Changes in Skin Microcirculation Resulting from Vibration Therapy in Women with Cellulite
Abstract
:1. Background
2. Materials and Methods
2.1. Ethical Declaration
2.2. Study Group
2.3. Study Protocol
2.4. Research Methods
2.4.1. Body Composition and Circumferences
2.4.2. Thermographic Research
2.4.3. Cellulite Grading Assessment
2.4.4. Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bass, L.S.; Kaminer, M.S. Insights into the pathophysiology of cellulite: A review. Dermatol. Surg. 2020, 46, S77–S85. [Google Scholar] [CrossRef]
- Nürnberger, F.; Müller, G. So-called cellulite: An invented disease. J. Dermatol. Surg. Oncol. 1978, 4, 221–229. [Google Scholar] [CrossRef]
- Durairaj, K.K.; Devgan, L.; Lee, B.A.; Khachatourian, B.N.; Nguyen, B.V.; Issa, B.T.; Baker, O. Poly-l-lactic acid for gluteal augmentation found to be safe and effective in retrospective clinical review of 60 patients. Dermatol. Surg. 2020, 46, S46–S53. [Google Scholar] [CrossRef] [PubMed]
- Cristovam, D.N.; Botelho, S.; Andrade, M.F.; Marques, J.; Sousa, L. Whole-body vibration in the reduction of the cellulite. J. Cosmet. Laser Ther. 2019, 21, 278–285. [Google Scholar] [CrossRef]
- Pilch, W.; Nastałek, M.; Piotrowska, A.; Czerwińska-Ledwig, O.; Zuziak, R.; Maciorowska, A.; Golec, J. The effects of a 4-week vibrotherapy programme on the reduction of adipose tissue in young women with cellulite-a pilot study. Rehabil. Med. 2019, 22, 18–24. [Google Scholar] [CrossRef]
- Pilch, W.; Czerwińska-Ledwig, O.; Chitryniewicz-Rostek, J.; Nastałek, M.; Krężałek, P.; Jędrychowska, D.; Totko-Borkusewicz, N.; Uher, I.; Kaško, D.; Tota, Ł.; et al. The impact of vibration therapy interventions on skin condition and skin temperature changes in young women with lipodystrophy: A pilot study. Evid. Based Complement. Altern. Med. 2019, 2019, 8436325. [Google Scholar] [CrossRef]
- Piotrowska, A.; Czerwińska-Ledwig, O. Effect of local vibrotherapy in sitting or lying position in two time protocols on the cellulite grade and change of body circumferences in women with cellulite. J. Cosmet. Dermatol. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Canela, V.C.; Crivelaro, C.N.; Ferla, L.Z.; Pelozo, G.M.; Azevedo, J.; Liebano, R.E.; Nogueira, C.; Guidi, R.M.; Grecco, C.; Sant’Ana, E. Synergistic effects of Combined Therapy: Nonfocused ultrasound plus Aussie current for noninvasive body contouring. Clin. Cosmet. Investig. Dermatol. 2018, 11, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoia, A.; Landi, S.; Vannini, F.; Baldi, A. Low-level laser therapy and vibration therapy for the treatment of localized adiposity and fibrous cellulite. Dermatol. Ther. 2013, 3, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boxtel, A. Differential effects of low-frequency depression, vibration-induced inhibition, and posttetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. J. Neurophysiol. 1986, 55, 551–568. [Google Scholar] [CrossRef]
- Ribot-Ciscar, T.; Roll, J.P.; Tardy-Gervet, M.F.; Harlay, F. Alteration of human cutaneous afferent discharges as the result of long-lasting vibration. J. Appl. Physiol. 1996, 80, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Games, K.E.; Sefton, J.M.; Wilson, A.E. Whole-body vibration and blood flow and muscle oxygenation: A meta-analysis. J. Athl. Train. 2015, 50, 542–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curri, S. Cellulite and fatty tissue microcirculation. Cosmet. Toilet. 1993, 108, 51–58. [Google Scholar]
- Hogan, S.; Velez, M.W.; Kaminer, M.S. Updates on the understanding and treatment of cellulite. Semin. Cutan. Med. Surg. 2018, 37, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Dopytalska, K.; Sobolewski, P.; Mikucka-Wituszyńska, A.; Gnatowski, M.; Szymańska, E.; Walecka, I. Noninvasive skin imaging in esthetic medicine—Why do we need useful tools for evaluation of the esthetic procedures. J. Cosmet. Dermatol. 2021, 20, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Dereń, E. Standardization of infrared thermal imaging in medicine and physiotherapy. Acta Bio Opt. et Inf. Med. 2014, 20, 11–20. [Google Scholar]
- Dębiec-Bąk, A.; Skrzek, A.; Jonak, A. Diversity of body surface temperature due to various stimuli in thermovision research. Acta Bio Opt. et Inf. Med. 2009, 15, 322–327. [Google Scholar]
- Dehghan, M.; Merchant, A.T. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 2008, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health and Nutrition Examinatory Survey (NHANES). Anthropometry Procedures Manual. 2007. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf (accessed on 27 January 2022).
