The Health-Seeking Behavior among Malaysian Adults in Urban and Rural Areas Who Reported Sickness: Findings from the National Health and Morbidity Survey (NHMS) 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Study Variables
2.3.1. Andersen’s Behavioral Model of Health Care Utilization
2.3.2. Dependent Variables
2.3.3. Independent Variables
Sociodemographic Characteristics
Enabling Factors
Health Need Factors
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poortaghi, S.; Raiesifar, A.; Bozorgzad, P.; Golzari, S.E.J.; Parvizy, S.; Rafii, F. Evolutionary Concept Analysis of Health Seeking Behavior in Nursing: A Systematic Review. BMC Health Serv. Res. 2015, 15, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olenja, J. Health Seeking Behaviour in Context. East Afr. Med. J. 2003, 80, 61–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomi, E.N.; Mujinja, P.G.; Enemark, U.; Hansen, K.; Kiwara, A.D. Health Care Seeking Behaviour and Utilisation in a Multiple Health Insurance System: Does Insurance Affiliation Matter? Int. J. Equity Health 2014, 13, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.Q.H.; Lee, K.H.; Low, L.L. A Systematic Review of Health Status, Health Seeking Behaviour and Healthcare Utilisation of Low Socioeconomic Status Populations in Urban Singapore. Int. J. Equity Health 2018, 17, 39. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.T.; Fong Lim, Y.M.; Tong, S.F.; Sivasampu, S. Age, Sex and Primary Care Setting Differences in Patients’ Perception of Community Healthcare Seeking Behaviour towards Health Services. PLoS ONE 2019, 14, e0224260. [Google Scholar] [CrossRef]
- Mok, C.Z.; Sellappans, R.; Loo, J.S.E. The Prevalence and Perception of Self-Medication among Adults in the Klang Valley, Malaysia. Int. J. Pharm. Pract. 2021, 29, 29–36. [Google Scholar] [CrossRef]
- Mohamed Azhar, M.I.; Gunasekaran, K.; Kadirvelu, A.; Gurtu, S.; Sadasivan, S.; Kshatriya, B.M. Self-Medication: Awareness and Attitude among Malaysian Urban Population. Int. J. Collab. Res. Intern. Med. Public Health 2013, 5, 436–443. [Google Scholar]
- Dawood, O.; Hassali, M.; Saleem, F.; Ibrahim, I.; Abdulameer, A.; Jasim, H. Assessment of Health Seeking Behaviour and Self-Medication among General Public in the State of Penang, Malaysia. J. Pharm. Pract. Res. 2017, 15, 991. [Google Scholar] [CrossRef] [Green Version]
- Pons, E.D.S.; Knauth, D.R.; Vigo, Á.; Mengue, S.S.; Gadelha, C.A.G.; Costa, K.S.; Do Nascimento, J.M.; Soeiro, O.M.; Mengue, S.S.; Da Motta, M.L.; et al. Predisposing Factors to the Practice of Self-Medication in Brazil: Results from the National Survey on Access, Use and Promotion of Rational Use of Medicines (PNAUM). PLoS ONE 2017, 12, e0189098. [Google Scholar] [CrossRef] [Green Version]
- Ali, A. Self-Medication and Associated Health Care Costs- A Survey In The Urban And Rural Population of A Major City In Pakistan. Value Health 2015, 18, A171. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.G.; Stoddart, G.L. Producing Health, Consuming Health Care. Soc. Sci. Med. 1990, 31, 1347–1363. [Google Scholar] [CrossRef]
- Jones, C.L.; Jensen, J.D.; Scherr, C.L.; Brown, N.R.; Christy, K.; Weaver, J. The Health Belief Model as an Explanatory Framework in Communication Research: Exploring Parallel, Serial, and Moderated Mediation. Health Commun. 2015, 30, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Political Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.M. National Health Surveys and the Behavioral Model of Health Services Use. Med. Care 2008, 46, 647–653. [Google Scholar] [CrossRef]
- Yahya, N.; Sukiman, N.K.; Suhaimi, N.A.; Azmi, N.A.; Manan, H.A. How Many Roads Must a Malaysian Walk down? Mapping the Accessibility of Radiotherapy Facilities in Malaysia. PLoS ONE 2019, 14, e0213583. [Google Scholar] [CrossRef]
- Fujita, M.; Sato, Y.; Nagashima, K.; Takahashi, S.; Hata, A. Impact of Geographic Accessibility on Utilization of the Annual Health Check-Ups by Income Level in Japan: A Multilevel Analysis. PLoS ONE 2017, 12, e0177091. [Google Scholar] [CrossRef] [Green Version]
- Falcon, D.J. The Health Care Gap in Rural Malaysia. New Malays. 2019, 37, 28–36. [Google Scholar]
- Atun, R.; Berman, P.; Hsiao, W.; Myers, E.; Wei, A.Y. Malaysia Health Systems Research Volume 1: Contextual Analysis of the Malaysian Health System; Ministry of Health Malaysia; Harvard TH Chan School of Public Health: Putrajaya, Malaysia, 2016; pp. 35–164.
- Department of Statistics Malaysia Labour Force Survey (LFS) Time Series Statistics by State, 1982–2019; Department of Statistics Malaysia: Putrajaya, Malaysia, 2020; pp. 1–32.
- Ariff, K.M.; Teng, C.L. Rural Health Care in Malaysia. Aust. J. Rural Health 2002, 10, 99–103. [Google Scholar] [CrossRef]
- Sivasampu, S.; Mohamad Noh, K.; Chin, M.C. Quality and Costs of Primary Care (QUALICOPC) Malaysia: Phase I--Public Clinics; Ministry of Health Malaysia ; Harvard TH Chan School of Public Health, Harvard University: Kuala Lumpur, Malaysia, 2015.
