The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases
Abstract
:1. Introduction
2. Methods
3. Ambient Pollution and Occupational Pollution
3.1. Ambient Pollution
Adverse Health Effects | Reference Number | |
---|---|---|
Short-term exposure (hours to days) | ||
Asthma attacks | Increased risk of hospital visits | [14,15,16] |
COPD | Increased risk of hospital visits, | [16] |
Increased the relative risk of acute exacerbations | [17] | |
Long-term exposure (month to years) | ||
Lung function development | Suppression of lung function development in children | [18] |
Lung cancer | Increased the development and mortality of lung cancer | [20,21,22] |
SARS-CoV-2 associated events | Increased the risk of SARS-CoV-2-associated respiratory distress, respiratory failure, and mortality | [27,28,29,30,31,32] |
3.2. Ambient Occupational Pollution
Pollutants | Occupational Exposure Circumstances | Respiratory Diseases | Reference Number |
---|---|---|---|
Inorganic substances | |||
Mineral dusts | |||
Asbestos Chrysotile (Serpentine group) Crocidolite, amosite, tremolite, and others (Amphibole group) | Construction, manufacturing brake lining and pads, and handling insulation | Lung cancer, mesothelioma, pleural effusion, pleural plaque, rounded atelectasis, and asbestosis | [38,39,40,41,42] |
Crystalline silicon dioxide, Crystalline silica | Mining, quarrying, drilling, foundries, ceramics, and sandblasting industries | Silicosis, Lung cancer | [54,55,56,57,58] |
Heavy metals | |||
Arsenic | Hot smelting, fur handling, manufacturing sheep-dip compounds and pesticides, and vineyard working | Lung cancer | [7,38] |
Chromium [VI] | Producing chromate, chromium platers and ferrochromium, and manufacturing chromate pigment | Lung cancer | [7,38] |
Nickel | Mining, smelting, and electrolyzing | Lung cancer | [7,38] |
Radiation | |||
Low-LET radiation; X-rays, and γ-rays | Medical professions and nuclear industry | Lung cancer | [7,38] |
High-LET radiation and Radon | Underground mining | Lung cancer | [7,38] |
Organic substances | |||
Saccharomycetes spp., Aspergillus spp. | Farming | Hypersensitivity pneumonitis | [93] |
Bird bloom, feather, droppings, serum, and down products | Bird breeding, Manufacturing down products | Hypersensitivity pneumonitis | [93] |
Shitake, bunashimeji, nameko, eringi, and thermophilic Actinomycetes | Mushroom working | Hypersensitivity pneumonitis | [93,111] |
Isocyanates | Surface protective materials, painting, and producing polyurethane | Hypersensitivity pneumonitis | [93,106] |
Cross-linked acrylic acid-based polymers | Manufacturing pharmaceuticals and cosmetics | Pneumoconiosis, emphysema, and pneumothorax | [106,110] |
Classification of WRA | Causative Agents | Reference Number |
---|---|---|
Work-exacerbated asthma (WEA) | Miscellaneous chemicals and materials (including pesticides and glues), mineral and inorganic dusts (including cement dust and copier toner), and cleaning materials | [71,72,91,92] |
Occupational asthma (OA) | ||
Sensitizer-induced OA | High molecular weight (≧5 kDa); flour, latex | [75,91,92] |
Low molecular weight (<5 kDa); isocyanates, persulfates, metals, cleaning materials (quaternary ammonium compounds, amines, and fragrances), acrylates, and wood | ||
Irritant-induced OA (including RADS) | Benzene-1,2,4-tricarboxylic acid, 1,2-anhydride (trimellitic anhydride), sodium hypochlorite, hydrochloric acid, alkaline agents (ammonia and caustic soda), chlorine, cobalt, cement, environmental tobacco smoke, grain, welding fumes, construction work, swine or poultry confinement or farming, and the 2001 New York World Trade Center collapse | [68,80,86,91,92] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thatcher, T.H.; Woeller, C.; McCarthy, C.E.; Sime, P.J. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol. Ther. 2019, 197, 212–224. [Google Scholar] [CrossRef] [PubMed]
- WHO. Releases Country Estimates on Air Pollution Exposure and Health Impact. Available online: https://www.who.int/news/item/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact (accessed on 23 December 2021).
