The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigating Group and Procedures
2.2. Ethichal Considerations
2.3. Measurement Instruments and Apparatus
2.4. Intervention
Week 3 | Week 10 |
Locomotor and physical skills (7 min) | Locomotor and physical skills (7 min) |
Crab walking | Crab walking through and over different objects (hoops, frisbees) |
Baboon walking | Baboon walking through and over different objects (hoops, frisbees) |
Frog jumping | Frog jumping over frisbees |
Hopping | Hopping through objects |
Galloping | Galloping through objects |
Reflexes and Vestibular (5 min) | Reflexes and Vestibular (5 min) |
Boat rolling | Boat rolling on ball |
Aeroplane | Aeroplane on ball |
Trunk rolls | Trunk rolls |
Fine motor (10 min) | Fine motor (10 min) |
Pressing sticks into clay and removing them again—using different fingers | Attaching laundry pegs to shapes—using different fingers |
Threading a string through holes in a piece of cardboard | Threading string through different forms of noodles |
Locomotor and physical skills (5 min) | Locomotor and physical skills (5 min) |
Two-leg jumping | Two-leg jumping—over and on small benches |
Single-leg jumping | One-leg jumping—around small benches |
Learning steps for skipping—hoop | Skipping |
Rest period (3 min) | Rest period (3 min) |
Stationary (10 min) | Stationary (10 min) |
Standing on 1 leg with eyes open, eyes closed | Frisbee—on different body parts |
Walking on ropes placed in forms—forwards, backwards, oblique, legs crossed | Standing on frisbee on one leg with eyes open, eyes closed |
Walking on edge of hoops—forwards, backwards, oblique, legs crossed | |
Object manipulation (10 min) | Object manipulation (10 min) |
Tossing up a large ball and catching it | Tossing up a ball and catching it—bigger children use tennis balls |
Rolling a ball forward | Rolling ball through markers |
Rolling a ball into goal area | Kicking a ball softly |
Kicking a ball | Kicking a ball through markers |
Kicking a ball into the goal area | Tossing a ball into a bucket—increase distance |
Fine motor (5 min) | Fine motor (5 min) |
Coloring a picture | Duplicating, cutting out and coloring a picture |
Game (5 min) | Game (5 min) |
Parachute game | Parachute game with balls |
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chemtob, D.; Srour, S. Epidemiology of HIV infection among Israeli Arabs. Public Health 2005, 119, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Van Rie, A.; Harrington, P.R.; Dow, A.; Robertson, K. Neurologic and neurodevelopmental manifestations of pediatric HIV/AIDS: A global perspective. Eur. J. Paediatr. Neurol. 2007, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- South African Department of Health. National HIV and Syphilis Antenatal Sero-Prevalence Survey in South Africa: 2002. Available online: https://www.westerncape.gov.za/text/2004/10/2003_antenatal_survey.pdf (accessed on 9 November 2021).
- Potterton, J.; Stewart, A.; Cooper, P.; Becker, P. The effect of a basic home stimulation programme on the development of young children infected with HIV. Dev. Med. Child Neurol. 2009, 52, 547–551. [Google Scholar] [CrossRef] [PubMed]
- South African Health Review. Publisher Health Systems Trust Publication. 2002. Available online: http://www.hst.org.za (accessed on 20 October 2004).
- UNAIDS. Fact Sheet-Latest Global and Regional Statistics on the Status of the AIDS Epidemic 2020. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 9 November 2021).