- Andersen, R.M.; Davidson, P.L. Improving Access to Care in America: Individual and Contextual Indicators. In Changing the U.S. Health Care System: Key Issues in Health Services Policy and Management; Jossey-Bass: San Francisco, CA, USA, 2007; pp. 3–31. [Google Scholar]
- Levesque, J.F.; Harris, M.F.; Russell, G. Patient-Centred Access to Health Care: Conceptualising Access at the Interface of Health Systems and Populations. Int. J. Equity Health 2013, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.M.; Sivasampu, S.; Khoo, E.M.; Mohamad Noh, K. Chasm in Primary Care Provision in a Universal Health System: Findings from a Nationally Representative Survey of Health Facilities in Malaysia. PLoS ONE 2017, 12, e0172229. [Google Scholar] [CrossRef]
- Haggerty, J.L.; Roberge, D.; Lévesque, J.F.; Gauthier, J.; Loignon, C. An Exploration of Rural-Urban Differences in Healthcare-Seeking Trajectories: Implications for Measures of Accessibility. Health Place 2014, 28, 92–98. [Google Scholar] [CrossRef]
- Andersen, R.M. Revisiting the Behavioral Model and Access to Medical Care: Does It Matter? J. Health Soc. Behav. 1995, 36, 1–10. [Google Scholar] [CrossRef]
- Institute for Public Health (IPH) National Health and Morbidity Survey 2011 (NHMS 2011). In Healthcare Demand and Out-Of-Pocket Health Expenditure; Institute for Public Health: Kuala Lumpur, Malaysia, 2011; Volume 3, ISBN 9789673887682.
- Institute for Public Health (IPH) & Institute for Health Systems Research (IHSR) National Health and Morbidity Survey (NHMS) 2015. In Healthcare Demand; Institute for Public Health: Kuala Lumpur, Malaysia, 2015; Volume 3.
- Mohd Rani, M.D.; Ithnin, M.; Mohamad Nor, A.U.; Juliana, N.; Mohd Effendy, N.; Azmani, S.; Abang Abdullah, K.H.; Mohd Aris, M.S.; Abu, I.F. Comparison of Health-Seeking Behaviour between Urban and Rural Malay Population of Negeri Sembilan, Malaysia. Int. J. Res. Pharm. Sci. 2019, 10, 3608–3615. [Google Scholar] [CrossRef] [Green Version]
- Syed, S.T.; Gerber, B.S.; Sharp, L.K. Traveling towards Disease: Transportation Barriers to Health Care Access. J. Community Health 2013, 38, 976–993. [Google Scholar] [CrossRef] [Green Version]
- Mat Lazim, M.S. Evolution of Migration for Urban and Rural; Department of Statistics Malaysia: Putrajaya, Malaysia, 2020; pp. 1–5.
- Health Informatics Centre Planning and Development Division. Ministry of Health Malaysia. Health Facts 2020; Reference Data for year 2019; Health Informatics Centre: Putrajaya, Malaysia, 2020. Available online: https://www.moh.gov.my/moh/resources/Penerbitan/PenerbitanUtama/HEALTHFACTS/HealthFacts2020.pdf (accessed on 5 December 2021).
- Tew, M.M.; Hatah, E.; Arif, F.; Abdul Wahid, M.A.; Makmor-Bakry, M.; Abdul Maulad, K.N. Geospatial Analysis of Distribution of Community Pharmacies and Other Health Care Facilities Providing Minor Ailments Services in Malaysia. J. Pharm. Policy Pract. 2021, 14, 24. [Google Scholar] [CrossRef]
- Jaafar, S.; Mohd Noh, K.; Abdul Muttalib, K.; Othman, N.H.; Healy, J.; Maskon, K.; Abdullah, A.R.; Zainuddin, J.; Abu Bakar, A.; Shaikh Abd Rahman, S.; et al. Malaysia Health System Review, 1st ed.; Healy, J., Ed.; Health Systems in Transition; World Health Organization: Geneva, Switzerland, 2013; Volume 3, ISBN 9789290615842. [Google Scholar]
- Thomas, S.; Beh, L.; Nordin, R. bin Health Care Delivery in Malaysia: Changes, Challenges and Champions. J. Public Health Afr. 2011, 2, 93–97. [Google Scholar] [CrossRef]
- Dhippayom, T.; Fuangchan, A.; Tunpichart, S.; Chaiyakunapruk, N. Opportunistic Screening and Health Promotion for Type 2 Diabetes: An Expanding Public Health Role for the Community Pharmacist. J. Public Health 2013, 35, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Phimarn, W.; Pianchana, P.; Limpikanchakovit, P.; Suranart, K.; Supapanichsakul, S.; Narkgoen, A.; Saramunee, K. Thai Community Pharmacist Involvement in Weight Management in Primary Care to Improve Patient’s Outcomes. Int. J. Clin. Pharm. 2013, 35, 1208–1217. [Google Scholar] [CrossRef]
- Chua, S.S.; Lim, K.P.; Lee, H.G. Utilisation of Community Pharmacists by the General Public in Malaysia. Int. J. Pharm. Pract. 2013, 21, 66–69. [Google Scholar] [CrossRef]
- Naeemmudeen, N.M.; Ghazali, N.A.N.M.; Bahari, H.; Ibrahim, R.; Samsudin, A.D.; Jasni, A.S. Trends in Antimicrobial Resistance in Malaysia. Med. J. Malays. 2021, 76, 698–705. [Google Scholar]
- Llor, C.; Bjerrum, L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health Malaysia National Antimicrobial Guideline 2019, 3rd ed.; Pharmaceutical Services Programme, Ministry of Health Malaysia: Selangor, Malaysia, 2019; ISBN 9789675570780.
- Ministry of Health Malaysia Malaysian Action Plan on Antimicrobial Resistance (MyAp-AMR) 2017-2021, 1st ed.; Ministry of Health Malaysia: Selangor, Malaysia, 2017; ISBN 978-967-2173-21-2.
