Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Experiment
2.2. Description of the Experimental Setup
2.3. Strain
2.4. Sterile Filtered Tap Water
2.5. Cultivability
2.6. Flow Cytometry Assay
2.7. Statistical Analysis
3. Results
3.1. Validation of the Experimental Setup
3.2. Impact of Water Technology on Legionella Viability in Water
3.3. Impact of Water Technology on Legionella Aerosolisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Diederen, B.M. Legionella spp. and Legionnaires’ disease. J. Infect. 2008, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.A.; Prussin, A.J., 2nd; Ahmed, W.; Haas, C.N. Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006-2017. Curr. Environ. Health Rep. 2018, 5, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Barskey, A.; Lackraj, D.; Tripathi, P.S.; Cooley, L.; Lee, S.; Smith, J.; Edens, C. Legionnaires’ Disease Surveillance Summary Report, United States: 2016–2017; Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases: USA, 2020. Available online: https://www.cdc.gov/legionella/health-depts/surv-reporting/2016-17-surv-report-508.pdf (accessed on 7 January 2022).
- Fischer, F.B.; Schmutz, C.; Gaia, V.; Mausezahl, D. Legionnaires’ Disease on the Rise in Switzerland: A Denominator-Based Analysis of National Diagnostic Data, 2007–2016. Int. J. Environ. Res. Public Health 2020, 17, 7343. [Google Scholar] [CrossRef]
- Marston, B.J.; Lipman, H.B.; Breiman, R.F. Surveillance for Legionnaires-Disease-Risk-Factors for Morbidity and Mortality. Arch. Intern. Med. 1994, 154, 2417–2422. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Legionnaires’ Disease; ECDC: Stockholm, Sweden, 2020. [Google Scholar]
- Office fédéral de la santé publique (OFSP). Légionellose en Suisse: Rapport de Situation 2018; Office fédéral de la santé publique (OFSP): Bern, Switzerland, 2020. [Google Scholar]
- Santé Publique France. Bilan des cas de Légionellose Survenus en France en 2019. 2020. Available online: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/legionellose/articles/bilan-des-cas-de-legionellose-survenus-en-france-en-2019 (accessed on 7 January 2022).
- Doleans, A.; Aurell, H.; Reyrolle, M.; Lina, G.; Freney, J.; Vandenesch, F.; Etienne, J.; Jarraud, S. Clinical and environmental distributions of Legionella strains in France are different. J. Clin. Microbiol. 2004, 42, 458–460. [Google Scholar] [CrossRef] [Green Version]
- Fliermans, C.B.; Cherry, W.B.; Orrison, L.H.; Smith, S.J.; Tison, D.L.; Pope, D.H. Ecological distribution of Legionella pneumophila. Appl. Environ. Microbiol. 1981, 41, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Kao, P.M.; Hsu, B.M.; Chang, T.Y.; Hsu, T.K.; Tzeng, K.J.; Huang, Y.L. Seasonal variation of Legionella in Taiwan’s reservoir and its relationships with environmental factors. Environ. Sci. Pollut. Res. Int. 2015, 22, 6104–6111. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ Disease: State of the art knowledge of pathogenesis mechanisms of Legionella. Annu. Rev. Pathol. 2020, 15, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Isberg, R.R.; O’Connor, T.J.; Heidtman, M. The Legionella pneumophila replication vacuole: Making a cosy niche inside host cells. Nat. Rev. Microbiol. 2009, 7, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bedard, E.; Prevost, M.; Camper, A.K.; Hill, V.R.; Pruden, A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Res. 2017, 117, 68–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreozzi, E.; Di Cesare, A.; Sabatini, L.; Chessa, E.; Sisti, D.; Rocchi, M.; Citterio, B. Role of biofilm in protection of the replicative form of Legionella pneumophila. Curr. Microbiol. 2014, 69, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.T.; Jones, S.; Pelaz, C.; Millar, R.D.; Abu Kwaik, Y. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ. Microbiol. 2007, 9, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Steinert, M.; Emody, L.; Amann, R.; Hacker, J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microb. 1997, 63, 2047–2053. [Google Scholar] [CrossRef] [Green Version]
- Berk, S.G.; Faulkner, G.; Garduno, E.; Joy, M.C.; Ortiz-Jimenez, M.A.; Garduno, R.A. Packaging of live Legionella pneumophila into pellets expelled by Tetrahymena spp. does not require bacterial replication and depends on a Dot/Icm-mediated survival mechanism. Appl. Environ. Microbiol. 2008, 74, 2187–2199. [Google Scholar] [CrossRef] [Green Version]
- Cervero-Arago, S.; Schrammel, B.; Dietersdorfer, E.; Sommer, R.; Luck, C.; Walochnik, J.; Kirschner, A. Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. Water Res. 2019, 158, 268–279. [Google Scholar] [CrossRef]
- Chaberny, I.F.; Gastmeier, P. Should electronic faucets be recommended in hospitals? Infect. Control. Hosp. Epidemiol. 2004, 25, 997–1000. [Google Scholar] [CrossRef]
- Halabi, M.; Wiesholzer-Pittl, M.; Schoberl, J.; Mittermayer, H. Non-touch fittings in hospitals: A possible source of Pseudomonas aeruginosa and Legionella spp. J. Hosp. Infect. 2001, 49, 117–121. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine Division; Division on Earth and Life Studies; Board on Population Health and Public Health Practice; Board on Life Sciences; Water Science and Technology Board; Committee on Management of Legionella in Water Systems. Management of Legionella in Water Systems; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Sydnor, E.R.; Bova, G.; Gimburg, A.; Cosgrove, S.E.; Perl, T.M.; Maragakis, L.L. Electronic-eye faucets: Legionella species contamination in healthcare settings. Infect. Control Hosp. Epidemiol. 2012, 33, 235–240. [Google Scholar] [CrossRef]
- LEED. Europe ACP: Water Use Baseline. Available online: https://www.usgbc.org/credits/europe-acp-water-use-baseline (accessed on 7 January 2022).