- Davis-McFarland, E. Language and Oral-Motor Development and Disorders in Infants and Young Toddlers with Human Immunodeficiency Virus. Semin. Speech Lang. 2000, 21, 0019–0036. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.L.; Armstrong, D.; Cohen, D.; Lai, S.; Hardy, M.D.; Swales, T.P.; Morrow, C.J.; Scott, G.B. The effects of HIV on cognitive and motor development in children born to HIV-seropositive woman with no reported drug use: Birth to 24 months. Pediatrics 1995, 96, 1078–1082. [Google Scholar] [CrossRef]
- Ruel, T.D.; Boivin, M.J.; Boal, H.E.; Bangirana, P.; Charlebois, E.; Havlir, D.V.; Rosenthal, P.J.; Dorsey, G.; Achan, J.; Akello, C.; et al. Neurocognitive and Motor Deficits in HIV-Infected Ugandan Children With High CD4 Cell Counts. Clin. Infect. Dis. 2012, 54, 1001–1009. [Google Scholar] [CrossRef] [Green Version]
- Boivin, M.J.; Barlow-Mosha, L.; Chernoff, M.C.; Laughton, B.; Zimmer, B.; Joyce, C.; Bwakura-Dangarembizi, M.; Ratswana, M.; Abrahams, N.; Fairlie, L.; et al. Neuropsychological performance in African children with HIV enrolled in a multisite antiretroviral clinical trial. AIDS 2018, 32, 189–204. [Google Scholar] [CrossRef]
- Blanchette, N.; Smith, M.L.; Fernandes-Penney, A.; King, S.; Read, S. Cognitive and motor development in children with vertically transmitted HIV infection. Brain Cogn. 2001, 46, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.; Amos, T.; Kuo, C.; Hoare, J.; Ipser, J.; Thomas, K.G.F.; Stein, D.J. HIV-Associated Cognitive Impairment in Perinatally Infected Children: A Meta-analysis. Pediatrics 2016, 138, e20160893. [Google Scholar] [CrossRef] [Green Version]
- McHenry, M.S.; McAteer, C.I.; Oyungu, E.; McDonald, B.C.; Bosma, C.B.; Mpofu, P.B.; Deathe, A.R.; Vreeman, R.C. Neurodevelopment in Young Children Born to HIV-Infected Mothers: A Meta-analysis. Pediatrics 2018, 141, e20172888. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D.A.; McGrath, N.; Nozyce, M.; Nichols, S.L.; Raskino, C.; Brouwers, P.; Lifschitz, M.C.; Baker, C.J.; Englund, J.A.; for the Pediatric AIDS Clinical Trials 152 Study Team. Predicting HIV Disease Progression in Children Using Measures of Neuropsychological and Neurological Functioning. Pediatrics 2000, 106, e76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachsler-Felder, J.L.; Golden, C.J. Neuropsychological consequences of HIV in children: A review of current literature. Clin. Psychol. Rev. 2002, 22, 441–462. [Google Scholar] [CrossRef]
- Crystal, S.; Fleishman, J.A.; Hays, R.D.; Shapiro, M.F.; Bozzette, S.A. Physical and role functioning among persons with HIV: Results from a nationally representative survey. Med. Care 2000, 38, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Brady, M. Treatment of human immunodeficiency virus infection and its associated complications in children. J. Clin. Pharmacol. 1994, 34, 17–29. [Google Scholar] [CrossRef]
- Stein, Z.A.; Tsai, R.-T.; Singh, T.; Tsai, W.-Y.; Kuhn, L.; Williams, R. Changes Over Time in Survival of Children After AIDS Diagnosis in New York City. Am. J. Prev. Med. 1995, 11, 30–33. [Google Scholar] [CrossRef]