- Merican, M.I.; Bin Yon, R. Health Care Reform and Changes: The Malaysian Experience. Asia-Pac. J. Public Health/Asia-Pac. Acad. Consort. Public Health 2002, 14, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Systems Research (IHSR); National Institutes of Health. Ministry of Health Malaysia National Health and Morbidity Survey (NHMS) 2019. In Healthcare Demand; Institute for Health Systems Research: Selangor, Malaysia, 2020. [Google Scholar]
- Government of Malaysia. Laws of Malaysia: Act 775 Traditional and Complementary Medicine Act 2016; National Printing Malaysia Berhad (Percetakan Nasional Malaysia Berhad): Kuala Lumpur, Malaysia, 2016. Available online: https://tcm.moh.gov.my/en/upload/aktaBI2016.pdf (accessed on 5 December 2021).
- Park, Y.L.; Canaway, R. Integrating Traditional and Complementary Medicine with National Healthcare Systems for Universal Health Coverage in Asia and the Western Pacific. Health Syst. Reform 2019, 5, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. The Regional Strategy for Traditional Medicine in the Western Pacific (2011–2020); World Health Organization Regional Office for the Western Pacific: Manila, Philiipines, 2012; ISBN 9789290615590. [Google Scholar]
- Van der Hoeven, M.; Kruger, A.; Greeff, M.; Hausmann-Mueala, S.; Ribera, J.M.; Nyamongo, I.; Case, A.; Menendez, A.; Ardington, C.; Bradshaw, D.; et al. Differences in Health Care Seeking Behaviour between Rural and Urban Communities in South Africa. Int. J. Equity Health 2012, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Masconi, K.L.; Matsha, T.E.; Echouffo-Tcheugui, J.B.; Erasmus, R.T.; Kengne, A.P. Reporting and Handling of Missing Data in Predictive Research for Prevalent Undiagnosed Type 2 Diabetes Mellitus: A Systematic Review. EPMA J. 2015, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Chong, D.W.Q.; Jawahir, S.; Tan, E.H.; Sararaks, S. Redesigning a Healthcare Demand Questionnaire for National Population Survey: Experience of a Developing Country. Int. J. Environ. Res. Public Health 2021, 18, 4435. [Google Scholar] [CrossRef]
- Jawahir, S.; Chong, D.W.Q.; Tan, E.H.; Mohd Noh, S.N.; CCY, F.; Kong, Y.L.; Halili, J. Revision of Healthcare Demand Questionnaire for National Health and Morbidity Survey (NHMS) 2019; Institute for Health Systems Research: Selangor, Malaysia, 2018. [Google Scholar]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful Selection of Variables in Logistic Regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Sultana, M.; Sarker, A.R.; Sheikh, N.; Akram, R.; Ali, N.; Mahumud, R.A.; Alam, N.H. Prevalence, Determinants and Health Care-Seeking Behavior of Childhood Acute Respiratory Tract Infections in Bangladesh. PLoS ONE 2019, 14, e0210433. [Google Scholar] [CrossRef]
- Kong, Y.L.; Anis-Syakira, J.; Fun, W.H.; Balqis-Ali, N.Z.; Shakirah, M.S.; Sararaks, S. Socio-Economic Factors Related to Drinking Water Source and Sanitation in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 7933. [Google Scholar] [CrossRef]
- Elnegaard, S.; Andersen, R.S.; Pedersen, A.F.; Larsen, P.V.; Søndergaard, J.; Rasmussen, S.; Balasubramaniam, K.; Svendsen, R.P.; Vedsted, P.; Jarbøl, D.E. Self-Reported Symptoms and Healthcare Seeking in the General Population -Exploring “the Symptom Iceberg. ” BMC Public Health 2015, 15, 685. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Feng, S.; Wong, I.O.L.; Ip, D.K.M.; Cowling, B.J.; Lau, E.H.Y. A Population-Based Study on Healthcare-Seeking Behaviour of Persons with Symptoms of Respiratory and Gastrointestinal-Related Infections in Hong Kong. BMC Public Health 2020, 20, 402. [Google Scholar] [CrossRef]
- Hassali, M.A.; Saleem, F.; Mustapa, M.D.; Bujang, C.P.; Mohd Ali, S.; Abu, S.F.; Abd Kadir, N.; Mohamad Yahaya, A.H.; Ahmad, K.; Siew, L.J.; et al. A National Survey on the Use of Medicines (NSUM) by Malaysian Consumers; Hassali, M.A., Saleem, F., Eds.; Pharmaceutical Services Division, Ministry of Health Malaysia: Selangor, Malaysia, 2016.
- Dawkins, B.; Renwick, C.; Ensor, T.; Shinkins, B.; Jayne, D.; Meads, D. What Factors Affect Patients’ Ability to Access Healthcare? An Overview of Systematic Reviews. Trop. Med. Int. Health 2021, 26, 1177–1188. [Google Scholar] [CrossRef]
- Maung, T.M.; Deborah, S.; Narayanam, H.; Fernandez, K.; Kumari, U. Morbidity and Health Seeking Behavior among the Rural Population, Malaysia. Asian J. Med. Sci. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Widayanti, A.W.; Green, J.A.; Heydon, S.; Norris, P. Health-Seeking Behavior of People in Indonesia: A Narrative Review. J. Epidemiol. Glob. Health 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Kuuire, V.Z.; Bisung, E.; Rishworth, A.; Dixon, J.; Luginaah, I. Health-Seeking Behaviour during Times of Illness: A Study among Adults in a Resource Poor Setting in Ghana. J. Public Health 2016, 38, e545–e553. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.; Upshur, R.; Donnelly, P.; Bharmal, A.; Wei, X.; Feng, P.; Brown, A.D. A Population-Based Approach to Integrated Healthcare Delivery: A Scoping Review of Clinical Care and Public Health Collaboration. BMC Public Health 2019, 19, 708. [Google Scholar] [CrossRef]
- Lo Ying Ru, J.; Allotey, P. World Health Day 2018—Lessons from Malaysia on Universal Health Coverage. Available online: https://www.who.int/malaysia/news/detail/18-04-2018-world-health-day-2018-%E2%80%93-lessons-from-malaysia-on-universal-health-coverage (accessed on 5 December 2021).
