al. Burden of disease in Brazil, 1990–2016: A systematic subnational analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 760–775. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.; Bell, R. Social determinants and non-communicable diseases: Time for integrated action. BMJ 2019, 364, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malta, D.C.; Bernal, R.T.I.; Nunes, M.L.; Oliveira, M.M.D.; Iser, B.P.M.; Andrade, S.S.C.D.A.; Claro, R.M.; Monteiro, C.A.; Silva, J.B.d., Jr. Prevalência de fatores de risco e proteção para doenças crônicas não transmissíveis em adultos: Estudo transversal, Brasil 2012. Epidemiol. Serviços Saúde 2014, 23, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Johnston, M.C.; Crilly, M.; Black, C.; Prescott, G.J.; Mercer, S.W. Defining and measuring multimorbidity: A systematic review of systematic reviews. Eur. J. Public Health 2019, 29, 182–189. [Google Scholar] [CrossRef]
- Eyowas, F.A.; Schneider, M.; Yirdaw, B.A.; Getahun, F.A. Multimorbidity of chronic non-communicable diseases and its models of care in low-and middle-income countries: A scoping review protocol. BMJ Open 2019, 9, e033320. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Manolova, G.; Daskalopoulou, C.; Vitoratou, S.; Prince, M.; Prina, A.M. Prevalence of multimorbidity in community settings: A systematic review and meta-analysis of observational studies. J. Comorbidity 2019, 9, 2235042X1987093. [Google Scholar] [CrossRef]
- Sum, G.; Ishida, M.; Koh, G.C.H.; Singh, A.; Oldenburg, B.; Lee, J.T. Implications of multimorbidity on healthcare utilisation and work productivity by socioeconomic groups: Cross-sectional analyses of Australia and Japan. PLoS ONE 2020, 15, e0232281. [Google Scholar] [CrossRef]
- Mavaddat, N.; Valderas, J.M.; Van Der Linde, R.; Khaw, K.T.; Kinmonth, A.L. Association of self-rated health with multimorbidity, chronic disease and psychosocial factors in a large middle-aged and older cohort from general practice: A cross-sectional study. BMC Fam. Pract. 2014, 15, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, P.E.; Mair, C.A.; Quinõnes, A.R. Associations between prevalent multimorbidity combinations and prospective disability and self-rated health among older adults in Europe. BMC Geriatr. 2019, 19, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feenstra, M.; Van Munster, B.C.; Vroomen, J.L.M.; De Rooij, S.E.; Smidt, N. Trajectories of self-rated health in an older general population and their determinants: The Lifelines Cohort Study. BMJ Open 2020, 10, e035012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Sweeney, E.; Forbes, C.; DeClercq, V.; Grandy, S.A.; Keats, M.; Parker, L.; Yu, Z.M.; Dummer, T.J. The association between physical activity and self-rated health in Atlantic Canadians. J. Women Aging 2020, 33, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.H.; Rocha, J.S.B.; Caldeira, A.P. Factors associated with negative self-rated health in menopausal women. Cienc. Saude Coletiva 2018, 23, 1611–1620. [Google Scholar] [CrossRef]
- de Sousa, J.L.; Alencar, G.P.; Antunes, J.L.F.; da Silva, Z.P. Markers of inequality in self-rated health in Brazilian adults according to sex. Cadernos Saude Publica 2020, 36. [Google Scholar] [CrossRef]