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Vlahovich, K.P.; Sood, A. A 2019 Update on Occupational Lung Diseases: A Narrative Review. Pulm. Ther. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Blanc, P.D.; Annesi-Maesano, I.; Balmes, J.R.; Cummings, K.J.; Fishwick, D.; Miedinger, D.; Murgia, N.; Naidoo, R.N.; Reynolds, C.J.; Sigsgaard, T.; et al. The Occupational Burden of Nonmalignant Respiratory Diseases. An Official American Thoracic Society and European Respiratory Society Statement. Am. J. Respir. Crit. Care Med. 2019, 199, 1312–1334. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respir-atory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Boffetta, P. Epidemiology of environmental and occupational cancer. Oncogene 2004, 23, 6392–6403. [Google Scholar] [CrossRef] [Green Version]
- Ministry of the Environment Goverment of Japan. Available online: https://www.env.go.jp/ (accessed on 5 December 2021).
- Pearson, C.; Littlewood, E. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A sys-tematic review of occupational and community studies. J. Toxicol. Environ. Health B Crit. Rev. 2015, 18, 43–69. [Google Scholar] [CrossRef]
- Kc, R.; Shukla, S.D.; Gautam, S.S.; Hansbro, P.M.; O’Toole, R.F. The role of environmental exposure to non-cigarette smoke in lung disease. Clin. Transl. Med. 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Schraufnagel, D.E.; Balmes, J.R. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respir-atory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Shamsollahi, H.R.; Jahanbin, B.; Rafieian, S.; Yunesian, M. Particulates induced lung inflammation and its consequences in the development of restrictive and obstructive lung diseases: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 25035–25050. [Google Scholar] [CrossRef]
- Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Baïz, N.; Simoni, M.; Annesi-Maesano, I.; Viegi, G.; on behalf of the HEALS Study. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med. 2015, 109, 1089–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Li, S.; Fan, C.; Bai, Z.; Yang, K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2015, 23, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-Y.; Ding, H.; Jiang, L.-N.; Chen, S.-W.; Zheng, J.-P.; Qiu, M.; Zhou, Y.-X.; Chen, Q.; Guan, W.-J. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138146. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kwon, H.-J.; Lim, J.-A.; Choi, J.H.; Ha, M.; Hwang, S.-S.; Choi, W.-J. Short-term Effect of Fine Particulate Matter on Children’s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis. J. Prev. Med. Public Health 2016, 49, 205–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, F.W.S.; Tam, W.; Wong, T.W.; Chan, D.P.S.; Tung, A.H.; Lai, C.K.W.; Hui, D.S.C. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax 2007, 62, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Avol, E.; Gilliland, F.; Vora, H.; Thomas, D.; Berhane, K.; McConnell, R.; Künzli, N.; Lurmann, F.; Rappaport, E.; et al. The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age. N. Engl. J. Med. 2004, 351, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Agents Classified by the IARC Monographs, Volumes 1–130—IARC Monographs on the Identification of Carcinogenic Haz-ards to Humans. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 7 December 2021).