- Lenhard, W.; Lenhard, A. Calculation of effect sizes. Psychometrica 2016. [Google Scholar] [CrossRef]
- Wei, R.; Hu, Y.; Xiong, J. Effect size reporting practices in applied linguistics research: A study of one major journal. SAGE Open 2019, 9, 215824401985003. [Google Scholar] [CrossRef] [Green Version]
- Nkengne, A.; Papillon, A.; Bertin, C. Evaluation of the cellulite using a thermal infra-red camera. Ski. Res. Technol. 2012, 19, e231–e237. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.P.; Hexsel, D.M. Cellulite; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429165610. [Google Scholar]
- Migasiewicz, A.; Sobańska, A.; Dereń, E.; Pelleter, M.; Giemza, A.; Podbielska, H.; Bauer, J. Computer-aided evaluation of the cellulite therapy effectiveness based on thermal imaging. Biomed. Eng. 2017, 23, 87–95. [Google Scholar]
- Bielfeldt, S.; Buttgereit, P.; Brandt, M.; Springmann, G.; Wilhelm, K.-P. Non-invasive evaluation techniques to quantify the efficacy of cosmetic anti-cellulite products1. Ski. Res. Technol. 2008, 14, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.D. The radiation of heat from the human body. J. Clin. Investig. 1934, 13, 593–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaidachnyi, A.A.; Fomin, A.; Usanov, D.A.; Skripal, A.V. Thermography-based blood flow imaging in human skin of the hands and feet: A spectral filtering approach. Physiol. Meas. 2017, 38, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of body fat and gender on body temperature distribution. J. Therm. Biol. 2017, 70, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Salamunes, A.C.C.; Stadnik, A.M.W.; Neves, E.B. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J. Therm. Biol. 2017, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wuestefeld, A.; Fuermaier, A.B.M.; Bernardo-Filho, M.; da Cunha de Sá-Caputo, D.; Rittweger, J.; Schoenau, E.; Stark, C.; Marin, P.J.; Seixas, A.; Judex, S.; et al. Towards reporting guidelines of research using whole-body vibration as training or treatment regimen in human subjects—A Delphi consensus study. PLoS ONE 2020, 15, e0235905. [Google Scholar] [CrossRef] [PubMed]
- Milanese, C.; Piscitelli, F.; Simoni, C.; Pugliarello, R.; Zancanaro, C. Effects of whole-body vibration with or without localized radiofrequency on anthropometry, body composition, and motor performance in young nonobese women. J. Altern. Complement. Med. 2012, 18, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J. Vibration exercise: The potential benefits. Int. J. Sports Med. 2010, 32, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.; Thomson, R.; Howe, P.; Buckley, J.D. Effect