- Szwarcwald, C.L.; Damacena, G.N.; Souza Júnior, P.R.B.D.; Almeida, W.D.S.D.; Lima, L.T.M.D.; Malta, D.C.; Stopa, S.R.; Vieira, M.L.F.P.; Pereira, C.A. Determinantes da autoavaliação de saúde no Brasil e a influência dos comportamentos saudáveis: Resultados da pesquisa nacional de saúde, 2013. Rev. Bras. Epidemiol. 2015, 18, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Patrão, A.L.; Almeida, M.d.C.C.; Alvim, S.; Chor, D.; Aquino, E.M.L. Health behavior-related indicator of lifestyle: Application in the ELSA-Brasil study. Glob. Health Promot. 2019, 26, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Mussi, R.F.d.F.; Queiroz, B.M.d.; Petróski, E.L. Overweight and associated factors in quilombolas from the middle San Francisco, Bahia, Brazil. Cienc. Saude Coletiva 2018, 23, 1193–1200. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Wang, Z.H.; Zhang, X.; Zhao, Z.P.; Huang, Z.J.; Qi, S.G.; Li, C.; Xu, X.H.; Wang, L.M.; et al. Correlation between hypertension label and self-rated health in adult residents in China. Chin. J. Epidemiol. 2019, 41, 379–384. [Google Scholar]
- Mendoza-Romero, D.; Urbina, A.; Cristancho-Montenegro, A.; Rombaldi, A. Impact of smoking and physical inactivity on self-rated health in women in Colombia. Prev. Med. Rep. 2019, 16, 100976. [Google Scholar] [CrossRef]
- Theme Filha, M.M.; Souza Junior PR, B.D.; Damacena, G.N.; Szwarcwald, C.L. Prevalence of chronic non-communicable diseases and association with self-rated health: National Health Survey, 2013. Rev. Bras. Epidemiol. 2015, 18 (Suppl. 2), S83–S96. [Google Scholar] [CrossRef] [Green Version]
- Boerma, T.; Hosseinpoor, A.R.; Verdes, E.; Chatterji, S. A global assessment of the gender gap in self-reported health with survey data from 59 countries. BMC Public Health 2016, 16, 675. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, G.F.; Loch, M.R.; Silva, A.M.R. Changes in health-related behaviors as predictors of changes in health self-perception: Longitudinal study (2011–2015). Cad. Saude Publica 2019, 35, e00151418. [Google Scholar]
- Pinillos-Franco, S.; García-Prieto, C. The gender gap in self-rated health and education in Spain. A multilevel analysis. PLoS ONE 2017, 12, e0187823. [Google Scholar] [CrossRef] [Green Version]
- Szwarcwald, C.L.; Malta, D.C.; Pereira, C.A.; Vieira, M.L.F.P.; Conde, W.L.; Souza Junior, P.R.B.D.; Damacena, G.N.; Azevedo, L.O.; Azevedo e Silva, G.; Theme Filha, M.M.; et al. Pesquisa Nacional de Saude no Brasil: Concepcao e metodologia de aplicacao. Cienc. Saude Coletiva 2014, 19, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Souza-Júnior, P.R.B.D.; Freitas, M.P.S.D.; Antonaci, G.D.A.; Szwarcwald, C.L. Desenho da amostra da Pesquisa Nacional de Saúde 2013. Epidemiol. Serviços Saúde 2015, 24, 207–216. Available online: http://www.iec.pa.gov.br/template_doi_ess.php?doi=10.5123/S1679-49742015000200003&scielo=S2237-96222015000200207 (accessed on 18 November 2021). [CrossRef]
- Medeiros, S.M.; Silva, L.S.R.; Carneiro, J.A.; Ramos, G.C.F.; Barbosa, A.T.F.; Caldeira, A.P. Factors associated with negative self-rated health among non-institutionalized elderly in Montes Claros, Brazil. Cienc. Saude Coletiva 2016, 21, 3377–3386. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.A.; Morais Neto, O.L.d.; Souza, M.R.d.; Cortez-Escalante, J.J.; Santos, T.A.d.P.; Rosso, C.F.W.; Pacheco, M.M.; Leite Júnior, J.F.; Sobrinho França, G.; Fonseca, L.d.J.; et al. Epidemiology of Self-Reported Diabetes Mellitus in the State of Maranhão, Northeastern Brazil: Results of the National Health Survey, 2013. Int. J. Environ. Res. Public Health 2019, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Ministério do Planejamento Orçamento e Gestão, Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais. Características Etnico-Raciais da População: Um Estudo das Categorias de Classificação de cor ou raça 2008. Rio de Janeiro. 2011. Available online: http://biblioteca.ibge.gov.br/visualizacao/livros/liv49891.pdf (accessed on 25 November 2021).