- Rannan-Eliya, R.P.; Anuranga, C.; Manual, A.; Sararaks, S.; Jailani, A.S.; Hamid, A.J.; Razif, M.I.; Tan, E.H.; Darzi, A. Improving Health Care Coverage, Equity, and Financial Protection through a Hybrid System: Malaysia’s Experience. Health Aff. 2016, 35, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Treleaven, E.; Whidden, C.; Cole, F.; Kayentao, K.; Traoré, M.B.; Diakité, D.; Sidibé, S.; Lin, T.K.; Boettiger, D.; Cissouma, S.; et al. Relationship between Symptoms, Barriers to Care and Healthcare Utilisation among Children under Five in Rural Mali. Trop. Med. Int. Health 2021, 26, 943–952. [Google Scholar] [CrossRef]
- Oladipo, J.A. Utilization of Health Care Services in Rural and Urban Areas: A Determinant Factor in Planning and Managing Health Care Delivery Systems. Afr. Health Sci. 2014, 14, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S. Determinants of Rural-Urban Differential in Healthcare Utilization among the Elderly Population in India. BMC Public Health 2021, 21, 939. [Google Scholar] [CrossRef]
- Fang, P.; Han, S.; Zhao, L.; Fang, Z.; Zhang, Y.; Zou, X. What Limits the Utilization of Health Services among the Rural Population in the Dabie Mountains- Evidence from Hubei Province, China? BMC Health Serv. Res. 2014, 14, 379. [Google Scholar] [CrossRef] [Green Version]
- Shahar, S.; Vanoh, D.; Mat Ludin, A.F.; Ajit Singh, D.K.; Hamid, T.A. Factors Associated with Poor Socioeconomic Status among Malaysian Older Adults: An Analysis According to Urban and Rural Settings. BMC Public Health 2019, 19, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawahir, S.; Aziz, N. Self-Medication among Adult Population in Selangor, Malaysia. Int. J. Pharm. Pharm. Sci. 2017, 9, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Hassali, M.A.; Shafie, A.A.; Al-Qazaz, H.; Tambyappa, J.; Palaian, S.; Hariraj, V. Self-Medication Practices among Adult Population Attending Community Pharmacies in Malaysia: An Exploratory Study. Int. J. Clin. Pharm. 2011, 33, 794–799. [Google Scholar] [CrossRef]
- Chua, S.S.; Sabki, N.H. Use of Nonprescription Medications by the General Public in the Klang Valley. J. Appl. Pharm. Sci. 2011, 1, 93–98. [Google Scholar]
- R Wijesinghe, P.; L Jayakody, R.; De A Seneviratne, R. Prevalence and Predictors of Self-Medication in a Selected Urban and Rural District of Sri Lanka. WHO South-East Asia J. Public Health 2012, 1, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Netherlands Enterprise Agency. Ministry of Foreign Affairs Malaysia Market Study Opportunities for the Dutch Life Sciences & Health Sector in Malaysia; Task Force Health Care: Hague, The Netherlands, 2019. [Google Scholar]
- Karimy, M.; Rezaee-Momtaz, M.; Tavousi, M.; Montazeri, A.; Araban, M. Risk Factors Associated with Self-Medication among Women in Iran. BMC Public Health 2019, 19, 1033. [Google Scholar] [CrossRef] [Green Version]
- Ocan, M.; Obuku, E.A.; Bwanga, F.; Akena, D.; Richard, S.; Ogwal-Okeng, J.; Obua, C. Household Antimicrobial Self-Medication: A Systematic Review and Meta-Analysis of the Burden, Risk Factors and Outcomes in Developing Countries. BMC Public Health 2015, 15, 742. [Google Scholar] [CrossRef] [Green Version]
- Bennadi, D. Self-Medication: A Current Challenge. J. Basic Clin. Pharm. 2013, 5, 23. [Google Scholar] [CrossRef]
- World Health Organization (WHO) and others Action on the Social Determinants of Health: Learning from Previous Experiences. In World 2010 Action; World Health Organization: Geneva, Switzerland, 2010.
- Alghanim, S.A. Self-Medication Practice among Patients in a Public Health Care System. East. Mediterr. Health J. 2011, 17, 409–416. [Google Scholar] [CrossRef]
- Sansgiry, S.S.; Bhansali, A.H.; Bapat, S.S.; Xu, Q. Abuse of Over-the-Counter Medicines: A Pharmacist’s Perspective. Integr. Pharm. Res. Pract. 2017, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Van der Heide, I.; Wang, J.; Droomers, M.; Spreeuwenberg, P.; Rademakers, J.; Uiters, E. The Relationship Between Health, Education, and Health Literacy: Results From the Dutch Adult Literacy and Life Skills Survey. J. Health Commun. 2013, 18, 172–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daim, N. 10-Year Wellness Plan to Guide Malaysia towards Healthy Living [NSTTV]. Available online: https://www.nst.com.my/news/government-public-policy/2021/11/744442/10-year-wellness-plan-guide-malaysia-towards-healthy (accessed on 5 December 2021).