of vibration on muscle perfusion: A systematic review. Clin. Physiol. Funct. Imaging 2012, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Verschueren, S.; Roelants, M.; Delecluse, C.; Swinnen, S.; Vanderschueren, D.; Boonen, S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: A randomized controlled pilot study. J. Bone Miner. Res. 2003, 19, 352–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowski, T.; Bielfeldt, S.; Wilhelm, K.; Sukopp, S.; Gordon, C. Objective and subjective reduction of cellulite volume using a localized vibrational massage device in a 24-week randomized intra-individual single-blind regression study. Int. J. Cosmet. Sci. 2020, 42, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Jaques, S.A.; Burke, F.J. Vibration white finger. Br. Dent. J. 1994, 177, 279. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.J.; Welsh, A.J.L.; Bovenzi, M. Acute response of finger circulation to force and vibration applied to the palm of the hand. Scand. J. Work. Environ. Heal. 2006, 32, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichioka, S.; Yokogawa, H.; Nakagami, G.; Sekiya, N.; Sanada, H. In vivo analysis of skin microcirculation and the role of nitric oxide during vibration. Ostomy Wound Manag. 2011, 57, 40–47. [Google Scholar]
- Maloney-Hinds, C.; Petrofsky, J.S.; Zimmerman, G.; Hessinger, D.A. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol. Ther. 2009, 11, 39–43. [Google Scholar] [CrossRef] [PubMed]
Group | All Participants | S30 n = 15 | L30 n = 13 | S60 n = 15 | L60 n = 14 | ANOVA/Chi2 p Value | |
---|---|---|---|---|---|---|---|
age (year) | mean | 22.84 | 22.47 | 23.92 | 21.67 | 23.50 | 0.6825 |
SD | 5.34 | 4.76 | 7.18 | 3.39 | 5.91 | ||
body height (cm) | mean | 166.42 | 164.87 | 165.69 | 165.87 | 169.36 | 0.1471 |
SD | 5.62 | 4.07 | 5.99 | 6.15 | 5.58 | ||
body mass (kg) | mean | 62.28 | 60.05 | 63.58 | 60.73 | 65.11 | 0.3354 |
SD | 8.48 | 6.96 | 9.67 | 8.19 | 8.76 | ||
BMI (kg/m2) | mean | 22.28 | 22.06 | 22.48 | 22.00 | 22.69 | 0.8322 |
SD | 2.28 | 2.17 | 2.38 | 1.88 | 2.81 | ||
smoking yes/no | n | 9/48 | 4/11 | 1/12 | 2/13 | 2/12 | 0.5585 |
contraception yes/no | n | 21/36 | 7/8 | 3/10 | 6/9 | 5/9 | 0.6253 |
p Value of ANOVA | Partial Eta2 for Measurement Number | Partial Eta2 for Grade of Cellulite | ||||
---|---|---|---|---|---|---|
Measurement Number | Treatment Time | Treatment Position | Grade of Cellulite | |||
Tave (°C) | <0.001 * | 0.667 | 0.0712 | 0.287 | 0.55 | 0.03 |
Tmin (°C) | <0.001 * | 0.553 | 0.0162 * | 0.100 | 0.31 | 0.06 |