- Niculita-Hirzel, H.; Goekce, S.; Jackson, C.E.; Suarez, G.; Amgwerd, L. Risk Exposure during Showering and Water-Saving Showers. Water 2021, 13, 2678. [Google Scholar] [CrossRef]
- Mandato, S.; Rondet, E.; Delaplace, G.; Barkouti, A.; Galet, L.; Accart, P.; Ruiz, T.; Cuq, B. Liquids’ atomization with two different nozzles: Modeling of the effects of some processing and formulation conditions by dimensional analysis. Powder Technol. 2012, 224, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Mathieu, L.; Deloge-Abarkan, M.; Remen, T.; Tossa, P.; Hartemann, P.; Zmirou-Navier, D. Legionella bacteria in shower aerosols increase the risk of Pontiac fever among older people in retirement homes. J. Epidemiol. Commun. Health 2008, 62, 913–920. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Maximino, E.; Lobo, R.D.; Gobara, S.; Sinto, S.I.; Ianhez, L.E.; Warschauer, C.L.; Levin, A.S.S. Disconnecting central hot water and using electric showers to avoid colonization of the water system by Legionelia pneumophila: An 11-year study. J. Hosp. Infect. 2007, 66, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Cowen, K.A.; Ollison, W.M. Continuous monitoring of particle emissions during showering. J. Air Waste Manag. Assoc. 2006, 56, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perinel, S.; Forest, V.; Landraud, M.; Pourchez, J.; Girardot, F.; Riffard, S.; Stauffert, M.; Vergnon, J.M.; Allegra, S. Deposition pattern of aerosolized Legionella using an ex vivo human-porcine respiratory model. Int. J. Hyg. Environ. Health 2018, 221, 252–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Benson, J.M.; Irvin, C.; Irshad, H.; Cheng, Y.S. Particle size distribution and inhalation dose of shower water under selected operating conditions. Inhal. Toxicol. 2007, 19, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, K.A.; Haas, C.N. Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: Research gaps and a new framework. Environ. Sci. Water Res. Technol. 2016, 2, 599–613. [Google Scholar] [CrossRef]
- Pourchez, J.; Leclerc, L.; Girardot, F.; Riffard, S.; Prevot, N.; Allegra, S. Experimental human-like model to assess the part of viable Legionella reaching the thoracic region after nebulization. PLoS ONE 2017, 12, e0186042. [Google Scholar] [CrossRef] [Green Version]
- Allegra, S.; Leclerc, L.; Massard, P.A.; Girardot, F.; Riffard, S.; Pourchez, J. Characterization of aerosols containing Legionella generated upon nebulization. Sci. Rep. 2016, 6, 33998. [Google Scholar] [CrossRef]
- Allegra, S.; Riffard, S.; Leclerc, L.; Girardot, F.; Stauffert, M.; Forest, V.; Pourchez, J. A valuable experimental setup to model exposure to Legionella’s aerosols generated by shower-like systems. Water Res. 2020, 172, 115496. [Google Scholar] [CrossRef] [Green Version]
- Benson, R.F.; Fields, B.S. Classification of the genus Legionella. Semin. Respir. Infect. 1998, 13, 90–99. [Google Scholar] [PubMed]
- Phin, N.; Parry-Ford, F.; Harrison, T.; Stagg, H.R.; Zhang, N.; Kumar, K.; Lortholary, O.; Zumla, A.; Abubakar, I. Epidemiology and clinical management of Legionnaires’ disease. Lancet Infect. Dis. 2014, 14, 1011–1021. [Google Scholar] [CrossRef]
- Allegra, S.; Berger, F.; Berthelot, P.; Grattard, F.; Pozzetto, B.; Riffard, S. Use of flow cytometry to monitor Legionella viability. Appl. Environ. Microb. 2008, 74, 7813–7816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, S.; Stevenson, D.; Bennett, A.; Walker, J. Occurrence of Legionella in UK household showers. Int. J. Hyg. Environ. Health 2017, 220, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Wiik, R.; Krovel, A.V. Necessity and effect of combating Legionella pneumophila in municipal shower systems. PLoS ONE 2014, 9, e114331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocker, A.; Schulte-Illingheim, L.; Frosler, J.; Welp, L.; Sperber, O.; Hugo, A. Microbiological examination of water and aerosols from four industrial evaporative cooling systems in regard to risk of Legionella emissions and methodological suggestions for surveillance. Int. J. Hyg. Environ. Health 2020, 229, 113591. [Google Scholar] [CrossRef]