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2003; Volume 916, pp. 1–149. [Google Scholar]
- Claro, R.M.; Santos, M.A.S.; Oliveira, T.P.; Pereira, C.A.; Szwarcwald, C.L.; Malta, D.C. Consumo de alimentos não saudáveis relacionados a doenças crônicas não transmissíveis no Brasil: Pesquisa Nacional de Saúde, 2013. Epidemiol. Serviços Saúde 2015, 24, 257–265. [Google Scholar] [CrossRef]
- IBGE. Pesquisa Nacional de Saúde Módulo de Estilo de Vida—Consumo de Alimentos Notas Técnicas. 2014. Available online: http://tabnet.datasus.gov.br/cgi/pns/Notas_Tecnicas_PNS_P_A.pdf (accessed on 18 November 2021).
- Moura, E.C.; Malta, D.C. Alcoholic beverage consumption among adults: Sociodemographic characteristics and trends. Rev. Bras. Epidemiol. 2011, 14 (Suppl. 1), 61–70. [Google Scholar] [CrossRef] [Green Version]
- Courtney, K.E.; Polich, J. Binge Drinking in Young Adults: Data, Definitions, and Determinants. Psychol. Bull. 2009, 135, 142–156. [Google Scholar] [CrossRef]
- Ministério da Saúde. Vigitel Brasil 2018—Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico. 2019; p. 131. Available online: https://portalarquivos2.saude.gov.br/images/pdf/2019/julho/25/vigitel-brasil-2018.pdf (accessed on 10 November 2019).
- Mielke, G.I.; Hallal, P.C.; Rodrigues, G.B.A.; Szwarcwald, C.L.; Santos, F.V.; Malta, D.C. Prática de atividade física e hábito de assistir à televisão entre adultos no Brasil: Pesquisa Nacional de Saúde 2013. Epidemiol. Serviços Saúde 2015, 24, 277–286. [Google Scholar] [CrossRef]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Pavão, A.L.B.; Werneck, G.L.; Campos, M.R. Autoavaliação do estado de saúde e a associação com fatores sociodemográficos, hábitos de vida e morbidade na população: Um inquérito nacional. Cad. Saude Publica 2013, 29, 723–734. [Google Scholar] [CrossRef]
- Szwarcwald, C.L.; de Souza-Júnior, P.R.B.; Esteves, M.A.P.; Damacena, G.N.; Viacava, F. Socio-demographic determinants of self-rated health in Brazil. Cad. Saude Publica 2005, 21, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas. Política Nacional de Atenção Integral à Saúde da Mulher: Princípios e Diretrizes. 2004; p. 82. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/politica_nac_atencao_mulher.pdf (accessed on 4 March 2021).
- Peres, M.A.; Masiero, A.V.; Longo, G.Z.; da Rocha, G.C.; Matos, I.B.; Najnie, K.; Oliveira, M.C.D.; Arruda, M.P.D.; Peres, K.G. Self-rated health among adults in Southern Brazil. Rev. Saude Publica 2010, 44, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Kaneva, M.; Gerry, C.J.; Baidin, V. The effect of chronic conditions and multi-morbidity on self-assessed health in Russia. Scand. J. Public Health 2018, 46, 886–896. [Google Scholar] [CrossRef]
- Rocha, J.d.P.; Oliveira, G.G.; Neris, J.C.D.; Bós, A.M.G.; Bós, Â.J.G. Impacto clínico, socioeconômico e da autopercepção de saúde na funcionalidade de idosos. Geriatr. Gerontol. Aging 2017, 11, 124–132. [Google Scholar] [CrossRef]