- Isaac, V.; McLachlan, C.S.; Baune, B.T.; Huang, C.T.; Wu, C.Y. Poor Self-Rated Health Influences Hospital Service Use in Hospitalized Inpatients With Chronic Conditions in Taiwan. Medicine 2015, 94, e1477. [Google Scholar] [CrossRef] [PubMed]
- Macassa, G.; Hiswåls, A.-S.; Ahmadi, N.; Alfredsson, J. Employment Status and Health Care Utilization in a Context of Economic Recession: Results of a Population Based Survey in East Central Sweden. Sci. J. Public Health 2014, 2, 610–616. [Google Scholar] [CrossRef]
- Cislaghi, B.; Cislaghi, C. Self-Rated Health as a Valid Indicator for Health-Equity Analyses: Evidence from the Italian Health Interview Survey. BMC Public Health 2019, 19, 533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Wu, B.J.; Chen, P.; Guo, Y. The Self-Rated Health Status and Key Influencing Factors in Middle-Aged and Elderly: Evidence from the CHARLS. Medicine 2021, 100, e27772. [Google Scholar] [CrossRef]
- Li, X.; Deng, L.; Yang, H.; Wang, H. Effect of Socioeconomic Status on the Healthcare-Seeking Behavior of Migrant Workers in China. PLoS ONE 2020, 15, e0237867. [Google Scholar] [CrossRef]
- Goncalves, J.; Martins, P.S. The Effect of Self-Employment on Health: Evidence from Longitudinal Social Security Data. IZA Discussion Paper No. 11305 2018. Available online: https://docs.iza.org/dp11305.pdf (accessed on 5 December 2021).
- Jabatan Perkhidmatan Awam Malaysia Pekeliling Perkhidmatan Bilangan 2 Tahun 2006: Pindaan Peraturan Berkaitan Penerimaan Sijil Sakit Swasta Untuk Tujuan Kemudahan Cuti Sakit; Jabatan Perkhidmatan Awam Malaysia: Kuala Lumpur, Malaysia, 2006; pp. 1–6.
- Government of Malaysia. Malaysia Employment Act 1955. Available online: https://www.ilo.org/dyn/natlex/docs/WEBTEXT/48055/66265/E55mys01.htm (accessed on 5 December 2021).
- Rasul, F.B.; Kalmus, O.; Sarker, M.; Adib, H.I.; Hossain, M.S.; Hasan, M.Z.; Brenner, S.; Nazneen, S.; Islam, M.N.; De Allegri, M. Determinants of Health Seeking Behavior for Chronic Non-Communicable Diseases and Related out-of-Pocket Expenditure: Results from a Cross-Sectional Survey in Northern Bangladesh. J. Health Popul. Nutr. 2019, 38, 48. [Google Scholar] [CrossRef] [Green Version]
- Mimi, O.; Tong, S.F.; Nordin, S.; Teng, C.L.; Khoo, E.M.; Abdul-Rahman, A.K.; Zailinawati, A.H.; Lee, V.K.M.; Chen, W.S.; Shihabudin, W.M.; et al. A Comparison of Morbidity Patterns in Public and Private Primary Care Clinics in Malaysia. Malays. Fam. Physician: Off. J. Acad. Fam. Physicians Malays. 2011, 6, 25. [Google Scholar]
- Musinguzi, G.; Anthierens, S.; Nuwaha, F.; Van Geertruyden, J.P.; Wanyenze, R.K.; Bastiaens, H. Factors Influencing Compliance and Health Seeking Behaviour for Hypertension in Mukono and Buikwe in Uganda: A Qualitative Study. Int. J. Hypertens. 2018, 2018, 8307591. [Google Scholar] [CrossRef] [Green Version]
- Mohamad Yunus, N.; Abd Manaf, N.H.; Omar, A.; Omar, M.A.; Salleh, M. Determinants of Healthcare Utilisation among the Elderly in Malaysia. Inst. Econ. 2017, 9, 115–140. [Google Scholar]
- Zulkefli, Z.; Zaidi, M.A. Health Care Utilisation among the Elderly in Malaysia: Does Socioeconomic Status Matters? Persidang. Kebangs. Ekon. Malays. Ke VIII 2013, 3, 1141–1152. [Google Scholar]
- Chan, C.M.H.; Ng, S.L.; In, S.; Wee, L.H.; Siau, C.S. Predictors of Psychological Distress and Mental Health Resource Utilization among Employees in Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 314. [Google Scholar] [CrossRef]
- United Nations Population Division Urban Population (% of Total Population)—Malaysia. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=MY (accessed on 5 December 2021).
Characteristics | Count, n (Unweighted) | Estimated Population, n (Weighted) | % Weighted (95% CI) | Locality | p-Value | |
---|---|---|---|---|---|---|
Urban | Rural | |||||
% Weighted (95% CI) | % Weighted (95% CI) | |||||
Sociodemographic | ||||||
Sex | ||||||
Male | 4905 | 9,116,299 | 48.2 (47.0–49.5) | 49.8 (48.3–51.3) | 43.2 (40.9–45.5) | <0.001 * |