- Wilfert, C.M. Prevention of Perinatal Transmission of Human Immunodeficiency Virus: A Progress Report 2 Years After Completion of AIDS Clinical Trials Group Trial 076. Clin. Infect. Dis. 1996, 23, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Parks, R.A.; Danoff, J.V. Motor Performance Changes in Children Testing Positive for HIV Over 2 Years. Am. J. Occup. Ther. 1999, 53, 524–528. [Google Scholar] [CrossRef] [Green Version]
- De Waal, E.; Pienaar, A.E.; Coetzee, D. Influence of Different Visual Perceptual Constructs on Academic Achievement Among Learners in the NW-CHILD Study. Percept. Mot. Ski. 2018, 125, 966–988. [Google Scholar] [CrossRef]
- De Waal, E.; Pienaar, A.E. Influences of Early Motor Proficiency and Socioeconomic Status on the Academic Achievement of Primary School Learners: The NW-CHILD Study. Day Care Early Educ. 2020, 48, 671–682. [Google Scholar] [CrossRef]
- Boivin, M.J.; Ruiseñor-Escudero, H.; Familiar-Lopez, I. CNS Impact of Perinatal HIV Infection and Early Treatment: The Need for Behavioral Rehabilitative Interventions Along with Medical Treatment and Care. Curr. HIV/AIDS Rep. 2016, 13, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Strehlau, R.; Kuhn, L.; Abrams, E.J.; Coovadia, A. HIV-associated neurodevelopmental delay: Prevalence, predictors and persistence in relation to antiretroviral therapy initiation and viral suppression. Child Care Health Dev. 2016, 42, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Lowick, S.; Sawry, S.; Meyers, T. Neurodevelopmental delay among HIV-infected preschool children receiving antiretroviral therapy and healthy preschool children in Soweto, South Africa. Psychol. Health Med. 2012, 17, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Fundarò, C.; Miccinesi, N.; Baldieri, N.F.; Genovese, O.; Rendeli, C.; Segni, G. Cognitive impairment in school-age children with asymptomatic HIV infection. AIDS Patient Care STDs 1998, 12, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Laughton, B.; Cornell, M.; Boivin, M.; Van Rie, A. Neurodevelopment in perinatally HIV-infected children: A concern for adolescence. J. Int. AIDS Soc. 2013, 16, 18603. [Google Scholar] [CrossRef]
- Sherr, L.; Croome, N.; Castaneda, K.P.; Bradshaw, K.; Romero, R.H. Developmental challenges in HIV infected children—An updated systematic review. Child. Youth Serv. Rev. 2014, 45, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Fiore, T.; Flanigan, T.; Hogan, J.; Cram, R.; Schuman, P.; Schoenbaum, E.; Solomon, L.; Moore, J. HIV infection in families of HIV-positive and ‘at-risk’ HIV-negative women. AIDS Care 2001, 13, 209–214. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Temple, J.A.; Robertson, D.L.; Mann, E.A. Long term effects of an earlychidhood intervention on educational achievement and juvenile arrest: A 15 year follow –up of low –income children in public schools. JAMA 2001, 285, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.; Rabkin, J.; Rabkin, R. Exercise as a mediator of psychological and nutritional effects of testosterone therapy in HIV+ men. Med. Sci. Sports Exerc. 1998, 30, 811–817. [Google Scholar]
- Folio, M.R.; Fewell, R.R. Peabody Developmental Motor Scales, 2nd ed.; PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Topend Sports. Available online: https://www.topendsports.com/testing/tests/index.htm (accessed on 4 March 2002).