- Lima-Costa, M.F.; Cesar, C.C.; Chor, D.; Proietti, F.A. Self-rated health compared with objectively measured health status as a tool for mortality risk screening in older adults: 10-year follow-up of the Bambuí Cohort Study of Aging. Am. J. Epidemiol. 2012, 175, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Penning, M.J.; Wu, Z. Caregiver Stress and Mental Health: Impact of Caregiving Relationship and Gender. Gerontologist 2016, 56, 1102–1113. [Google Scholar] [CrossRef]
- Wyman, M.F.; Shiovitz-Ezra, S.; Parag, O. Ageism in informal care network members of older women. Int. Psychogeriatr. 2019, 31, 1463–1472. [Google Scholar] [CrossRef]
- Andrade, F.C.D.; Mehta, J.D. Increasing educational inequalities in self-rated health in Brazil, 1998–2013. PLoS ONE 2018, 13, e0196494. [Google Scholar] [CrossRef]
- Sharma, A. Wealth and the health of older Black women in the United States. Health Promot. Int. 2019, 34, 1055–1068. [Google Scholar] [CrossRef]
- Jradi, H.; Alharbi, Z.; Mohammad, Y. Self-rated health among Saudi women: Association with morbidity, lifestyle, and psychosocial factors. J. Epidemiol. Glob. Health 2018, 8, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Veromaa, V.; Kautiainen, H.; Juonala, M.; Rantanen, A.; Korhonen, P.E. Self-rated health as an indicator of ideal cardiovascular health among working-aged women. Scand. J. Prim. Health Care 2017, 35, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Janssen, I.; Bredin, S.S.D.; Warburton, D.E.R.; Bauman, A. Physical activity: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 942–975. [Google Scholar] [CrossRef]
- Confortin, S.C.; Giehl, M.W.C.; Antes, D.L.; Schneider, I.J.C.; D’Orsi, E. Positive self-rated health in the elderly: A population-based study in the South of Brazil. Cad. Saude Publica 2015, 31, 1049–10460. [Google Scholar] [CrossRef] [Green Version]
- Machado, V.d.S.S.; Valadares, A.L.R.; Costa-Paiva, L.S.d.; Moraes, S.S.; Pinto-Neto, A.M. Multimorbidity and associated factors in Brazilian women aged 40 to 65 years. J. N. Am. Menopause Soc. 2012, 19, 569–575. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Fried, T.R.; Boyd, C.M. Designing Health Care for the Most Common Chronic Condition—Multimorbidity. JAMA 2012, 307, 2493–2494. [Google Scholar] [CrossRef] [PubMed]
- Muth, C.; Blom, J.W.; Smith, S.M.; Johnell, K.; Gonzalez-Gonzalez, A.I.; Nguyen, T.S.; Brueckle, M.-S.; Cesari, M.; Tinetti, M.E.; Valderas, J.M. Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: A systematic guideline review and expert consensus. J. Intern. Med. 2019, 285, 272–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministério da Saúde. Plano de Ações Estratégicas para o Enfrentamento das Doenças Crônicas e Agravos não Transmissíveis. 2021; Volume 1, 121p. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/plano_enfrentamento_doencas_cronicas_agravos_2021_2030.pdf (accessed on 18 November 2021).