- Pope, C.A., 3rd; Burnett, R.T. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Katanoda, K.; Sobue, T.; Satoh, H.; Tajima, K.; Suzuki, T.; Nakatsuka, H.; Takezaki, T.; Nakayama, T.; Nitta, H.; Tanabe, K.; et al. An Association Between Long-Term Exposure to Ambient Air Pollution and Mortality from Lung Cancer and Respiratory Diseases in Japan. J. Epidemiol. 2011, 21, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Huang, Y.; Han, J.; Song, F.; Chen, K. Ambient particulate matter and lung cancer incidence and mortality: A meta-analysis of prospective studies. Eur. J. Public Health 2015, 25, 324–329. [Google Scholar] [CrossRef]
- Samet, J.M.; Utel, M.J. The environment and the lung. Changing perspectives. JAMA 1991, 266, 670–675. [Google Scholar] [CrossRef]
- Chen, Y.; Craig, L.; Krewski, D. Air Quality Risk Assessment and Management. J. Toxicol. Environ. Health Part A 2008, 71, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dorans, K.S.; Wilker, E.H.; Rice, M.B.; Schwartz, J.; Coull, B.A.; Koutrakis, P.; Gold, D.R.; Fox, C.S.; Mittleman, M. Residential proximity to major roadways, fine particulate matter, and adiposity: The framingham heart study. Obesity 2016, 24, 2593–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, W.J.; Gaffin, J.M.; Peden, D.; Bush, R.K.; Phipatanakul, W. Advances in environmental and occupational disorders. J. Allergy Clin. Immunol. 2017, 140, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Frontera, A.; Cianfanelli, L.; Vlachos, K.; Landoni, G.; Cremona, G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J. Infect. 2020, 81, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e948. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar]
- Konstantinoudis, G.; Padellini, T.; Bennett, J.; Davies, B.; Ezzati, M.; Blangiardo, M. Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis. Environ. Int. 2021, 146, 106316. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.J. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Cali-fornian context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Domingo, J.L.; Rovira, J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 2020, 187, 109650. [Google Scholar] [CrossRef]
- Woodby, B. Arnold MM. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann. N. Y. Acad. Sci. 2021, 1486, 15–38. [Google Scholar] [CrossRef]
- Naidoo, P.; Ghazi, T.; Chuturgoon, A.A.; Naidoo, R.N.; Ramsuran, V.; Mpaka-Mbatha, M.N.; Bhengu, K.N.; Nembe, N.; Duma, Z.; Pillay, R.; et al. SARS-CoV-2 and helminth co-infections, and environmental pollution exposure: An epidemiological and immunological perspective. Environ. Int. 2021, 156, 106695. [Google Scholar] [CrossRef] [PubMed]
- Devesa, S.S.; Bray, F. International lung cancer trends by histologic type: Male:female differences diminishing and adenocarci-noma rates rising. Int. J. Cancer 2005, 117, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, R.; Peto, R. The Causes of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States Today. JNCI J. Natl. Cancer Inst. 1981, 66, 1192–1308. [Google Scholar] [CrossRef]
- Alberg, A.J.; Brock, M.V. Epidemiology of Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed. American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e1S–e29S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 21 September 2021).
- Hosoda, Y.; Hiraga, Y. Railways and asbestos in Japan (1928–1987)—Epidemiology of pleural plaques, malignancies and pneu-moconioses. J. Occup. Health 2008, 50, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Roach, H.D.; Davies, G.J.; Attanoos, R.; Crane, M.; Adams, H.; Phillips, S. Asbestos: When the Dust Settles—An Imaging Review of Asbestos-related Disease. RadioGraphics 2002, 22, S167–S184. [Google Scholar] [CrossRef]
- Guidotti, T.L.; Miller, A.; Christiani, D.; Wagner, G.; Balmes, J.; Harber, P.; Brodkin, C.A.; Rom, W.; Hillerdal, G.; Harbut, M.; et al. Diagnosis and Initial Management of Nonmalignant Diseases Related to Asbestos. Am. J. Respir. Crit. Care Med. 2004, 170, 691–715. [Google Scholar]
- Hein, M.J.; Stayner, L.T.; Lehman, E.; Dement, J.M. Follow-up study of chrysotile textile workers: Cohort mortality and exposure-response. Occup. Environ. Med. 2007, 64, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.F.; Holmes, S.; Doll, R.; Hill, I.D. Mortality from Lung Cancer and Other Causes among Workers in an Asbestos Textile Factory. Occup. Environ. Med. 1968, 25, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Newhouse, M.L.; Berry, G. Patterns of mortality in asbestos factory workers in London. Ann. N. Y. Acad. Sci. 1979, 330, 53–60. [Google Scholar] [CrossRef]
- GBD 2013 Risk Factors Collaborators; Forouzanfar, M.H.; Alexander, L. Global, regional, and national comparative risk as-sessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, J.; Thada, P.K. Asbestosis; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555985/ (accessed on 19 December 2021).