- Statsoft. Statistica for Windows, Release 5.5: General Conversions and Statistics; StatSoft: Tulsa, OK, USA, 2006. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Science; Erlbaim: New York, NY, USA, 1988. [Google Scholar]
- Steyn, H.S. Praktiese Beduidendheid. Die gebruik van Effekgroottes; Wetenskaplike Bydraes, Reeks B: Natuurwetenskappe nr. 117., PU vir CHO; Publikasiebeheer-komitee: Potchefstroom, South Africa, 1999. [Google Scholar]
- Botha, J.E.; Pienaar, A.E. The motor and physical development of 2 to 6-year old children infected with HIV. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2008, 30, 39–52. [Google Scholar] [CrossRef]
- Taverna, L.; Bellavere, M.; Tremolada, M.; Santinelli, L.; Rudelli, N.; Mainardi, M.; Onder, G.; Putti, M.C.; Biffi, A.; Tosetto, B. Oncological Children andWell-Being: Occupational Performance and HRQOL Change after Fine Motor Skills Stimulation Activities. Pediatr. Rep. 2021, 13, 383–400. [Google Scholar] [CrossRef]
- Amundson, S.J.; Weil, M. Prewriting and handwriting skills. In Occupational Therapy for Children; Case-Smith, J., Allen, A.S., Pratt, P.N., Eds.; Mosby: St. Louis, MO, USA, 1996; pp. 524–541. [Google Scholar]
- Cantell, M.H.; Smyth, M.M.; Ahonen, T.P. Clumsiness in adolescence: Educational, motor, and social outcomes of motor delay detected at 5 years. Adapt. Phys. Act. Q. 1994, 11, 115–129. [Google Scholar] [CrossRef]
- Pienaar, A.E.; Van Rensburg, E.; Smit, A. The effect of a Kinderkinetics programme on components of children’s perceptual-motor and cognitive functioning. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2011, 33, 113–118. [Google Scholar]
- Castro-Piñero, J.; González-Montesinos, J.L.; Mora, J.; Keating, X.D.; Girela-Rejón, M.J.; Sjöström, M.; Ruiz, J.R. Percentile Values for Muscular Strength Field Tests in Children Aged 6 to 17 Years: Influence of Weight Status. J. Strength Cond. Res. 2009, 23, 2295–2310. [Google Scholar] [CrossRef] [PubMed]
- Shor-Posner, G.; Miguez, M.-J.; Hernandez-Reif, M.; Pérez-Then, E.; Fletcher, M. Massage Treatment in HIV-1 Infected Dominican Children: A Preliminary Report on the Efficacy of Massage Therapy to Preserve the Immune System in Children Without Antiretroviral Medication. J. Altern. Complement. Med. 2004, 10, 1093–1095. [Google Scholar] [CrossRef]
- Lima, L.R.A.D.; Teixeira, D.M.; Santos, E.C.M.D.; Petroski, E.L. Contribution of Physical Education in the fields of sport, physical activity, health and education for children and young people living with HIV. Rev. Bras. Cineantropometria Desempenho Hum. 2016, 18, 243–258. [Google Scholar]