Tmax (°C) | <0.001 * | 0.791 | 0.2613 | 0.445 | 0.45 | 0.01 |
TF (%) | 0.218 | 0.024 * | 0.1437 | 0.040 * | 0.03 | 0.08 |
TW (%) | 0.173 | 0.125 | 0.4679 | 0.007 * | 0.03 | 0.14 |
WC (cm) | 0.010 * | 0.871 | 0.7438 | 0.007 * | 0.08 | 0.14 |
HC (cm) | 0.111 | 0.586 | 0.4714 | <0.001 * | 0.04 | 0.40 |
TC [cm) | 0.932 | 0.450 | 0.9367 | <0.001 * | 0.01 | 0.40 |
Temperature (°C) | S30 | L30 | S60 | L60 |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Tave 1 | 29.49 ± 1.84 | 30.44 ± 1.07 | 29.74 ± 0.88 | 30.45 ± 1.23 |
Tave 2 | 31.62 ± 1.80 | 32.14 ± 1.46 | 31.20 ± 0.80 | 32.03 ± 1.20 |
Tave 3 | 29.84 ± 1.43 | 29.96 ± 1.55 | 30.45 ± 1.06 | 30.86 ± 0.97 |
Tave 4 | 31.13 ± 1.22 | 31.69 ± 1.18 | 31.84 ± 1.34 | 32.05 ± 1.02 |
Tmin 1 | 27.05 ± 1.71 | 27.90 ± 1.26 | 27.32 ± 0.95 | 28.26 ± 1.70 |
Tmin 2 | 28.76 ± 1.87 | 29.24 ± 1.67 | 28.07 ± 0.91 | 29.51 ± 1.47 |
Tmin 3 | 27.15 ± 1.81 | 27.38 ± 1.58 | 27.69 ± 1.20 | 28.27 ± 1.16 |
Tmin 4 | 28.07 ± 1.36 | 28.64 ± 1.51 | 28.67 ± 1.42 | 29.22 ± 1.34 |
Tmax 1 | 32.95 ± 1.88 | 33.52 ± 0.86 | 32.93 ± 0.99 | 33.74 ± 1.31 |
Tmax 2 | 34.69 ± 1.39 | 35.03 ± 1.15 | 34.25 ± 0.60 | 34.78 ± 1.03 |
Tmax 3 | 33.36 ± 1.42 | 33.18 ± 1.31 | 33.86 ± 1.06 | 33.91 ± 1.10 |
Tmax 4 | 34.13 ± 1.22 | 34.47 ± 1.08 | 34.95 ± 1.01 | 34.79 ± 1.16 |
Temperature (%) | S30 | L30 | S60 | L60 |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
TF 1 | 24.92 ± 3.58 | 24.63 ± 4.44 | 23.59 ± 4.16 | 21.84 ± 3.83 |
TF 2 | 25.45 ± 3.94 | 24.98 ± 4.65 | 23.99 ± 3.87 | 22.45 ± 3.83 |
TF 3 | 25.20 ± 4.01 | 25.15 ± 3.00 | 23.57 ± 0.17 | 21.11 ± 3.74 |
TF 4 | 26.03 ± 4.06 | 25.48 ± 2.90 | 24.45 ± 4.11 | 21.71 ± 0.61 |
TW 1 | 56.14 ± 3.00 | 55.30 ± 3.67 | 56.13 ± 2.92 | 56.68 ± 3.56 |
TW 2 | 55.45 ± 3.03 | 54.95 ± 3.85 | 55.79 ± 2.70 | 56.75 ± 4.14 |
TW 3 | 55.54 ± 2.89 | 54.81 ± 2.94 | 56.33 ± 2.89 | 57.41 ± 3.26 |
TW 4 | 54.66 ± 3.01 | 54.58 ± 2.85 | 55.62 ± 2.92 | 56.79 ± 3.16 |
Temperature (cm) | S30 | L30 | S60 | L60 |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
WC 1 | 71.16 ± 6.03 | 72.99 ± 5.12 | 72.17 ± 5.0 | 72.61 ± 6.87 |
WC 2 | 71.17 ± 5.61 | 72.61 ± 5.01 | 71.95 ± 5.27 | 72.39 ± 7.31 |
WC 3 | 71.31 ± 5.99 | 72.24 ± 6.38 | 70.73 ± 5.28 | 71.25 ± 6.77 |
WC 4 | 71.15 ± 5.37 | 71.81 ± 5.69 | 70.77 ± 5.39 | 71.24 ± 6.86 |
HC 1 | 96.03 ± 7.19 | 98.42 ± 6.82 | 97.83 ± 6.83 | 98.32 ± 6.29 |
HC 2 | 96.15 ± 6.96 | 98.12 ± 6.87 | 98.63 ± 6.62 | 97.96 ± 6.12 |
HC 3 | 98.14 ± 5.45 | 98.92 ± 6.21 | 99.25 ± 5.27 | 97.42 ± 5.72 |
HC 4 | 98.51 ± 5.19 | 99.12 ± 6.03 | 99.03 ± 5.30 | 97.14 ± 5.76 |
TC 1 | 56.13 ± 4.60 | 57.24 ± 4.29 | 57.05 ± 3.99 | 57.56 ± 4.51 |