- Fujimura, N. Pathology and pathophysiology of pneumoconiosis. Curr. Opin. Pulm. Med. 2000, 6, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Kamp, D.W.; Weitzman, S.A. Asbestosis: Clinical Spectrum and Pathogenic Mechanisms. Exp. Biol. Med. 1997, 214, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Cugell, D.W.; Kamp, D.W. Asbestos and the pleura: A review. Chest 2004, 125, 1103–1117. [Google Scholar] [CrossRef]
- Mossman, B.T.; Churg, A. Mechanisms in the Pathogenesis of Asbestosis and Silicosis. Am. J. Respir. Crit. Care Med. 1998, 157 Pt 1, 1666–1680. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Gulumian, M.; Hei, T.K.; Kamp, D.; Rahman, Q.; Mossman, B.T. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic. Biol. Med. 2003, 34, 1117–1129. [Google Scholar] [CrossRef]
- Wagner, G.R. The fallout from asbestos. Lancet 2007, 369, 973–974. [Google Scholar] [CrossRef]
- Jamrozik, E.; de Klerk, N. Asbestos-related disease. Intern. Med. J. 2011, 41, 372–380. [Google Scholar] [CrossRef]
- Bang, K.M.; Attfield, M.D.; Wood, J.M.; Syamlal, G. National trends in silicosis mortality in the United States, 1981–2004. Am. J. Ind. Med. 2008, 51, 633–639. [Google Scholar] [CrossRef]
- Akira, M. High-resolution CT in the evaluation of occupational and environmental disease. Radiol. Clin. N. Am. 2002, 40, 43–59. [Google Scholar] [CrossRef]
- Antao, V.C.; Pinheiro, G.A. High-resolution CT in silicosis: Correlation with radiographic findings and functional impairment. J. Comput. Assist. Tomogr. 2005, 29, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Marchiori, E.; Souza, C.A.; Barbassa, T.G.; Escuissato, D.L.; Gasparetto, E.L.; Souza, A.S. Silicoproteinosis: High-Resolution CT Findings in 13 Patients. Am. J. Roentgenol. 2007, 189, 1402–1406. [Google Scholar] [CrossRef]
- Chong, S.; Lee, K.S.; Chung, M.J.; Han, J.; Kwon, O.J.; Kim, T.S. Pneumoconiosis: Comparison of Imaging and Pathologic Findings. RadioGraphics 2006, 26, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.O.; Lamberty, J.; Pizzolato, P.; Coover, J. The ultrastructure of acute silicosis. Arch. Pathol. 1973, 96, 104–107. [Google Scholar]
- Dalal, N.S.; Shi, X.; Vallyathan, V. Esr Spin Trapping and Cytotoxicity Investigations of Freshly Fractured Quartz: Mechanism of Acute Silicosis. Free Radic. Res. Commun. 1990, 9, 259–266. [Google Scholar] [CrossRef]
- Heffner, J.E.; Repine, J.E. Pulmonary Strategies of Antioxidant Defense. Am. Rev. Respir. Dis. 1989, 140, 531–554. [Google Scholar] [CrossRef]
- Fubini, B.; Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 2003, 34, 1507–1516. [Google Scholar] [CrossRef]
- Dubois, C.M.; Bissonnette, E.; Rola-Pleszczynski, M. Asbestos Fibers and Silica Particles Stimulate Rat Alveolar Macrophages to Release Tumor Necrosis Factor: Autoregulatory Role of Leukotriene B4. Am. Rev. Respir. Dis. 1989, 139, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Respiratory Disease Collaborators; Soriano, J.B.; Kendrick, P.J. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators; James, S.L.; Abate, D. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Causes of Death Collaborators; Roth, G.A.; Abate, D. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Risk Factor Collaborators; Stanaway, J.D.; Afshin, A. Global, regional, and national comparative risk assessment of 84 behavioural, environ-mental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Chan-Yeung, M. Assessment of Asthma in the Workplace. Chest 1995, 108, 1084–1117. [Google Scholar] [CrossRef] [PubMed]