Variables | Total * (n = 4.233) | % | 95% CI |
---|---|---|---|
Age group (years) | |||
18–39 | 1.013 | 48.5 | 45.2–52.0 |
40–59 | 1.478 | 35.0 | 33.1–36.9 |
≥60 | 743 | 16.5 | 15.0–18.1 |
Schooling | |||
No schooling/incomplete elementary school | 1.452 | 34.3 | 32.2–36.4 |
Complete elementary school/incomplete high school | 671 | 15.8 | 14.3–17.4 |
Complete high school/incomplete higher education | 1.458 | 34.4 | 32.4–36.6 |
Complete higher education or higher | 654 | 15.4 | 13.9–17.1 |
Race/skin color | |||
White | 1.713 | 39.8 | 37.5–42.2 |
Black | 331 | 7.2 | 6.3–8.2 |
Brown | 2.117 | 51.4 | 49.2–53.7 |
Other | 71 | 1.5 | 1.1–2.1 |
Marital status | |||
With spouse | 2.312 | 59.7 | 57.9–61.6 |
Without spouse | 1.921 | 40.3 | 38.4–42.1 |
Zone of residence | |||
Rural | 512 | 8.1 | 7.2–9.1 |
Urban | 3.721 | 91.9 | 90.9–92.8 |
Recommended consumption of vegetables and fruits | |||
No | 1.750 | 42.4 | 40.2–44.7 |
Yes | 2.483 | 57.6 | 55.3–59.8 |
Consumption of meat and/or chicken with excess fat | |||
No | 2.702 | 63.0 | 60.9–65.1 |
Yes | 1.531 | 37.0 | 34.9–39.1 |
Regular consumption of sweets | |||
No | 3.343 | 78.5 | 76.8–80.1 |
Yes | 890 | 21.5 | 19.9–23.2 |
Regular replacement of meals with snacks | |||
No | 3.913 | 92.7 | 91.5–93.7 |
Yes | 320 | 7.3 | 6.3–8.5 |
Regular consumption of soda and/or artificial juice | |||
No | 3.256 | 76.5 | 74.7–78.2 |
Yes | 977 | 23.5 | 21.8–25.3 |
Regular consumption of alcoholic beverages | |||
No | 3.004 | 71.5 | 69.7–73.2 |
Yes | 1.228 | 28.5 | 26.8-30.3 |
Abusive consumption of alcoholic beverages | |||
No | 2.870 | 91.0 | 89.7–91.1 |
Yes | 363 | 9.0 | 7.9–10.3 |
Smoking | |||
Never | 3.221 | 76.3 | 74.4–78.1 |
Ex smoker | 577 | 13.3 | 12.0–14.7 |
Current smoker | 435 | 10.4 | 9.3–11.7 |
Physical inactivity | |||
No | 1.986 | 46.6 | 44.6–48.7 |
Yes | 2.247 | 53.4 | 51.3–55.4 |
Nutritional status | |||
Low weight | 100 | 2.5 | 1.9–3.2 |
Eutrophic | 1.564 | 40.1 | 38.3–41.9 |
Overweight | 1.365 | 32.3 | 30.5–34.2 |
Obesity | 1.047 | 25.1 | 23.5–26.9 |
Multimorbidity | |||
No | 3.039 | 78.5 | 69.7–73.3 |
Yes | 1.194 | 28.5 | 26.7–30.4 |
Variables | Total (n = 4.233) | NSAH | PR | 95% CI | p * | |
---|---|---|---|---|---|---|
n | % (95% CI) | |||||
Age group (years) | ||||||
18–39 | 2.012 | 45 | 2.2 (1.6–3.1) | 1.00 | ||
40–59 | 1.478 | 108 | 7.8 (6.1–9.9) | 3.56 | 2.32–5.46 | <0.001 |
≥60 | 743 | 95 | 13.4 (10.4–17.1) | 6.13 | 4.06–9.27 | <0.001 |
Schooling | ||||||
No schooling/incomplete elementary school | 1.489 | 173 | 12.4 (10.4–14.8) | 7.78 | 3.80–15.90 | <0.001 |
Complete elementary school/incomplete high school | 651 | 24 | 3.7 (2.2–6.2) | 2.32 | 0.96–5.62 | 0.062 |
Complete high school/incomplete higher education | 1.405 | 39 | 2.6 (1.8–3.9) | 1.65 | 0.74–3.69 | 0.218 |
Complete higher education or higher | 688 | 12 | 1.6 (0.8–3.2) | 1.00 | ||