- Chang, C.W.; Hwang, Y.H.; Cheng, W.Y.; Chang, C.P. Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J. Appl. Microbiol. 2007, 102, 1636–1644. [Google Scholar] [CrossRef]
- Schrammel, B.; Cervero-Arago, S.; Dietersdorfer, E.; Walochnik, J.; Luck, C.; Sommer, R.; Kirschner, A. Differential development of Legionella sub-populations during short- and long-term starvation. Water Res. 2018, 141, 417–427. [Google Scholar] [CrossRef]
- Turetgen, I. Induction of Viable but Nonculturable (VBNC) state and the effect of multiple subculturing on the survival of Legionella pneumophila strains in the presence of monochloramine. Ann. Microbiol. 2008, 58, 153–156. [Google Scholar] [CrossRef]
- Alleron, L.; Khemiri, A.; Koubar, M.; Lacombe, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Frere, J. VBNC Legionella pneumophila cells are still able to produce virulence proteins. Water Res. 2013, 47, 6606–6617. [Google Scholar] [CrossRef] [PubMed]
- Al-Bana, B.H.; Haddad, M.T.; Garduno, R.A. Stationary phase and mature infectious forms of Legionella pneumophila produce distinct viable but non-culturable cells. Environ. Microbiol. 2014, 16, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Dietersdorfer, E.; Kirschner, A.; Schrammel, B.; Ohradanova-Repic, A.; Stockinger, H.; Sommer, R.; Walochnik, J.; Cervero-Arago, S. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. Water Res. 2018, 141, 428–438. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Continuous Flow Showerhead (STA) | Water-Atomizing Showerhead (ECO) |
---|---|---|
Number of nozzles | 51 | 6 |
Diameter of nozzle (mm) | 0.8 | 1.1 |
Flow rate (L·min−1) | 10.2 | 5.5 |
Spray angle (°) | 5 | 36 |
Water pressure (bars) | 1.2 | 2.4 |
Duration of the shower (s) | 15 | 30 |
Legionella Physiological State | Data Considered | STA (n = 9) | ECO (n = 9) | p Value | ||
---|---|---|---|---|---|---|
Mean | SD 1 | Mean | SD 1 | |||
Cultivable bacteria (VC) observed by culture | in the reservoir | |||||
CFU·mL−1 | 3.0 × 105 | 1.1 × 105 | 3.2 × 105 | 1.3 × 105 | 0.45 | |
Proportion of VC in TTC | 13% | 8% | 14% | 10% | 0.17 | |
in the bag | ||||||
CFU·mL−1 | 2.5 × 105 | 1.4 × 105 | 2.0 × 105 | 5.8 × 104 | 0.89 | |
Proportion of VC in TTC | 11% | 4% | 10% | 3% | 0.51 | |
in the aerosols | ||||||
CFU·m−3 | 3.8 × 103 | 1.8 × 103 | 4.9 × 103 | 2.6 × 103 | 0.16 | |
Proportion of VC in TTC | 2% | 1% | 3% | 3% | 0.70 | |
Viable bacteria (VC + VBNC) observed by FCA | in the reservoir | |||||
Cells·mL−1 | 1.7 × 106 | 6.2 × 105 | 2.2 × 106 | 6.9 × 105 | 0.12 | |
Proportion of viable bacteria in TTC 2 | 86% | 3% | 91% | 3% | ||
in the bag | ||||||
Cells·mL−1 | 2.1 × 106 | 7.6 × 105 | 2.2 × 106 | 5.1 × 105 | 0.69 | |
Proportion of viable bacteria in TTC | 91% | 4% | 91% | 4% | 0.63 | |
in the aerosols | ||||||
Cells·m−3 | 2.0 × 105 | 9.6 × 104 | 1.8 × 105 | 8.1 × 104 | 0.84 | |
Proportion of viable bacteria in TTC | 73% | 3% | 74% | 3% | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculita-Hirzel, H.; Vanhove, A.S.; Leclerc, L.; Girardot, F.; Pourchez, J.; Allegra, S. Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System. Int. J. Environ. Res. Public Health 2022, 19, 3285. https://doi.org/10.3390/ijerph19063285
Niculita-Hirzel H, Vanhove AS, Leclerc L, Girardot F, Pourchez J, Allegra S. Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System. International Journal of Environmental Research and Public Health. 2022; 19(6):3285. https://doi.org/10.3390/ijerph19063285
Chicago/Turabian StyleNiculita-Hirzel, Hélène, Audrey S. Vanhove, Lara Leclerc, Françoise Girardot, Jérémie Pourchez, and Séverine Allegra. 2022. "Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System" International Journal of Environmental Research and Public Health 19, no. 6: 3285. https://doi.org/10.3390/ijerph19063285