- Mapp, C.E.; Boschetto, P. Occupational asthma. Am. J. Respir. Crit. Care Med. 2005, 172, 280–305. [Google Scholar] [CrossRef]
- Roio, L.C.D.; Mizutani, R.F. Work-related asthma. J. Bras. Pneumol. 2021, 47, e20200577. [Google Scholar]
- Henneberger, P.K.; Redlich, C.A.; Callahan, D.B.; Harber, P.; Lemière, C.; Martin, J.; Tarlo, S.M.; Vandenplas, O.; Torén, K. An Official American Thoracic Society Statement: Work-Exacerbated Asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 368–378. [Google Scholar] [CrossRef]
- AOEC—Epidemiology Tools. Available online: http://www.aoec.org/tools.htm (accessed on 23 December 2021).
- Cormier, M.; Lemière, C. Occupational asthma. Int. J. Tuberc. Lung Dis. 2020, 24, 8–21. [Google Scholar] [CrossRef]
- Baur, X.; Akdis, C.A. Immunological methods for diagnosis and monitoring of IgE-mediated allergy caused by industrial sensi-tizing agents (IMExAllergy). Allergy 2019, 74, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, O.; Godet, J.; Hurdubaea, L.; Rifflart, C.; Suojalehto, H.; Wiszniewska, M.; Munoz, X.; Sastre, J.; Klusackova, P.; Moore, V.; et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational asthma? Allergy 2019, 74, 261–272. [Google Scholar] [CrossRef]
- Vandenplas, O. Occupational Asthma: Etiologies and Risk Factors. Allergy Asthma Immunol. Res. 2011, 3, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Mapp, C.E. Agents, old and new, causing occupational asthma. Occup. Environ. Med. 2001, 58, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarlo, S.M.; Balmes, J. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. Chest 2008, 134, 1S–41S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meca, O.; Cruz, M.J. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents? PLoS ONE 2016, 11, e0156141. Available online: https://pubmed.ncbi.nlm.nih.gov/27280473/ (accessed on 22 December 2021). [CrossRef] [PubMed] [Green Version]
- Tarlo, S.M. Irritant-Induced Asthma in the Workplace. Curr. Allergy Asthma Rep. 2013, 14, 1–6. [Google Scholar] [CrossRef]
- Brooks, S.M.; Weiss, M.A. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest 1985, 88, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, O.; Wiszniewska, M.; European Academy of Allergy and Clinical Immunology. EAACI position paper: Irritant-induced asthma. Allergy 2014, 69, 1141–1153. [Google Scholar] [CrossRef] [Green Version]
- Banauch, G.I.; Dhala, A.; Alleyne, D.; Alva, R.; Santhyadka, G.; Krasko, A.; Weiden, M.; Kelly, K.J.; Prezant, D.J. Bronchial hyperreactivity and other inhalation lung injuries in rescue/recovery workers after the World Trade Center collapse. Crit. Care Med. 2005, 33, S102–S106. [Google Scholar] [CrossRef] [PubMed]
- Baur, X.; Bakehe, P.; Vellguth, H. Bronchial asthma and COPD due to irritants in the workplace—An evidence-based approach. J. Occup. Med. Toxicol. 2012, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.; Luo, H.; Friedman-Jimenez, G. Occupational Asthma and Work-Exacerbated Asthma. Semin. Respir. Crit. Care Med. 2015, 36, 388–407. [Google Scholar] [CrossRef]