Experimental Group (n = 9) | Control Group (n = 13) | Total | Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Boys | Girls | Boys | Girls | |||||||
N | Age | n | Age | n | Age | n | Age | n | Age | |
HIV infected | 1 | 46.0 | 3 | 50.33 | 7 | 53.14 | 0 | - | 11 | 51.73 |
HIV affected | 3 | 46.0 | 2 | 37.5 | 3 | 51.67 | 3 | 40.33 | 11 | 44.45 |
Total | 4 | 5 | 10 | 3 | 22 |
Infected Participants (n = 11) | Affected Participants (n = 11) | ||||
---|---|---|---|---|---|
M | SD | M | SD | p | |
Age | 51.73 | 10.15 | 44.45 | 10.76 | 0.1187 |
Stationary-S | 8.18 | 2.79 | 9.45 | 3.05 | 0.3187 |
Stationary-P | 31.64 | 25.46 | 42.64 | 30.96 | 0.3736 |
Locomotor-S | 7.45 | 2.30 | 9.09 | 2.74 | 0.1444 |
Locomotor-P | 25.00 | 21.48 | 37.64 | 26.13 | 0.2297 |
Object manip-S | 9.45 | 2.21 | 9.91 | 2.43 | 0.6508 |
Object manip-P | 43.91 | 25.34 | 49.00 | 27.25 | 0.6549 |
Grasping-S | 9.64 | 1.96 | 11.64 | 3.17 | 0.0905 |
Grasping-P | 44.82 | 22.19 | 64.91 | 27.15 | 0.0719 |
Visual–motor-S | 9.45 | 3.33 | 8.09 | 2.26 | 0.2739 |
Visual–motor-P | 46.18 | 34.43 | 30.55 | 23.52 | 0.2280 |
Gross motor-P | 30.55 | 24.29 | 42.09 | 25.63 | 0.2910 |
Gross motor-Q | 89.82 | 13.48 | 96.64 | 11.31 | 0.2134 |
Fine motor-P | 43.82 | 25.80 | 47.64 | 30.41 | 0.7541 |
Fine motor-Q | 97.00 | 11.30 | 99.18 | 15.12 | 0.7056 |
Total motor-P | 34.45 | 24.35 | 43.82 | 28.36 | 0.4159 |
Total motor-Q | 92.18 | 12.60 | 97.18 | 13.56 | 0.3810 |
Handgrip strength-R | 4.05 | 1.68 | 3.77 | 2.26 | 0.7515 |
Handgrip strength-L | 3.27 | 1.75 | 3.50 | 2.10 | 0.7855 |
Standing long-jump | 42.09 | 23.12 | 44.14 | 34.07 | 0.8708 |
Intervention Group (n = 9) | Control Group (n = 13) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-T | Post-T | Pre-T | Post-T | |||||||
M | SD | M | SD | P | M | SD | M | SD | p | |
Stationary-S | 7.44 | 2.30 | 8.11 | 2.85 | 0.5632 | 9.77 | 3.00 | 9.69 | 2.72 | 0.8506 |
Stationary-P | 25.00 | 17.79 | 33.44 | 25.29 | 0.3718 | 45.54 | 31.57 | 45.08 | 28.91 | 0.9172 |
Locomotor-S | 8.22 | 3.35 | 10.00 | 2.40 | 0.1614 | 8.31 | 2.10 | 8.23 | 2.35 | 0.7938 |
Locomotor-P | 29.67 | 29.73 | 50.56 | 25.88 | 0.0869 | 32.46 | 20.84 | 32.69 | 22.94 | 0.9370 |
Object manip-S | 9.44 | 2.01 | 10.78 | 2.22 | 0.2249 | 9.85 | 2.51 | 9.92 | 1.93 | 0.8078 |
Object manip-P | 43.67 | 22.54 | 57.33 | 23.60 | 0.2419 | 48.38 | 28.59 | 49.00 | 23.37 | 0.8449 |
Grasping-S | 9.44 | 2.19 | 10.89 | 2.52 | * 0.0499 | 11.46 | 2.90 | 11.15 | 2.03 | 0.4874 |