Race/skin color | ||||||
White | 1.713 | 87 | 5.4 (4.1–7.0) | 1.00 | ||
Black | 331 | 29 | 9.2 (6.1–13.8) | 1.71 | 1.03–2.83 | 0.037 |
Brown | 2.117 | 125 | 5.8 (4.6–7.3) | 1.07 | 0.75–1.54 | 0.705 |
Other | 71 | 7 | 14.0 (5.6–30.9) | 2.59 | 1.04–6.48 | 0.042 |
Marital status | ||||||
With spouse | 2.312 | 115 | 5.4 (4.3–6.7) | 0.77 | 0.58–1.04 | 0.090 |
Without spouse | 1.921 | 133 | 6.9 (5.6–8.5) | 1.00 | ||
Zone of residence | ||||||
Rural | 512 | 31 | 6.6 (4.2–10.1) | 1.10 | 0.69–1.77 | 0.665 |
Urban | 3.721 | 217 | 5.9 (5.1–7.0) | 1.00 | ||
State of residence | ||||||
Federal District | 1.067 | 66 | 5.8 (4.5–7.5) | 1.0 | ||
Goiás | 1.385 | 78 | 5.9 (4.5–7.7) | 1.02 | 0.70–1.48 | 0.938 |
Mato Grosso | 795 | 48 | 6.4 (4.6–9.0) | 1.11 | 0.73–1.70 | 0.631 |
Mato Grosso do Sul | 986 | 56 | 6.0 (4.4–8.0) | 1.03 | 0.70–1.54 | 0.887 |
Recommended consumption of vegetables and fruits | ||||||
No | 1.750 | 131 | 8.0 (6.5–9.8) | 1.00 | ||
Yes | 2.483 | 117 | 4.5 (3.6–5.7) | 0.56 | 0.41–0.77 | <0.001 |
Consumption of meat and/or chicken with excess fat | ||||||
No | 2.702 | 167 | 6.0 (5.0–7.3) | 1.00 | ||
Yes | 1.531 | 81 | 6.0 (4.6–7.7) | 0.99 | 0.72–1.36 | 0.951 |
Regular consumption of sweets | ||||||
No | 3.343 | 221 | 6.6 (5.7–7.8) | 1.00 | ||
Yes | 890 | 27 | 3.7 (2.3–5.9) | 0.56 | 0.34–0.91 | 0.019 |
Regular replacement of meals with snacks | ||||||
No | 3.913 | 234 | 6.1 (5.2–7.1) | 1.00 | ||
Yes | 320 | 14 | 5.3 (3.0–9.2) | 0.87 | 0.48–1.57 | 0.641 |
Regular consumption of soda and/or artificial juice | ||||||
No | 3.256 | 207 | 6.6 (5.6–7.8) | 1.00 | ||
Yes | 977 | 41 | 3.9 (2.7–5.7) | 0.59 | 0.39–0.89 | 0.013 |
Regular consumption of alcoholic beverages | ||||||
No | 3.005 | 214 | 7.2 (6.1–8.4) | 1.00 | ||
Yes | 1.228 | 34 | 3.1 (2.0–4.6) | 0.43 | 0.27–0.66 | <0.001 |
Abusive consumption of alcoholic beverages | ||||||
No | 3.870 | 234 | 6.2 (5.3–7.2) | 1.00 | ||
Yes | 363 | 14 | 4.1 (2.1–7.6) | 0.65 | 0.34–1.27 | 0.211 |
Smoking | ||||||
Never | 3.221 | 148 | 4.6 (3.7–5.7) | 1.00 | ||
Ex smoker | 577 | 67 | 12.5 (9.4–16.5) | 2.72 | 1.91–3.87 | <0.001 |
Current smoker | 435 | 33 | 7.8 (5.2–11.6) | 1.70 | 1.08–2.68 | 0.022 |
Physical inactivity | ||||||
No | 1.986 | 80 | 4.2 (3.2–5.4) | 1.00 | ||
Yes | 2.247 | 168 | 7.6 (6.2–9.2) | 1.81 | 1.30–2.51 | <0.001 |
Multimorbidity | ||||||
No | 3.039 | 67 | 2.6 (1.9–3.5) | 1.00 | ||
Yes | 1.194 | 181 | 14.6 (12.3–17.2) | 5.69 | 4.04–8.02 | <0.001 |
Variables | aPR | 95% CI | SE | p * |
---|---|---|---|---|
Age group (years) | ||||
18–39 | 1.00 | |||
40–59 | 2.43 | 1.07–5.52 | 1.01 | 0.034 |
≥60 | 2.52 | 1.02–6.23 | 1.16 | 0.045 |
Schooling | ||||
No schooling/incomplete elementary school | 1.00 | |||
Complete elementary school/incomplete high school | 1.95 | 0.87–4.37 | 0.80 | 0.102 |
Complete high school/incomplete higher education | 2.31 | 0.95–5.60 | 1.04 | 0.065 |