Female | 5579 | 9,778,742 | 51.8 (50.5–53.0) | 50.2 (48.7–51.7) | 56.8 (54.5–59.1) | |
Ethnicity | ||||||
Malay | 7237 | 10,810,187 | 57.2 (52.9–61.4) | 52.7 (47.5–57.9) | 71.5 (65.8–76.5) | <0.001 * |
Non-Malay | 3247 | 8,084,854 | 42.8 (38.6–47.1) | 47.3 (42.1–52.5) | 28.5 (23.5–34.2) | |
Age (years) | ||||||
18–34 | 3257 | 7,788,423 | 41.2 (39.7–42.7) | 41.0 (39.2–42.9) | 41.8 (39.4–44.1) | <0.001 * |
35–59 | 4848 | 7,966,079 | 42.2 (40.7–43.6) | 43.6 (41.9–45.3) | 37.6 (35.4–39.8) | |
60+ | 2379 | 3,140,539 | 16.6 (15.4–18.0) | 15.4 (13.9–17.0) | 20.6 (18.4–23.1) | |
Education level | ||||||
No formal | 526 | 704,841 | 3.7 (3.2–4.3) | 2.7 (2.2–3.4) | 7.0 (6.0–8.1) | <0.001 * |
Primary | 2179 | 3,285,633 | 17.4 (16.1–18.7) | 14.7 (13.3–16.3) | 25.8 (23.4–28.5) | |
Secondary | 5077 | 9,516,574 | 50.4 (48.7–52.1) | 50.7 (48.6–52.8) | 49.4 (46.8–52.0) | |
Tertiary | 2702 | 5,387,993 | 28.5 (26.6–30.5) | 31.9 (29.5–34.4) | 17.8 (15.2–20.6) | |
Marital status | ||||||
Single | 2213 | 5,349,399 | 28.3 (26.7–30.0) | 28.6 (26.7–30.7) | 27.3 (24.7–30.0) | 0.147 |
Married | 7116 | 11,932,813 | 63.2 (61.3–64.9) | 63.3 (61.0–65.4) | 62.8 (59.9–65.6) | |
Widow(er)/Divorcee/Separated | 1155 | 1,612,829 | 8.5 (7.7–9.4) | 8.1 (7.7–9.4) | 9.9 (8.6–11.4) | |
Enabling | ||||||
Employment status | ||||||
Government | 1177 | 1,511,788 | 8.0 (7.1–9.1) | 8.2 (7.1–9.5) | 7.4 (5.9–9.2) | <0.001 * |
Private | 2873 | 6,351,279 | 33.6 (31.7–35.6) | 38.1 (35.8–40.6) | 19.3 (16.6–22.3) | |
Self-employed | 1977 | 3,493,565 | 18.5 (17.2–19.9) | 16.5 (15.0–18.1) | 24.9 (22.4–27.5) | |
Unemployed | 4457 | 7,538,409 | 39.9 (38.3–41.5) | 37.2 (45.4–51.5) | 48.5 (45.4–51.5) | |
Household income quintile | ||||||
Q1 (20% poorest) | 2277 | 3,932,420 | 20.8 (19.3–22.4) | 17.1 (15.5–18.9) | 32.6 (29.2–36.3) | <0.001 * |
Q2 | 1992 | 3,398,139 | 18.0 (16.4–19.7) | 15.7 (13.9–17.7) | 25.3 (22.4–28.4) | |
Q3 | 2003 | 3,754,531 | 19.9 (17.9–22.0) | 20.4 (18.0–23.0) | 18.3 (15.7–21.3) | |
Q4 | 2093 | 3,786,071 | 20.0 (18.2–22.0) | 22.1 (19.9–24.6) | 13.3 (10.9–16.2) | |
Q5 (20% richest) | 2119 | 4,023,880 | 21.3 (18.9–23.9) | 24.7 (21.8–27.9) | 10.5 (8.0–13.6) | |
Covered by any healthcare coverage | ||||||
Yes | 5609 | 10,439,085 | 55.2 (53.1–57.4) | 60.6 (57.9–63.1) | 38.4 (34.8–42.0) | <0.001* |
No | 4875 | 8,455,956 | 44.8 (42.6–46.9) | 39.4 (36.9–42.1) | 61.6 (58.0–65.2) | |
Health need | ||||||
Self-rated health | ||||||
Excellent & Good | 7856 | 14,814,257 | 78.4 (76.9–79.9) | 80.0 (78.3–81.7) | 73.2 (70.1–76.2) | <0.001 * |
Fair | 2371 | 3,689,380 | 19.5 (18.2–21.0) | 17.9 (16.4–19.6) | 24.7 (22.0–27.5) | |
Poor & Very Poor | 257 | 391,404 | 2.1 (1.7–2.5) | 2.1 (1.7–2.6) | 2.1 (1.5–2.8) | |
Presence of at least one long-term condition | ||||||
Yes | 3148 | 4,639,737 | 24.6 (23.3–25.8) | 24.2 (22.7–25.7) | 25.7 (24.0–27.5) | 0.211 |
No | 7336 | 14,255,304 | 75.4 (74.2–76.7) | 75.8 (74.3–77.3) | 74.3 (72.5–76.0) |
Characteristics | Overall (N = 10,484) | Urban (n = 6288) | Rural (n = 4196) | |||||
---|---|---|---|---|---|---|---|---|
Count | % Weighted (95% CI) | Count | % Weighted (95% CI) | p-Value | Count | % Weighted (95% CI) | p-Value | |
OVERALL | 1946 | 16.1 (14.8–17.4) | 1187 | 15.6 (14.1–17.3) | - | 759 | 17.6 (15.5–19.9) | - |
Sociodemographic | ||||||||
Sex | ||||||||
Male | 778 | 14.1 (12.6–15.7) | 460 | 13.3 (11.7–15.2) | <0.001* | 318 | 16.7 (14.1–19.7) | 0.441 |
Female | 1168 | 17.9 (16.2–19.8) | 727 | 17.8 (15.8–20.1) | 441 | 18.2 (15.5–21.3) | ||
Ethnicity | ||||||||
Malay | 1349 | 15.8 (14.3–17.5) | 793 | 16.4 (14.5–18.5) | 0.283 | 556 | 14.5 (12.2–17.1) | <0.001 * |
Non-Malay | 597 | 16.4 (14.3–18.8) | 556 | 14.7 (12.4–17.3) | 203 | 25.3 (21.0–30.3) | ||
Age (years) | ||||||||
18–34 | 580 | 15.3 (13.5–17.3) | 391 | 15.6 (13.4–18.1) | 0.407 | 189 | 14.3 (11.4–17.8) | 0.005 * |
35–59 | 875 | 15.8 (14.2–17.6) | 559 | 15.0 (13.1–17.0) | 316 | 18.8 (15.8–22.2) | ||
60+ | 491 | 18.7 (16.4–21.4) | 237 | 17.4 (14.4–20.9) | 254 | 21.9 (18.5–25.8) | ||