Grasping-P | 44.44 | 25.27 | 60.11 | 26.72 | 0.0694 | 62.08 | 25.41 | 61.92 | 21.35 | 0.9733 |
Visual–motor-S | 7.78 | 2.77 | 9.11 | 2.47 | 0.2133 | 9.46 | 2.82 | 8.92 | 2.96 | 0.3156 |
Visual–motor-P | 28.11 | 28.23 | 37.78 | 24.35 | 0.3613 | 45.46 | 29.94 | 39.69 | 31.02 | 0.3407 |
Gross motor-P | 31.44 | 23.29 | 45.22 | 21.50 | 0.1965 | 39.69 | 26.61 | 35.62 | 25.14 | 0.6412 |
Gross motor-Q | 90.11 | 13.25 | 97.67 | 9.29 | 0.1757 | 95.38 | 12.24 | 93.62 | 11.69 | 0.6508 |
Fine motor-P | 31.67 | 22.22 | 51.11 | 24.73 | * 0.0068 | 55.46 | 27.42 | 41.38 | 31.51 | * 0.0432 |
Fine motor-Q | 91.33 | 10.44 | 100.00 | 11.62 | * 0.0064 | 102.77 | 12.99 | 94.92 | 16.81 | * 0.0237 |
Total motor-P | 29.67 | 22.51 | 47.11 | 20.70 | * 0.0291 | 45.69 | 27.44 | 36.77 | 28.02 | 0.2460 |
Total motor-Q | 89.56 | 11.96 | 98.22 | 9.60 | * 0.0339 | 98.23 | 12.98 | 93.46 | 14.12 | 0.1770 |
Handgrip strength-R | 3.06 | 2.21 | 3.32 | 2.41 | 0.0941 | 4.50 | 1.57 | 4.65 | 1.66 | 0.1654 |
Handgrip strength-L | 3.11 | 1.95 | 3.33 | 1.92 | 0.1690 | 3.58 | 1.90 | 3.65 | 2.06 | 0.5486 |
Standing long-jump | 40.56 | 28.89 | 40.78 | 29.16 | 0.5588 | 44.88 | 29.16 | 45.81 | 29.15 | 0.0821 |
Intervention Group (n = 9) | Control Group (n = 13) | ||||
---|---|---|---|---|---|
M | SD | M | SD | ES | |
Stationary-S | 8.98 | 0.78 | 9.09 | 0.64 | - |
Stationary-P | 42.22 | 6.95 | 39.00 | 5.71 | - |
Locomotor-S | 10.03 | 0.66 | 8.21 | 0.55 | 0.82 |
Locomotor-P | 51.53 | 6.60 | 32.02 | 5.49 | 0.96 |
Object manip-S | 10.89 | 0.59 | 9.84 | 0.49 | - |
Object manip-P | 58.84 | 6.40 | 47.96 | 5.32 | - |
Grasping-S | 11.67 | 0.51 | 10.61 | 0.42 | - |
Grasping-P | 66.94 | 5.97 | 57.20 | 4.91 | - |
Visual–motor-S | 9.74 | 0.75 | 8.49 | 0.62 | - |
Visual–motor-P | 44.05 | 7.81 | 35.35 | 6.44 | - |
Gross motor-P | 46.34 | 7.94 | 34.84 | 6.59 | - |
Gross motor-Q | 98.35 | 3.61 | 93.14 | 3.00 | - |
Fine motor-P | 62.84 | 7.19 | 33.26 | 5.87 | 1.66 |
Fine motor-Q | 106.45 | 3.50 | 90.46 | 2.85 | 2.02 |
Total motor-P | 52.35 | 7.41 | 33.14 | 6.11 | 0.88 |
Total motor-Q | 101.25 | 3.57 | 91.36 | 2.94 | 0.95 |
Handgrip strength-R | 4.22 | 0.14 | 4.03 | 0.11 | - |
Handgrip strength-L | 3.61 | 0.15 | 3.46 | 0.13 | - |
Standing long-jump | 43.34 | 0.52 | 44.03 | 0.43 | - |
Intervention Group | Infected Group (n = 4) | Affected Group (n = 5) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-T | Post-T | Pre-T | Post-T | |||||||||||
M | SD | M | SD | Diff | p | ES | M | SD | M | SD | Diff | p | ES | |