Complete higher education or higher | 4.85 | 2.27–10.37 | 1.88 | <0.001 |
Race/skin color | ||||
White | 1.00 | |||
Black | 1.59 | 0.96–2.63 | 0.41 | 0.068 |
Brown | 1.02 | 0.71–1.47 | 0.19 | 0.893 |
Other | 2.01 | 0.79–5.11 | 0.95 | 0.141 |
Marital status | ||||
With spouse | 1.00 | |||
Without spouse | 0.89 | 0.65–1.21 | 0.14 | 0.456 |
State of residence | ||||
Federal District | 1.00 | |||
Goiás | 0.71 | 0.49–1.03 | 0.13 | 0.071 |
Mato Grosso | 0.79 | 0.52–1.20 | 0.17 | 0.275 |
Mato Grosso do Sul | 0.74 | 0.50–1.09 | 0.15 | 0.126 |
Recommended consumption of vegetables and fruits | ||||
No | 1.00 | |||
Yes | 0.79 | 0.40–1.56 | 0.27 | 0.496 |
Regular consumption of sweets | ||||
No | 1.00 | |||
Yes | 0.75 | 0.45–1.25 | 0.19 | 0.270 |
Regular consumption of soda and/or artificial juice | ||||
No | 1.00 | |||
Yes | 0.79 | 0.52–1.20 | 0.17 | 0.266 |
Abusive consumption of alcoholic beverages | ||||
No | 1.00 | |||
Yes | 1.01 | 0.55–1.88 | 0.32 | 0.950 |
Smoking | ||||
Never | 1.00 | |||
Ex smoker | 1.30 | 0.90–1.89 | 0.25 | 0.160 |
Current smoker | 1.22 | 0.79–1.88 | 0.27 | 0.370 |
Physical inactivity | ||||
No | 1.00 | |||
Yes | 1.55 | 1.11–2.15 | 0.26 | 0.009 |
Multimorbidity | ||||
No | 1.00 | |||
Yes | 6.93 | 3.47–13.85 | 2.44 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.A.d.P.; Guimarães, R.A.; Pagotto, V.; Aredes, N.D.A.; Siqueira, I.S.L.d.; Rocha, S.D.; Carrijo, C.I.d.S.; Rosso, C.F.W. Negative Self-Assessment of Health in Women: Association with Sociodemographic Characteristics, Physical Inactivity and Multimorbidity. Int. J. Environ. Res. Public Health 2022, 19, 2666. https://doi.org/10.3390/ijerph19052666
Santos TAdP, Guimarães RA, Pagotto V, Aredes NDA, Siqueira ISLd, Rocha SD, Carrijo CIdS, Rosso CFW. Negative Self-Assessment of Health in Women: Association with Sociodemographic Characteristics, Physical Inactivity and Multimorbidity. International Journal of Environmental Research and Public Health. 2022; 19(5):2666. https://doi.org/10.3390/ijerph19052666
Chicago/Turabian StyleSantos, Thays Angélica de Pinho, Rafael Alves Guimarães, Valéria Pagotto, Natália Del’ Angelo Aredes, Isabela Silva Levindo de Siqueira, Suiany Dias Rocha, Clarissa Irineu de Sousa Carrijo, and Claci Fátima Weirich Rosso. 2022. "Negative Self-Assessment of Health in Women: Association with Sociodemographic Characteristics, Physical Inactivity and Multimorbidity" International Journal of Environmental Research and Public Health 19, no. 5: 2666. https://doi.org/10.3390/ijerph19052666
APA StyleSantos, T. A. d. P., Guimarães, R. A., Pagotto, V., Aredes, N. D. A., Siqueira, I. S. L. d., Rocha, S. D., Carrijo, C. I. d. S., & Rosso, C. F. W. (2022). Negative Self-Assessment of Health in Women: Association with Sociodemographic Characteristics, Physical Inactivity and Multimorbidity. International Journal of Environmental Research and Public Health, 19(5), 2666. https://doi.org/10.3390/ijerph19052666