Education level | ||||||||
No formal | 120 | 23.0 (18.1–28.8) | 40 | 17.0 (10.8–25.8) | 0.148 | 80 | 30.4 (23.3–38.7) | <0.001 * |
Primary | 438 | 19.3 (17.0–21.9) | 209 | 18.4 (15.3–21.9) | 229 | 20.9 (17.8–24.5) | ||
Secondary | 871 | 14.6 (13.1–16.2) | 527 | 14.4 (12.6–16.4) | 344 | 15.4 (12.9–18.2) | ||
Tertiary | 517 | 15.8 (13.6–18.3) | 411 | 16.2 (13.7–19.1) | 106 | 13.7 (10.4–18.0) | ||
Marital status | ||||||||
Single | 358 | 13.6 (11.5–16.0) | 246 | 13.8 (11.3–16.7) | 0.060 | 112 | 12.9 (9.3–17.6) | 0.010 * |
Married | 1326 | 16.6 (15.1–18.1) | 794 | 15.9 (14.3–17.7) | 532 | 18.6 (16.0–12.5) | ||
Widow(er)/Divorcee/Separated | 262 | 20.7 (17.3–24.7) | 147 | 19.5 (15.3–24.5) | 115 | 23.9 (18.8–29.9) | ||
Enabling | ||||||||
Employment status | ||||||||
Government | 268 | 17.9 (14.6–21.8) | 204 | 17.5 (13.6–22.1) | 0.745 | 64 | 19.5 (14.2–26.2) | 0.558 |
Private | 480 | 15.0 (12.8–17.4) | 334 | 14.9 (12.6–17.6) | 146 | 15.3 (11.0–20.8) | ||
Self-employed | 335 | 16.3 (14.1–18.9) | 165 | 15.9 (13.1–19.3) | 170 | 17.2 (14.0–20.9) | ||
Unemployed | 863 | 16.5 (14.8–18.3) | 484 | 15.8 (13.7–18.1) | 379 | 18.4 (15.7–21.4) | ||
Household income quintile | ||||||||
Q1 (20% poorest) | 447 | 17.3 (15.2–19.6) | 204 | 14.7 (12.1–17.9) | 0.433 | 243 | 21.5 (18.4–25.1) | 0.060 |
Q2 | 362 | 17.1 (14.7–19.8) | 195 | 17.0 (14.0–20.6) | 167 | 17.2 (13.7–21.4) | ||
Q3 | 378 | 16.4 (14.1–19.0) | 218 | 16.4 (13.6–19.6) | 160 | 16.5 (12.7–21.0) | ||
Q4 | 363 | 15.7 (13.1–18.6) | 254 | 16.5 (13.6–19.9) | 109 | 11.5 (8.4–15.5) | ||
Q5 (20% richest) | 396 | 14.1 (11.8–16.7) | 316 | 13.9 (11.5–16.6) | 80 | 15.9 (8.8–26.9) | ||
Covered by any healthcare coverage | ||||||||
Yes | 1084 | 16.4 (14.7–18.3) | 759 | 16.0 (14.1–18.1) | 0.463 | 325 | 18.7 (15.2–22.9) | 0.348 |
No | 862 | 15.6 (14.2–17.2) | 428 | 15.0 (13.1–17.2) | 434 | 16.9 (14.9–19.1) | ||
Health need | ||||||||
Self-rated health | ||||||||
Excellent & Good | 1099 | 12.3 (11.0–13.6) | 685 | 12.0 (10.6–13.6) | <0.001 * | 414 | 13.2 (11.0–15.7) | <0.001 * |
Fair | 733 | 28.0 (25.4–30.8) | 430 | 27.8 (24.4–31.5) | 303 | 28.5 (24.7–32.7) | ||
Poor & Very Poor | 114 | 47.5 (38.8–56.4) | 72 | 49.3 (38.8–59.9) | 42 | 41.9 (28.4–56.7) | ||
Presence of at least one long-term condition | ||||||||
Yes | 728 | 21.3 (19.0–23.7) | 417 | 20.4 (17.7–23.5) | <0.001 * | 311 | 23.7 (20.1–27.7) | <0.001 * |
No | 1218 | 14.4 (13.0–15.9) | 770 | 14.1 (12.5–15.8) | 448 | 15.5 (13.2–18.1) | ||
Health-seeking behavior | ||||||||
Sought treatment from healthcare practitioner | ||||||||
Yes | 1122 | 57.3 (53.7–60.8) | 681 | 58.9 (24.3–63.3) | - | 441 | 52.6 (47.6–57.6) | - |
No | 824 | 42.7 (39.2–46.3) | 506 | 41.1 (36.7–45.7) | 318 | 47.4 (42.4–52.4) | ||
Self-medicated | ||||||||
Yes | 438 | 23.3 (20.2–26.8) | 258 | 23.2 (19.3–27.7) | - | 180 | 23.6 (19.3–28.4) | - |
No | 1508 | 76.7 (73.2–79.8) | 929 | 76.8 (72.3–80.7) | 579 | 76.4 (71.6–80.7) |
Factors | Sought Treatment from Healthcare Practitioner | Self-Medicated | ||||||
---|---|---|---|---|---|---|---|---|
Model I—Urban | Model II—Rural | Model III—Urban | Model IV—Rural | |||||
Crude OR (95% CI) | Adjusted OR (95% CI) | Crude OR (95% CI) | Adjusted OR (95% CI) | Crude OR (95% CI) | Adjusted OR (95% CI) | Crude OR (95% CI) | Adjusted OR (95% CI) | |
Sex | ||||||||
Male | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Female | 1.35 (0.96–1.91) | 1.33 (0.92–1.92) | 0.98 (0.59–1.63) | 1.10 (0.73–1.66) | 0.98 (0.59–1.62) | |||
Ethnicity | ||||||||
Malay | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Non-Malay | 0.81 (0.54–1.20) | 0.80 (0.52–1.25) | 1.20 (0.76–1.88) | 0.67 (0.39–1.14) | 0.66 (0.38–1.13) | |||
Age (years) | ||||||||
18–34 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||
35–59 | 1.26 (0.90–1.77) | 0.90 (0.54–1.52) | 0.71 (0.41–1.22) | 0.90 (0.56–1.44) | 1.57 (0.89–2.77) | 1.58 (0.90–2.79) | ||
60+ | 1.20 (0.72–1.97) | 1.57 (0.82–3.00) | 0.88 (0.42–1.87) | 0.93 (0.52–1.65) | 0.94 (0.52–1.69) | 0.93 (0.52–1.66) | ||