Stationary-S | 7.25 | 3.1 | 8 | 2.58 | 0.75 | 0.689 | - | 7.6 | 1.82 | 8.2 | 3.35 | 0.6 | 0.73 | - |
Stationary-P | 26 | 21.8 | 30.3 | 25.6 | 4.25 | 0.751 | - | 24.2 | 16.6 | 36 | 27.8 | 11.8 | 0.44 | - |
Locomotor-S | 6.5 | 1.73 | 9.75 | 1.89 | 3.25 | * 0.022 | 1.72 | 9.6 | 3.85 | 10.2 | 2.95 | 0.6 | 0.77 | - |
Locomotor-P | 15 | 14.8 | 48 | 22.2 | 33 | * 0.038 | 1.49 | 41.4 | 34.9 | 52.6 | 31 | 11.2 | 0.57 | - |
Object manip-S | 8.25 | 1.71 | 11.5 | 2.65 | 3.25 | 0.184 | - | 10.4 | 1.82 | 10.2 | 1.92 | −0.2 | 0.70 | - |
Object manip-P | 30.3 | 17.5 | 64.3 | 25.9 | 34 | 0.182 | - | 54.4 | 21.5 | 51.8 | 22.9 | −2.6 | 0.70 | - |
Grasping-S | 8.25 | 0.96 | 10.8 | 1.5 | 2.5 | 0.096 | - | 10.4 | 2.51 | 11 | 3.32 | 0.6 | 0.37 | - |
Grasping-P | 28.8 | 10.2 | 59.3 | 19 | 30.5 | 0.09 | - | 57 | 27.5 | 60.8 | 34 | 3.8 | 0.53 | - |
Visual–motor-S | 7.75 | 3.59 | 8.5 | 0.58 | 0.75 | 0.729 | - | 7.8 | 2.39 | 9.6 | 3.36 | 1.8 | 0.15 | - |
Visual–motor-P | 28.5 | 37.3 | 31 | 6.93 | 2.5 | 0.912 | - | 27.8 | 23.5 | 43.2 | 32.7 | 15.4 | 0.16 | - |
Gross motor-P | 21.5 | 18.9 | 46.3 | 11.7 | 24.8 | 0.069 | - | 39.4 | 25.3 | 44.4 | 28.6 | 5 | 0.77 | - |
Gross motor-Q | 84 | 14.7 | 98.5 | 4.43 | 14.5 | 0.147 | - | 95 | 11.1 | 97 | 12.5 | 2 | 0.77 | - |
Fine motor-P | 21.5 | 13.8 | 44.3 | 13.2 | 22.8 | 0.119 | - | 39.8 | 25.7 | 56.6 | 31.7 | 16.8 | * 0.05 | 0.53 |
Fine motor-Q | 87.3 | 6.65 | 97.8 | 5.12 | 10.5 | 0.11 | - | 94.6 | 12.4 | 102 | 15.5 | 7.2 | * 0.04 | 0.46 |
Total motor-P | 18.5 | 14.8 | 44.3 | 10.1 | 25.8 | * 0.046 | 1.77 | 38.6 | 25 | 49.4 | 27.7 | 10.8 | 0.33 | - |
Total motor-Q | 84 | 10.8 | 97.8 | 3.86 | 13.8 | 0.079 | - | 94 | 12 | 98.6 | 13.2 | 4.6 | 0.31 | - |
Handgrip strength-R | 2.38 | 0.48 | 2.75 | 0.29 | 0.37 | 0.215 | - | 3.6 | 2.97 | 3.78 | 3.31 | 0.18 | 0.37 | - |
Handgrip strength-L | 2.63 | 0.48 | 2.88 | 0.25 | 0.25 | 0.391 | - | 3.5 | 2.65 | 3.7 | 2.64 | 0.2 | 0.37 | - |
Standing long-jump | 39.3 | 34 | 39.3 | 34 | 0 | - | 41.6 | 28.3 | 42 | 28.8 | 0.4 | 0.59 | - | |
Control Group | Infected Group (n = 7) | Affected Group (n = 6) | ||||||||||||
Stationary-S | 8.71 | 2.69 | 9.14 | 3.02 | 0.43 | 0.53 | - | 11 | 3.1 | 10.3 | 2.42 | −0.7 | 0.10 | - |
Stationary-P | 34.9 | 28.5 | 38.6 | 30.4 | 3.71 | 0.64 | - | 58 | 32.8 | 52.7 | 27.8 | −5.3 | 0.12 | - |
Locomotor-S | 8 | 2.52 | 8.14 | 2.79 | 0.14 | 0.77 | - | 8.67 | 1.63 | 8.33 | 1.97 | −0.3 | 0.36 | - |
Locomotor-P | 30.7 | 23.6 | 33.3 | 26.5 | 2.58 | 0.58 | - | 34.5 | 19.2 | 32 | 20.5 | −2.5 | 0.50 | - |