- Baur, X. A compendium of causative agents of occupational asthma. J. Occup. Med. Toxicol. 2013, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Zholos, A.V. TRP Channels in Respiratory Pathophysiology: The Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr. Neuropharmacol. 2015, 13, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Molfino, N.A.; Wright, S.C. Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. Lancet 1991, 338, 199–203. [Google Scholar] [CrossRef]
- Witten, A.; Solomon, C.; Abbritti, E.; Arjomandi, M.; Zhai, W.; Kleinman, M.; Balmes, J. Effects of Nitrogen Dioxide on Allergic Airway Responses in Subjects with Asthma. J. Occup. Environ. Med. 2005, 47, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Rava, M.; Ahmed, I.; Kogevinas, M.; Le Moual, N.; Bouzigon, E.; Curjuric, I.; Dizier, M.-H.; Dumas, O.; Gonzalez, J.R.; Imboden, M.; et al. Genes Interacting with Occupational Exposures to Low Molecular Weight Agents and Irritants on Adult-Onset Asthma in Three European Studies. Environ. Health Perspect. 2017, 125, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Folletti, I.; Siracusa, A. Update on asthma and cleaning agents. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 90–95. [Google Scholar] [CrossRef]
- Siracusa, A.; De Blay, F.; Folletti, I.; Moscato, G.; Olivieri, M.; Quirce, S.; Raulf-Heimsoth, M.; Sastre, J.; Tarlo, S.; Walusiak-Skorupa, J.; et al. Asthma and exposure to cleaning products—A European Academy of Allergy and Clinical Immunology task force consensus statement. Allergy 2013, 68, 1532–1545. [Google Scholar] [CrossRef] [Green Version]
- Barnes, H.; Troy, L.; Lee, C.T.; Sperling, A.; Strek, M.; Glaspole, I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diagnosis, and treatment. Allergy 2021, 77, 442–453. [Google Scholar] [CrossRef]
- Rittig, A.H.; Hilberg, O.; Ibsen, R.; Løkke, A. Incidence, comorbidity and survival rate of hypersensitivity pneumonitis: A national population-based study. ERJ Open Res. 2019, 5, 00259–02018. [Google Scholar] [CrossRef]
- Fernández Pérez, E.R. Epidemiology of Hypersensitivity Pneumonitis among an Insured Population in the United States: A Claims-based Cohort Analysis. Ann. Am. Thorac. Soc. 2018, 15, 460–469. [Google Scholar] [CrossRef]
- Coultas, D.B.; Zumwalt, R.E.; Black, W.C.; Sobonya, R.E. The epidemiology of interstitial lung diseases. Am. J. Respir. Crit. Care Med. 1994, 150, 967–972. [Google Scholar] [CrossRef]
- Hoppin, J.A.; Umbach, D.M. Pesticides and other agricultural factors associated with self-reported farmer’s lung among farm residents in the Agricultural Health Study. Occup. Environ. Med. 2007, 64, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.F.; Hall, G. Farmer’s lung in Northern Ireland. Br. J. Ind. Med. 1990, 47, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Charitopoulos, K.; Gioulekas, D.; Sichletidis, L.; Chloros, D.; Vamvakopoulou, V.; Zarogoulidis, K. Hypoxemia: An early indication of pigeon breeders’ disease. Clinical and laboratory findings among pigeon breeders in the Salonica area. J. Investig. Allergy Clin. Immunol. 2005, 15, 211–215. [Google Scholar]
- Banham, S.W.; McSharry, C.; Lynch, P.P.; Boyd, G. Relationships between avian exposure, humoral immune response, and pigeon breeders’ disease among Scottish pigeon fanciers. Thorax 1986, 41, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Betz, B. Respiratory tract diseases in oyster mushroom cultivators. Pneumologie 1990, 44, 339–340. [Google Scholar]