Education level | ||||||||
No formal | 1.53 (0.66–3.55) | 0.98 (0.45–2.14) | 3.69 (1.51–9.03)** | 4.29 (1.81–10.17)** | 0.73 (0.34–1.57) | |||
Primary | 1.19 (0.81–1.75) | 1.24 (0.71–2.15) | 1.46 (0.87–2.46) | 1.58 (0.93–2.66) | 0.94 (0.50–1.79) | |||
Secondary | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Tertiary | 1.29 (0.84–1.98) | 1.18 (0.58–2.43) | 1.29 (0.78–2.15) | 1.26 (0.76–2.09) | 0.64 (0.28–1.47) | |||
Marital status | ||||||||
Single | 1.03 (0.68–1.56) | 1.02 (0.52–2.00) | 1.16 (0.71–1.89) | 1.42 (0.77–2.60) | ||||
Married | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||||
Widow(er)/Divorcee/Separated | 1.01 (0.54–1.92) | 1.33 (0.64–2.73) | 1.03 (0.58–1.84) | 1.19 (0.56–2.52) | ||||
Employment status | ||||||||
Government | 1.92 (1.07–3.43) * | 1.82 (1.01–3.27) * | 0.83 (0.40–1.71) | 0.98 (0.45–2.12) | 0.59 (0.20–1.72) | |||
Private | 1.29 (0.80–2.09) | 1.34 (0.84–2.16) | 0.92 (0.45–1.91) | 1.13 (0.63–2.05) | 0.50 (0.23–1.11) | |||
Self-employed | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Unemployed | 1.59 (1.05–2.41) | 1.31 (0.83–2.05) | 1.24 (0.72–2.14) | 1.02 (0.60–1.74) | 0.66 (0.32–1.37) | |||
Household income quintile | ||||||||
Q1 (20% poorest) | 1.01 (0.58–1.77) | 1.88 (0.78–4.56) | 1.03 (0.55–1.94) | 1.43 (0.35–5.78) | ||||
Q2 | 0.76 (0.46–1.27) | 1.70 (0.58–5.03) | 1.24 (0.68–2.26) | 1.45 (0.37–5.58) | ||||
Q3 | 0.77 (0.44–1.33) | 1.50 (0.61–3.70) | 1.27 (0.65–2.47) | 1.93 (0.50–7.47) | ||||
Q4 | 0.60 (0.33–1.06) | 1.96 (0.63–6.05) | 1.34 (0.69–2.60) | 1.74 (0.41–7.32) | ||||
Q5 (20% richest) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||||
Covered by any healthcare coverage | ||||||||
Yes | 0.99 (0.70–1.40) | 0.69 (0.44–1.07) | 0.77 (0.47–1.27) | 1.13 (0.75–1.72) | 0.87 (0.49–1.54) | |||
No | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |||
Self-rated health | ||||||||
Excellent & Good | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | |
Fair | 1.51 (1.09–2.09) * | 1.41 (0.98–2.04) | 1.10 (0.69–1.75) | 0.88 (0.54–1.43) | 0.97 (0.66–1.42) | 0.89 (0.62–1.29) | 0.96 (0.55–1.69) | |
Poor & Very Poor | 3.04 (1.56–5.90) ** | 2.94 (1.47–5.88) *** | 4.69 (1.69–13.06)** | 3.68 (1.36–9.97)* | 0.49 (0.21–1.13) | 0.40 (0.16–0.98) | 0.89 (0.31–2.50) | |
Presence of at least one long-term condition | ||||||||
Yes | 1.28 (0.79–2.07) | 1.27 (0.81–2.01) | 2.01 (1.31–3.10)** | 2.06 (1.23–3.45) ** | 0.90 (0.60–1.36) | 0.82 (0.49–1.36) | ||
No | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Noh, S.N.; Jawahir, S.; Tan, Y.R.; Ab Rahim, I.; Tan, E.H. The Health-Seeking Behavior among Malaysian Adults in Urban and Rural Areas Who Reported Sickness: Findings from the National Health and Morbidity Survey (NHMS) 2019. Int. J. Environ. Res. Public Health 2022, 19, 3193. https://doi.org/10.3390/ijerph19063193
Mohd Noh SN, Jawahir S, Tan YR, Ab Rahim I, Tan EH. The Health-Seeking Behavior among Malaysian Adults in Urban and Rural Areas Who Reported Sickness: Findings from the National Health and Morbidity Survey (NHMS) 2019. International Journal of Environmental Research and Public Health. 2022; 19(6):3193. https://doi.org/10.3390/ijerph19063193
Chicago/Turabian StyleMohd Noh, Sarah Nurain, Suhana Jawahir, Yeung R’ong Tan, Iqbal Ab Rahim, and Ee Hong Tan. 2022. "The Health-Seeking Behavior among Malaysian Adults in Urban and Rural Areas Who Reported Sickness: Findings from the National Health and Morbidity Survey (NHMS) 2019" International Journal of Environmental Research and Public Health 19, no. 6: 3193. https://doi.org/10.3390/ijerph19063193
APA StyleMohd Noh, S. N., Jawahir, S., Tan, Y. R., Ab Rahim, I., & Tan, E. H. (2022). The Health-Seeking Behavior among Malaysian Adults in Urban and Rural Areas Who Reported Sickness: Findings from the National Health and Morbidity Survey (NHMS) 2019. International Journal of Environmental Research and Public Health, 19(6), 3193. https://doi.org/10.3390/ijerph19063193