Object manip-S | 10.1 | 2.27 | 9.86 | 1.95 | −0.3 | 0.17 | - | 9.5 | 2.95 | 10 | 2.1 | 0.5 | 0.47 | - |
Object manip-P | 51.7 | 26.9 | 48.7 | 23.7 | −3 | 0.18 | - | 44.5 | 32.6 | 49.3 | 25.3 | 4.83 | 0.47 | - |
Grasping-S | 10.4 | 1.99 | 10.6 | 1.27 | 0.14 | 0.84 | - | 12.7 | 3.5 | 11.8 | 2.64 | −0.8 | 0.14 | - |
Grasping-P | 54 | 22.3 | 56.7 | 15 | 2.71 | 0.76 | - | 71.5 | 27.5 | 68 | 27.3 | −3.5 | 0.15 | - |
Visual–motor-S | 10.4 | 2.99 | 9.57 | 3.05 | −0.9 | 0.37 | - | 8.33 | 2.34 | 8.17 | 2.93 | −0.2 | 0.74 | - |
Visual–motor-P | 56.3 | 30.9 | 46.7 | 32.2 | −9.6 | 0.38 | - | 32.8 | 25.5 | 31.5 | 30.3 | −1.3 | 0.80 | - |
Gross motor-P | 35.7 | 26.8 | 30.3 | 27 | −5.4 | 0.74 | - | 44.3 | 28.1 | 41.8 | 23.6 | −2.5 | 0.64 | - |
Gross motor-Q | 93.1 | 12.6 | 90.7 | 13 | −2.4 | 0.75 | - | 98 | 12.4 | 97 | 9.94 | −1 | 0.65 | - |
Fine motor-P | 56.6 | 22.2 | 34.7 | 30.3 | −22 | 0.09 | - | 54.2 | 34.8 | 49.2 | 33.9 | −5 | * 0.06 | 1.27 |
Fine motor-Q | 103 | 9.55 | 90.6 | 17.3 | −12 | 0.06 | - | 103 | 17.2 | 100 | 16.2 | −3 | * 0.04 | 0.17 |
Total motor-P | 43.6 | 24.7 | 30 | 28.4 | −14 | 0.35 | - | 48.2 | 32.6 | 44.7 | 27.9 | −3.5 | 0.40 | - |
Total motor-Q | 96.9 | 11.7 | 89.4 | 14.9 | −7.4 | 0.27 | - | 99.8 | 15.3 | 98.2 | 12.7 | −1.7 | 0.36 | - |
Handgrip strength-R | 5 | 1.29 | 5.14 | 1.35 | 0.14 | 0.36 | - | 3.92 | 1.77 | 4.08 | 1.93 | 0.16 | 0.36 | - |
Handgrip strength-L | 3.64 | 2.14 | 3.71 | 2.45 | 0.07 | 0.77 | - | 3.5 | 1.79 | 3.58 | 1.72 | 0.08 | 0.36 | - |
Standing long-jump | 43.7 | 17.5 | 44.3 | 17.2 | 0.58 | 0.17 | - | 46.3 | 40.9 | 47.6 | 41 | 1.33 | 0.24 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pienaar, A.E.; Botha, J.-A.E. The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. Int. J. Environ. Res. Public Health 2022, 19, 2967. https://doi.org/10.3390/ijerph19052967
Pienaar AE, Botha J-AE. The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. International Journal of Environmental Research and Public Health. 2022; 19(5):2967. https://doi.org/10.3390/ijerph19052967
Chicago/Turabian StylePienaar, Anita Elizabeth, and Jo-Anne Elizabeth Botha. 2022. "The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV" International Journal of Environmental Research and Public Health 19, no. 5: 2967. https://doi.org/10.3390/ijerph19052967
APA StylePienaar, A. E., & Botha, J. -A. E. (2022). The Value of a Motor Intervention for 3 to 6-Year-Old Children Infected with and Affected by HIV. International Journal of Environmental Research and Public Health, 19(5), 2967. https://doi.org/10.3390/ijerph19052967