- Konishi, K.; Mouri, T.; Chida, E.; Kubota, K.; Nakadate, T.; Tamura, M. Chronic type hypersensitivity pneumonitis. Nihon Kyobu Shikkan Gakkai Zasshi 1993, 31, 62–66. (In Japanese) [Google Scholar]
- Tanaka, H.; Saikai, T.; Sugawara, H.; Tsunematsu, K.; Takeya, I.; Koba, H.; Matsuura, A.; Imai, K.; Abe, S. Three-year follow-up study of allergy in workers in a mushroom factory. Respir. Med. 2001, 95, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Tsushima, K.; Fujimoto, K.; Yoshikawa, S.; Kawakami, S.; Koizumi, T.; Kubo, K. Hypersensitivity Pneumonitis due to Bunashimeji Mushrooms in the Mushroom Industry. Int. Arch. Allergy Immunol. 2005, 137, 241–248. [Google Scholar] [CrossRef]
- Selman, M.; Pardo, A. Hypersensitivity pneumonitis: Insights in diagnosis and pathobiology. Am. J. Respir. Crit. Care Med. 2012, 186, 314–324. [Google Scholar] [CrossRef]
- Morimoto, Y.; Nishida, C.; Tomonaga, T.; Izumi, H.; Yatera, K.; Sakurai, K.; Kim, Y. Lung disorders induced by respirable organic chemicals. J. Occup. Health 2021, 63, e12240. [Google Scholar] [CrossRef]
- Falfán-Valencia, R.; Camarena, Á.; Pineda, C.L.; Montaño, M.; Juárez, A.; Buendía-Roldán, I.; Pérez-Rubio, G.; Reséndiz-Hernández, J.M.; Páramo, I.; Vega, A.; et al. Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLA-DRB1*04 bearing HLA haplotypes. Respir. Med. 2014, 108, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, B.; Newton, C.A.; Arnould, I. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersen-sitivity pneumonitis: An observational cohort-control study. Lancet Respir. Med. 2017, 5, 639–647. [Google Scholar] [CrossRef]
- Ley, B.; Torgerson, D.G.; Oldham, J.M.; Adegunsoye, A.; Liu, S.; Li, J.; Elicker, B.M.; Henry, T.S.; Golden, J.A.; Jones, K.D.; et al. Rare Protein-Altering Telomere-related Gene Variants in Patients with Chronic Hypersensitivity Pneumonitis. Am. J. Respir. Crit. Care Med. 2019, 200, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Working Group Report to Decide Whether Pulmonary Disorder That Occured at the Workplace of Production of Powder of Cross-Linked Polyacrylic Acid Is Work-Related Disease or Not (Japanese). Available online: https://www.mhlw.go.jp/content/11402000/000502982.pdf (accessed on 23 December 2021).
- Saikai, T.; Tanaka, H.; Fuji, M.; Sugawara, H.; Takeya, I.; Tsunematsu, K.; Abe, S. Hypersensitivity Pneumonitis Induced by the Spore of Pleurotus Eryngii (Eringi). Intern. Med. 2002, 41, 571–573. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishida, C.; Yatera, K. The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. Int. J. Environ. Res. Public Health 2022, 19, 2788. https://doi.org/10.3390/ijerph19052788
Nishida C, Yatera K. The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. International Journal of Environmental Research and Public Health. 2022; 19(5):2788. https://doi.org/10.3390/ijerph19052788
Chicago/Turabian StyleNishida, Chinatsu, and Kazuhiro Yatera. 2022. "The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases" International Journal of Environmental Research and Public Health 19, no. 5: 2788. https://doi.org/10.3390/ijerph19052788
APA StyleNishida, C., & Yatera, K. (2022). The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. International Journal of Environmental Research and Public Health, 19(5), 2788. https://doi.org/10.3390/ijerph19052788