TC 2 | 56.10 ± 4.00 | 56.94 ± 4.07 | 57.04 ± 4.20 | 57.79 ± 4.44 |
TC 3 | 56.09 ± 4.66 | 57.32 ± 4.15 | 56.88 ± 3.67 | 57.31 ± 4.10 |
TC 4 | 56.33 ± 4.39 | 57.69 ± 4.21 | 57.23 ± 3.98 | 57.36 ± 4.52 |
Measurement 2 | p Value of Chi2 Test | Crammer’s V | ||||
---|---|---|---|---|---|---|
Grade 0 Cellulite n = 12 (21.1%) | Grade 1 Cellulite n = 28 (48.1%) | Grade 2 Cellulite n = 17 (29.8%) | ||||
Measurement 1 | Grade 1 Cellulite n = 22 (38.6%) | 54.55% | 45.45% | 0.00% | <0.0001 * | 0.72 |
Grade 2 Cellulite n = 35 (61.4%) | 0.00% | 51.43% | 48.57% |
Grade 1 Cellulite | TF (%) | TW (%) | WC (cm) | HC (cm) | TC (cm) | |
---|---|---|---|---|---|---|
Tave (°C) | 1 | −0.50 * | 0.44 * | N | N | −0.50 * |
2 | N | N | N | N | N | |
3 | N | N | N | N | N | |
4 | N | N | N | N | N | |
Tmin (°C) | 1 | −0.51 * | 0.44 * | N | N | −0.46 * |
2 | N | N | N | N | N | |
3 | N | N | −0.46 * | N | −0.50 * | |
4 | N | N | −0.45 * | −0.49 * | N | |
Tmax (°C) | 1 | N | N | N | N | N |
2 | N | N | N | N | N | |
3 | N | N | N | N | N | |
4 | N | N | N | N | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska, A.; Czerwińska-Ledwig, O.; Stefańska, M.; Pałka, T.; Maciejczyk, M.; Bujas, P.; Bawelski, M.; Ridan, T.; Żychowska, M.; Sadowska-Krępa, E.; et al. Changes in Skin Microcirculation Resulting from Vibration Therapy in Women with Cellulite. Int. J. Environ. Res. Public Health 2022, 19, 3385. https://doi.org/10.3390/ijerph19063385
Piotrowska A, Czerwińska-Ledwig O, Stefańska M, Pałka T, Maciejczyk M, Bujas P, Bawelski M, Ridan T, Żychowska M, Sadowska-Krępa E, et al. Changes in Skin Microcirculation Resulting from Vibration Therapy in Women with Cellulite. International Journal of Environmental Research and Public Health. 2022; 19(6):3385. https://doi.org/10.3390/ijerph19063385
Chicago/Turabian StylePiotrowska, Anna, Olga Czerwińska-Ledwig, Małgorzata Stefańska, Tomasz Pałka, Marcin Maciejczyk, Przemysław Bujas, Marek Bawelski, Tomasz Ridan, Małgorzata Żychowska, Ewa Sadowska-Krępa, and et al. 2022. "Changes in Skin Microcirculation Resulting from Vibration Therapy in Women with Cellulite" International Journal of Environmental Research and Public Health 19, no. 6: 3385. https://doi.org/10.3390/ijerph19063385
APA StylePiotrowska, A., Czerwińska-Ledwig, O., Stefańska, M., Pałka, T., Maciejczyk, M., Bujas, P., Bawelski, M., Ridan, T., Żychowska, M., Sadowska-Krępa, E., & Dębiec-Bąk, A. (2022). Changes in Skin Microcirculation Resulting from Vibration Therapy in Women with Cellulite. International Journal of Environmental Research and Public Health, 19(6), 3385. https://doi.org/10.3390/ijerph19063385